Polytopes and Whitney-stratified Spaces

Margaret Readdy AWM Virtual Lecture Series Kutztown University,

Reference: Natural Philosophy & Esoteric Geometry: The Cosmic Creations Collection joedubs.com

Athens, Greece Thatetetus [~417-369 BC] There are 5 regular 3-dim'l polytopes

Reference Euclid's Elements Book XIII Prop. 13-17 (Digitized by Clay Mosth Institute).

Imarger courtery of the Clay Mathematics Institute

Skip alherard ~ 2500 years

A polytope is the convex hull of a finite # of vertices in Rn def.

0

In ig the bounded intersection of a finite # of closed half-sparces in Rn.

$$\frac{f \cdot vector}{P \quad n \cdot dm^{2}l \quad polytope}$$
The f-vector $(f_{0}, f_{1}, \dots, f_{n-1})$ where $f_{\vec{e}} = \# \vec{z} \cdot dm^{2}l \quad farce g$

UX,

270. 3 S S A H 10 10 Cri 6 6 S 4.01) A= do. ad, be, of. ac, be. 6. 2 P 18. 9 5 0 2= =18. 2.5+3.4 4 fri li = A+2 (1) 94+5 (1) 6. sectio. 2 0 -(and Some hey 1% hou = A 5-8 pater, Greatin = A (A-H) Ira D

Euler's letter nº 149 to Goldbach, November 14th, 1750: reproduction of the third page (RGADA, f. 181, n. 1413, č. IV, fol. 270r)

In the paragraph numbered 6, Euler's Polyhedron Formula appears for the first time; paragraph 11 gives the discrete form of the Gauss-Bonnet theorem (cf. n° 149, notes 5–8).

Euler's relation [1750 letter to Goldbarch]

$$f_0 - f_1 + f_2 = 2$$

Proof by Descartes [1596-1650] weing plane angles

Euler - Poincaré - Schläffi $f_0 - f_1 + f_3 - \dots + (-1)^{n-1} f_{n-1} = 1 - (-1)^n$ The proofs Introduced honology groups and algebraic topology [Poincaré, 1893] Aggumed shellability of polytops, [Schläfli, 1852][Brugesser-Mani, 1971] Polytopes are shellable

ex.

$$\vec{f} = (f_{-1}, f_0, f_1, f_2) = (1, 6, 12, 8)$$

 $\vec{h} = (h_0, h_1, h_2, h_3) = (1, 3, 3, 1),$

The g-theorem
Theorem: [Stanley 1980; Billerar-Lee 1981]
The vector
$$(h_{0}, ..., h_{n})$$
 is the
h-vector of an n-dim?l simplicital
polytope if t only if
(1 (Dehn-Sommerville eqns)
 $h_{\vec{c}} = h_{n-\vec{c}}$, for $\vec{c} = 0, ..., L^{n/2}$]
(2). $(g_{0}, g_{1}, ..., g_{L^{n/2}})$ is an M-sequence
where $g_{0} = h_{0} + g_{\vec{c}} = h_{\vec{c}} - h_{\vec{c}-1}$

•

L

$$\begin{array}{l} flarg \ vectors \\ P \ n-dm'l \ polytope \\ For \ S = \ \mathcal{L}S_{1} < \cdots < S_{45} \mathcal{Y} \subseteq \ \mathcal{L}O_{1} \mathcal{I}_{2} \cdots, n-\mathcal{Y} \ let \\ f_{S} = \ \# \ F_{1} \lneq \ \cdots \ \lneq \ F_{45} \mathcal{I}_{5} \\ \text{where} \ dvm(F_{2}) = S_{2}^{2} \end{array}$$

The flarg f-vector
$$(f_{S})_{S \subseteq RO, 1, ..., n-1}$$

ex.	S	fs	hs	Ulis	
$\overline{\Lambda}$	ø	1	1	പപപ	
	Ø	IZ	1)	bara	
	1	18	17	aba	
	a	8	7	orarb	
The flags by lector	JD	36	7	bba	
The florg h-vector	02	36	17	barb	
$h_{c} = \underbrace{\leq}' (-1)^{(s-T)} f_{T}$	12	36	11	arpp	
$h_{g} = \stackrel{(-1)}{=} \int_{T \leq g}^{(-1)} (f_{T}) f_{T}$	012	72	1	PPP	

[Stanley 1979] hg = hg

The <u>ab-index</u> Show Wa

 $\overline{F} \left(\widehat{W} \right) = 1 \text{ availing } + 11 \text{ barling } + 17 \text{ barling } + 7 \text{ barling } + 17 \text{ barling } + 11 \text{ avb} + 7 \text{ barling } + 17 \text{ barling } + 11 \text{ avb} + 11 \text{ barling } + 10 \text{ barling } + 10$

Then
$$\underline{\mathcal{F}}\left(\widehat{\mathcal{M}}\right) = c^3 + 6cd + 10dc$$

The cd-index

Theorem: [Bayer-Klaipper 1991]
P polytope then
$$\underline{x}(P) \in \mathbb{Z} < c_{3}d$$

P Eulerian poset then $\underline{x}(P) \in \mathbb{Z} < c_{3}d$
Eulerian poset: $\mu((v_{5}y)) = (-1)^{P(v_{5}y)}$ for every
interval $[v_{5}y_{1}]$ in graded poset P
Equivalently, in every nontrivial interval
 $[v_{5}y_{1}]$:
etter
of even rank = # etter
of odd rank.

Some cd-history
[Bayer-Billera/1985] Gen'd Dehn-Sommerville
relations
[Bayer-Klarpper 1991] Existence of ∓;
"cd-index is a basis for GDDS"
[Purtill 1993]
$$\mp$$
 (n-simplex) \iff André $+$
 \pm (n-cube) \iff Signed André penns
[Stanley 1994] \mp ≥0 for all (polytepe),
more generally,
for S-shellable force paset
of a regular CW-complex.

Product = concatenation

Coproduct

$$\Delta(v_1 \cdots v_n) = \bigotimes_{z=1}^{n} v_1 \cdots v_{z-1} \otimes v_{z+1} \cdots v_n$$
Extend to all of $w(x_n,b) = b$ linearity.
 y
 $v(x, \Delta(abb) = 1 \otimes bb + a \otimes b + ab \otimes c$

[Joni-Rotar 1979]
V vector space with product
$$\mu$$
 + coproduct Λ
 (V, μ, Λ) is a Newtonian coalgebra if it
satisfies the Newtonian condition
 $\Delta \circ \mu = (1 \otimes \mu) \circ (\Delta \otimes 1)$
 $+ (\mu \otimes 1) \circ (1 \otimes \Lambda)$

In Sweedler notation

$$\Delta(xy) = \sum_{x} x_{(1)} \otimes (x_{(2)} \cdot y) +$$
$$\sum_{y} (x \cdot y_{(1)}) \otimes y_{(2)}$$

[Ehrenbag-Hetyei, unpublished]
Φ = vector space of all types of
graded pasets with
$$\hat{O} \neq \hat{A}$$

over a field de
Define a coproduct
 $\Delta(\bar{P}) = \underset{x \in P}{\sum} [\hat{O}, x] \otimes [x, \hat{A}]$
 $\hat{O} < vx < P$
Define star product
 $P * Q = \int \hat{J} Q - \hat{O} \hat{J}$
 $\hat{J} P - \hat{R} \hat{J}$
Theorem: [Ehrenbag-Hetyei]
 $(P, \Delta, *)$ is a Newtonian coalgebra

EEhrenbarg-Reardy 1998] Theorem; The ab-index is a Newtonian coalgebra homomorphism from P to k(a,b) with $\overline{\mathbf{T}}(\mathbf{I}) = \mathbf{1}$ $\underline{\mathcal{F}}(P*Q) = \underline{\mathcal{F}}(P) \cdot \underline{\mathcal{F}}(Q)$ $\Delta(\Xi(P)) = \leq \Xi(\widehat{L}(\widehat{a}, \alpha)) \otimes \Xi(\widehat{L}(\alpha, \widehat{1}))$ VXC-P $\hat{O} < x < \hat{1}$

The miracle coproduct

$$\Delta(c) = \Delta(\alpha+b) = \Delta(\alpha) + \Delta(b)$$

$$= 2 \cdot |\otimes|$$

$$\Delta(d) = \Delta(\alpha b + b\alpha) = \alpha \cdot \Delta(b) + \Delta(\alpha) \cdot b$$
$$+ b \Delta(\alpha) + \Delta(b) \cdot \alpha$$
$$= \alpha \otimes 1 + 1 \otimes b$$
$$+ b \otimes 1 + 1 \otimes \alpha$$
$$= c \otimes 1 + 1 \otimes c$$

Corollary: [Ehrenbog-Readdy 1998]
The col-index is a Newtonian
coalgebra homomorphism from
&= linear epace of graded Ewlenian posets
to
$$w < c_{,d} > wrth$$

 $\underline{F}(1) = 1$
 $\underline{F}(2) = 1$
 $\underline{F}(P*Q) = \underline{F}(P), \underline{F}(Q)$
 $\Delta(\underline{F}(P)) = \underbrace{F}(\underline{C}\hat{O}, w]) \otimes \underline{F}(\underline{C}w, \hat{1}])$
we p
 $\widehat{O} < w < \hat{1}$

Implication (ar sampling) Inherent coalgebraic structure of col-index allong: () Geometric operations WX [E-R 1998] 王(Prigm (P))= 亚(P)·c + D(亚(P)) where D(c) = ad and D(d) = cd + dcNew inequalities for flarg vectors Ø [Ehrenbarg 2005] Undersitiand combinations of oriented matroids arrangements of subsparces + substori [Billerar-Ehrenbag-Readdy 1997] [Ehrenbog-Readdy-Slore 2009]

Inequalities ±20 for S-shellable posets [Stanley 1994] The closure of the convex care generated by florg f-vectors of posets is polyhedral [Billerar-Hetyei 1999] 王(n-dum'l) こ 王(n-dum'l) 王(polytope) こ 王(sumplex) [Billera - Ehrenbag 2000] $\mathbb{E}(\text{Gorenstein}^* \text{ posets}) \ge 0$ [Karu 2006] [Karu-Ehrenborg 2007] 王(Gorenstein* lattice) ≥ 王(Bn) Techniques for lifting knows inequalities (Stanley, toric 9, Kalai convolution) [Ehrenborg 2005] New inequalities for polytopes of dim. 26

ex. 1-gon

$$5 f_{5} h_{5}$$

 $0 1 1$
 $0 1 0$
 $1 1 0$
 $0 1 0$

NOT Eulerían

Chain
$$c = \hat{1}\hat{0} = x_0 < x_1 < \dots < x_{10} = \hat{1}\hat{j}$$

in the face poset weighted by
 $\overline{f}(c) = \chi(x_1) \cdot \chi(link_{x_2}(x_1)) \dots \chi(link_{x_{10}}(x_{10}))$

These are examples of Whitney stratifications Subdivide sparce into stratal $W = \dot{U} \times$ XEP Condition of the frantier. $X \cap \overline{Y} \neq \emptyset \iff X \subseteq \overline{Y} \iff X \leq Y$ in the property force poset P Whitney conditions A and B! No franctal behaviar No infinite wiggling ux, vx sn (1/x) => The links are well-behaved.

The Fine Print

Definition Let W be a closed subset of a smooth manifold M, and suppose W can be written as a locally finite disjoint union

$$W = \bigcup_{X \in \mathcal{P}} X$$

where \mathcal{P} is a poset. Furthermore, suppose each $X \in \mathcal{P}$ is a locally closed subset of W satisfying the condition of the frontier:

$$X \cap \overline{Y} \neq \emptyset \iff X \subseteq \overline{Y} \iff X \leq_{\mathcal{P}} Y.$$

This implies the closure of each stratum is a union of strata. We say W is a Whitney stratification if

- 1. Each $X \in \mathcal{P}$ is a locally closed smooth submanifold of M (not necessarily connected).
- 2. If $X <_{\mathcal{P}} Y$ then Whitney's conditions (A) and (B) hold: Suppose $y_i \in Y$ is a sequence of points converging to some $x \in X$ and that $x_i \in X$ converges to x. Also assume that (with respect to some local coordinate system on the manifold M) the secant lines $\ell_i = \overline{x_i y_i}$ converge to some limiting line ℓ and the tangent planes $T_{y_i}Y$ converge to some limiting plane τ . Then the inclusions

(A)
$$T_x X \subseteq \tau$$
 and (B) $\ell \subseteq \tau$

hold.

Examples of Whitney stratifications." convex polytopes regular cell complexes real or complex algebraic sets analytic sets semi-analytic sets quotients of smooth manifolds by comparet group arctions

Have applications to robotics Whitney stratifications: + computational geometry.

ex. The Whitney cwap.

Whitney stratifications (their face posts) are examples of ...

Quality - graded posets
obj. A quality - graded poset
$$(P, P, \overline{\zeta})$$

congrists of
 \vec{v} . P finite poset with $\vec{0} \neq \hat{1}$
(not necessarily graded)
 \vec{v} . p : $P \rightarrow N$ and $preserving$
 $(vx < y \Rightarrow p^{(vx)} < p(y))$
 $\vec{v}\vec{v}$. $\vec{f} \in I(P)$, the incidence algebra of P.
The weighted zeta function satisfies
 $\vec{f}(vx,vx) = 1$. $\forall vx \in P$.

 $def.(P, p, \overline{z}) \equiv ulerian if$ $\sum_{x \leq y \leq z} (-1)^{\mathcal{O}(x,y)} \overline{\mathcal{J}}(x,y) \cdot \overline{\mathcal{J}}(y,z) = S_{x,z}$

Remark: Z=Z gives the classical Eulerian condition

 $\sum_{x \le y \le z}^{1} (-1)^{\mathcal{O}(x,y)} = S_{x,z}$

Define the ab-index of (P, p, Z) $\underline{\mathbf{T}}(\mathbf{P},\mathbf{p},\overline{\mathbf{z}}) = \underbrace{\mathbf{N}}_{\mathbf{S}} \cdot \mathbf{W}_{\mathbf{S}}$ with. $\overline{\overline{g}}(c) = \overline{\overline{g}}(x_0, x_1) \cdot \overline{\overline{g}}(x_1, x_2) \cdots \overline{\overline{g}}(x_{k-1}, x_k)$ for a chain c: $\hat{0} = x_0 < x_1 < \dots < x_k = \hat{1}$

[Ehrenborg-Goreeky-Readdy 2015]. Theorem: Let (P,p,Z) be an Eulerian quarsi-graded poset. Then (). The flag F-vector satisfies the gen'd Dehn-Sommerville relations. $\mathbb{F}(P, p, \overline{\beta}) \in \mathbb{Z}^{\langle c, d \rangle}$ **A**). Alexander durality generalized to Eulerian quarsi-graded posets

[Ehrenbarg-Goreaky-Rea/ddy 2015] Theorem! M marnifold with a Whitney stratified boundary. Then the face poset is quasi-graded and Eulerian, with $p(x) = \dim(x) + 1.$ $\overline{Z}(vx,y) = \chi(link_y(vx))$

Thank you!