q-Combinatorics: A new view

Margaret Readdy
U. Kentucky & Princeton University

Yue Cai
U. Kentucky

Discrete Math Day at WPI.
Thanks to the Simons Foundation.
Let's count \[\approx 50,000 \text{ BC}^* \]

\[
\sum_{\pi \in \mathcal{S}_n} 1 = n!
\]

\[
\sum_{S \subseteq \{1, \ldots, n\}} 1 = \binom{n}{\omega}.
\]

\[|S| = \omega \]

* Source: Wikipedia*
Let's \(q \)-count \([1700's \text{ Euler}^*] \).

\(q \)-analogue of \(n \in \mathbb{Z}^+ \)

\[
[n]_q = [n] = 1 + q + \ldots + q^{n-1},
\]

\(q \) an indeterminate.

\[
\lim_{q \to 1} \frac{[n]_q}{n} = 1 + \ldots + 1 = n.
\]

\[
[n]_n = [n] [n-1] \ldots [2] [1].
\]

* Theta function \(\varphi(n) = \sum_{a \in \mathbb{Z}} (\frac{n}{a}) \frac{(n)}{a} \)

\[
f(a, b) = \sum_{n=-\infty}^{\infty} a^n b^n,
\]

\(|a| |b| < 1 \).
Combinatorial interpretation

[MacMahon 1916]

\[
\sum_{\pi \in S_n} q^{\text{inv} (\pi)} = [n]!,
\]

where

\[
\text{inv} (\pi) = \# \{ (i,j) : i < j \text{ and } \pi_i > \pi_j \}
\]

for \(\pi = \pi_1 \ldots \pi_n \in S_n \).
Gaussian polynomial. (the q-binomial)

\[
[n]_q = \begin{cases}
\frac{[n]!}{[q^n]! [n-q^n]!} & 0 \leq q^n \leq n \\
0 & q^n < 0 \quad q^n > n.
\end{cases}
\]

C母 interpretation.

\[
\sum_{\eta \in \mathcal{G}(1,0^n-q^n)}^{\text{inv } \eta} \eta = [n]_q.
\]

[MacMahon 1916]
\[\left[\begin{array}{c} \eta_1 \\ \eta_2 \end{array} \right]. \]

<table>
<thead>
<tr>
<th>\eta_1</th>
<th>\eta_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0011</td>
<td>0</td>
</tr>
<tr>
<td>0101</td>
<td>1</td>
</tr>
<tr>
<td>0110</td>
<td>2</td>
</tr>
<tr>
<td>1001</td>
<td>2</td>
</tr>
<tr>
<td>1010</td>
<td>3</td>
</tr>
<tr>
<td>1100</td>
<td>4</td>
</tr>
</tbody>
</table>

\[
\sum_{\eta \in \{0,1 \}^2} q^{\text{inv } \eta} = q^4 + q^3 + 2q^2 + q + 1.
\]

Check \(\left[\begin{array}{c} 4 \\ a \end{array} \right] = \frac{\left[4 \right] \left[3 \right]}{\left[a \right]} = \frac{(1+q)(1+q^a)(1+q+q^2)}{(1+q)} \).
The negative q-binomial \cite{Fw-Reiner-Stanton-Thiem, 2012}

def. \[
\begin{aligned}
\left[\begin{array}{c}
\underline{\nu} \\
\underline{\nu}
\end{array}\right]_q^\prime & \equiv (-1)^{\underline{\nu}(n-\underline{\nu})} \left[\begin{array}{c}
\nu \\
\nu
\end{array}\right]_{-q} \\
\end{aligned}
\]

\text{ex.} \quad \left[\begin{array}{c}
4 \\
2
\end{array}\right]_q^\prime = q^4 - q^3 + 2q^2 - q + 1.
Theorem: \[\text{Fu - Reiner - Stanton - Thiem}. \]

\[
\left[\begin{array}{c} n \\ \psi \end{array} \right] q = \sum_{w \in \Omega(n, \psi)} w + (w) \\
= \sum_{w \in \Omega(n, \psi)} q^{\alpha(w)} (q-1)^{p(w)}
\]

where \(\Omega(n, \psi) \) is a certain subset of \(\mathfrak{S}_n \times \mathfrak{S}_{n-\psi} \),

\(p(w) \) = number of 10 pairs in \(w \),

\(\alpha(w) = \text{inv}(w) - p(w) \).
Corollary: \([F-R-S-T]\)

The \(q\)-binomial can be expressed as

\[\left[\begin{array}{c}
\binom{n}{k}
\end{array}\right]_q = \sum_{w \in \Omega(n,k)} q^{a(w)} (1 + q)^{p(w)}.\]
def. Given $w = w_1 \cdots w_n \in \{1, 2, \ldots, n - 1\}$, pair

t. $n = 1$. Leave letter unpaired.

tt. $n > 2 + u$ odd: Pair $\underline{w_1 w_2}$
Repeat on $w_3 \cdots w_n$

ttt. $n > 2 + u$ even: Pair w_1.
Repeat on $w_2 \cdots w_n$.

ex. \[0110010101\]
\[110001001\]
Define

\[q_{n,k} = \begin{cases} \text{true} & \text{if } w \in \mathcal{L}(A_k) \land w \text{ has no paired } 01 \gamma. \\
\text{false} & \text{otherwise} \end{cases} \]

ex. \[\gamma \]

\begin{align*}
0011 & \quad \text{No.} \\
0101 & \quad \text{No.} \\
0110 & \quad \text{No.} \\
1001 & \\
1010 & \quad \text{No.} \\
1100 & \\
\end{align*}
\[\sum = 1 + (q + q^3)(1 + q) + q^2 \]

\[= q^4 + q^3 + 2q^2 + q + 1. \]

Recall

\[w^+(w) = q \cdot (1 + q)^{p(w)} \]

\[p(w) = \# \text{ of pairs in } w, \quad a(w) = \]

\[a(w) = \text{inv}(w) - p(w). \]
20: What about other combinatorial objects with q-analogues?
Goal: Given a \(q \)-analogue
\[
f(q) = \sum_{w \in S} \sigma(w) q^w,
\]
for some statistic \(\sigma(\cdot) \), find a subset \(T \subseteq S \) and statistics \(A(\cdot) \) and \(B(\cdot) \) so that
\[
f(q) = \sum_{w \in T} q^w (1 + q)^{A(w)} B(w).
\]
Goal: Given

\[f(q) = \sum_{w \in T} q^A(w) (1 + q)^B(w) \]

find poset theoretic and topological explanations.
The Stirling numbers of the second kind

\[S(n, k) = \text{# partitions of } \{1, \ldots, n\} \text{ into } k \text{ blocks} \]

Ex. \[S(4, 2) : \]
\[
\begin{align*}
1/234 & \quad 12/34 \\
134/2 & \quad 13/24 \\
124/3 & \quad 14/23. \\
123/4 & \\
\end{align*}
\]
(written in standard form).

The \(q \)-Stirling numbers

\[S_q[n, k] = S_q[n-1, k-1] + [k] S_q[n-1, k] \]

with \[S_q[n, n] = 1 = S_q[n, 1]. \]
RG-words [Milne].

Encode a partition \(\nu \) using a restricted growth word \(w \).

\[w = w_1 \cdots w_n \quad \text{where} \quad w_i = j \quad \text{if the elt. } \nu_i \text{ is in the } j\text{th block of } \nu. \]

ex. \(\nu = 125/36/47 \leftrightarrow 1123123. \)

Let \(\mathcal{R}(n,k) = \text{set of all RG-words which encode a set partition of } k1, \ldots, nk \text{ into } k \text{ parts.} \)
For \(\mathcal{B}(n, k) \), let
\[
wh(w) = \prod_{i=1}^{n} w_{z_i}(w),
\]
where \(m_{z_i} = \max \{ w_i, \ldots, w_{z_i} \} \),
\(w_{z_1}(w) = 1 \) and for \(2 \leq z \leq n \)
\[
w_{z_i}(w) = \begin{cases}
q^{w_{z_i}-1} & \text{if } w_{z_i} \leq m_{z_i-1} \\
n & \text{if } w_{z_i} > m_{z_i-1}
\end{cases}
\]

Theorem: [Cai-Rea/dy]
The \(q \)-Stirling number of the second kind is given by
\[
S_q[n, k] = \sum_{w \in \mathcal{B}(n, k)} wh(w).
\]
\[\begin{align*}
\text{ex.} & & W & & w^+(w) \\
1/234 & & 1223 & & q' \cdot q' = q^2 \\
134/2 & & 1211 & & 1 \\
124/3 & & 1121 & & 1 \\
123/4 & & 1112 & & 1 \\
12/34 & & 1122 & & q' \\
13/24 & & 1212 & & q' \\
14/23 & & 1221 & & q' \\
\end{align*} \]

\[\sum = q^2 + 3q + 3 \]

\[S_q[4,2] \]
Remark: See Garin, Remmel, Milne, and especially Waichs-White for a multitude of statistics that generate $S_q [n, 6]$.

The $w(\cdot)$ statistic is related to Waichs-White's $I_s (\cdot)$ statistic.
Let \(w^t'(w) = \prod_{\varepsilon=1}^{n} w^t_{\varepsilon}'(w) \), \(m_{\varepsilon} = \max R w_{1, \ldots, w_{\varepsilon} y} \), and

\[
w^t_{\varepsilon}'(w) = \begin{cases}
q \left(1 + q\right) & \text{if } w_{\varepsilon} < m_{\varepsilon-1} \\
q^{w_{\varepsilon}-1} & \text{if } w_{\varepsilon} = m_{\varepsilon-1} \\
1 & \text{if } w_{\varepsilon} > m_{\varepsilon-1} \text{ or } \varepsilon = 1.
\end{cases}
\]

Write \(A(w) = \sum_{\varepsilon=1}^{n} A_{\varepsilon}'(w) \) and \(B(w) = \sum_{\varepsilon=1}^{n} B_{\varepsilon}'(w) \), where

\[
A_{\varepsilon}'(w) = \begin{cases}
w_{\varepsilon} - 1 & \text{if } w_{\varepsilon} \leq m_{\varepsilon-1} \\
0 & \text{if } w_{\varepsilon} > m_{\varepsilon-1} \text{ or } \varepsilon = 1
\end{cases}
\]

\[
B_{\varepsilon}'(w) = \begin{cases}
1 & \text{if } w_{\varepsilon} < m_{\varepsilon-1} \\
0 & \text{otherwise}
\end{cases}
\]
Allowable RG-words

Def. An RG-word we \(w \in \alpha(n, w) \) is allowable if it is of the form

\[
\begin{array}{ccccccc}
1 & \cdots & 1 & 2 & \cdots & 4 & \cdots & 6 & \cdots \\
& \cdots \\
& 1, 2 & 3, 4 & 5, 6 & 7, 8 & 9, 10 & 11, 12 & 13, 14 & 15, 16 \\
\end{array}
\]

ex. \(w = 1 1 2 1 3 3 1 4 3 5 \in \alpha(10, 5) \).

\(wt(w) = 1 \cdot 1 \cdot 1 \cdot (1+q) \cdot 1 \cdot q^2 \cdot \cdots \cdot (1+q) \cdot 1 \cdot q^2 (1+q) \cdot 1 \)

Allowable words are denoted by \(\alpha(n, w) \)
\[
\begin{array}{ccc}
\text{ex.} & w & w^+(w) \\
1222 & - & \\
1211 & (1+q)^2 & \\
1121 & (1+q) & \\
1112 & 1 & \\
1122 & - & \\
1212 & - & \\
1221 & - & \\
\end{array}
\]

\[
\sum = (1+q)^2 + (1+q) + 1 \\
= q^2 + 3q + 3 \\
\subseteq [4,2]_q
\]
\[\sum_{\mathfrak{w}} w \cdot \begin{array}{c|c} w^t(w) \\ \hline 12311 & (1+q)^2 \\ 12131 & (1+q)^2 \\ 12113 & (1+q)^2 \\ 12133 & (1+q) \cdot q^2 \\ 12313 & (1+q) \cdot q^2 \\ 12331 & q^2 \cdot (1+q) \\ 12333 & q^2 \cdot q^2 \\ 11213 & (1+q) \\ 11231 & (1+q) \\ 11233 & q^2 \cdot q^2 \\ 11123 & q^2 \\ 1 & 1 \end{array} \]

\[\sum = q^4 + 3q^3(1+q) + q^2 + 3 \cdot (1+q)^2 + 2(1+q) + 1. \]

\[S_q[5,3] = q^4 + 3q^3 + 7q^2 + 8q + 6 \]
Theorem: \([\text{Carleman's Additivity}]\)

\[
S_q[n,k] = \sum_{w \in \mathcal{A}(n,k)} \lambda^w \cdot (1 + q)
\]

\[
= \sum_{w \in \mathcal{A}(n,k)} A(w) \cdot B(w),
\]
Stembridge's \(q = -1 \) phenomenon

Let \(B \) be a finite set:

\[
X(q) = \sum_{b \in B} q^{\text{wt}(b)}.
\]

Set \(q = -1 \) to count fixed points in an involution.

Corollary: [Cox- Readdy]

\(S_q^q [n,w] \) when \(q = -1 \)

counts the number of weakly increasing allowable words in \(A_n(n, w) \).

Form: \(1 \ldots 1 2 3 \ldots 3 4 5 \ldots 5 6 \ldots \)

(No \((1 + q)\) terms).
The Stirling poset of the second kind $T(n, \psi)$

For $\psi, \sigma \in \mathcal{P}_0(n, \psi)$ let $\psi \leq \sigma$ if

$$\sigma = \psi_1, \psi_2, \ldots, (\psi_{\tau}+1), \ldots, \psi_n.$$

for some index τ.

Clearly, $\psi \leq \sigma \Rightarrow wt(\sigma) = \psi \cdot wt(\psi)$.

Thus $T(n, \psi)$ is a graded poset.
The Stirling poset of the second kind $\Pi(5, 2)$.
Theorem: [Carleheddy].

The Stirling poset of the second kind has the decomposition:

\[\mathcal{T}(n, k) \cong \bigcup_{w \in A(n, k)} |\text{Inv}(w)| \bigcup_{w \in B} \]

where \(B \) is the Bodean algebra on \(j \) elements,
\(\text{Inv}(w) = \{ w_i : w_j > w_k \text{ for some } j < k \} \)

is the set of all entries in \(w \) that contribute to an inversion,
and \(A(n, k) \) are allowable RG-words in \(\mathcal{T}(n, k) \).
The Stirling poset of the second kind \(\Pi(5, 2) \).
The decomposition.

The weight of the poset is $1 + (1 + q) + (1 + q)^2 + (1 + q)^3$.
Homological $q = -1$

phenomenon [Hersh - Shareghi/M - Stanton]

Claim: Stembridge's $q = -1$ phenomenon is the same Euler characteristic computation.

Idea: Define a chain complex (δ, ∂).

Ranks of chain groups are coeff in the polynomial $X(q)$.

Euler characteristic is $X(-1)$.

Also, Euler characteristic = alternating sum of ranks of homology groups.

Best scenario: (δ, ∂) has homology concentrated in ranks of same parity & have basis indexed by fixed parts of involution = $X(-1)$.
The poset P supports a chain complex (C_i, d_i) of F-vector spaces C_i if:

- C_i has a basis indexed by the elements W_i.
- $C_i \neq 0$ if and only if $W_i \neq \emptyset$.

There is a boundary map d_i for $i \in W_{i-1}$ and $y \in W_i$. The coefficient of y, x of x in $d_i(y)$ is zero unless $x \leq y$.
The algebraic complex \((\mathcal{C}, \partial)\) supported by the poset \(\Pi(n, \mathcal{C})\)

For \(w \in \Pi(n, \mathcal{C})\), let

\[E(w) = \{ i : \text{ \(w_i\) even and } w_j = w_i \text{ for some } j < i \} \]

be the set of indices of repeated even entries in \(w\).

\[w = 122344 \Rightarrow E(w) = \{ 3, 6 \} \]

The boundary map \(\partial\) on \(w\) of \(\Pi(n, \mathcal{C})\)

\[\partial(w) = \sum_{j=1}^{n} (-1)^{j-1} w_1 \ldots w_{j-1} (w_j - 1) w_{j+1} \ldots w_n, \]

where \(E(w) = \{ \tau_1, \ldots, \tau_r \}\) and \(w \notin A(n, \mathcal{C})\)

\[0, \quad \text{if } w \in A(n, \mathcal{C}). \]
ex. (cont’d)

\(w = 122,344 \)
\(E(w) = 93,639 \)
\(\overline{w} = 121,344 - 122,343 \)

Lemma: \(\overline{e}^2 = 0 \).
Algebraic Module Theory.

Port

Orient edges in Hasse diagram downwards.

A partial matching is a subset $M \subseteq P \times P$ s.t.

1. $(a, b) \in M \implies a \nleq b$

2. Each elt $a \in P$ belongs to at most one elt in M.

For $(a, b) \in M$ write $b = w(a), \ a = d(b)$ “up” “down”.

A partial matching is acyclic if there are no cycles in the directed Hasse diagram.
Matching in $T(n, w)$:

Let ϕ_i be first entry in $\phi = \phi_1 \ldots \phi_n \in T(n, w)$

s.t. ϕ_i is weakly decreasing,

\[
\phi_1 \leq \phi_2 \leq \ldots \leq \phi_{i-1} \geq \phi_i \ldots
\]

and $\phi_{i-1} \geq \phi_i$ is strict unless both ϕ_{i-1} and ϕ_i are even.

For ϕ_i even:

\[
d(\phi) = \phi_1 \phi_2 \ldots \phi_{i-1} \left(\phi_i - 1 \right) \phi_{i+1} \ldots \phi_n.
\]

For ϕ_i odd,

\[
u(\phi) = \phi_1 \phi_2 \ldots \phi_{i-1} \left(\phi_i + 1 \right) \phi_{i+1} \ldots \phi_n.
\]
The matching.
Lemma: The unmatched words in $T(n,k)$ are of the form

$$1 \ldots 1 \ 2 \ldots 3 \ 4 \ldots 5 \ 6 \ldots$$

Lemma: Let a and b be two distinct elements in the Stirling poset of the second kind $T(n,k)$ s.t.

$$a < w(a) \leq b \leq w(b).$$

Then $a >_{\text{lex}} b$.

Theorem: [Can–Readdy]
The matching described for $T(n,k)$ is an acyclic matching.
Lemma: [Hersh–Shareshian–Stanton].

A graded poset supporting an algebraic complex (E, d),

Assume P has a Morse matching M such that for all $q = M(p)$ with $q < p$, one has $d_{p, q} \in \mathbb{F}^+$.

If all unmatched elements occur in ranks of the same parity, then

$$\dim H_\ast(E, d) = |\{ p \in M \} |$$

that is, the # of unmatched elements of rank \ast.
Lemma: The weighted generating function of the unmatched words in $T(n, \omega)$ is given by the q^2-binomial coefficient

$$\sum_{\text{well}(n, \omega)} w^+(\omega) = \left[\begin{array}{c} n-1 - \lfloor \omega/2 \rfloor \\ \lfloor \omega-1/2 \rfloor \end{array} \right]_q.$$

Theorem: [Cai-Reasddy]

The algebraic complex (\mathcal{C}, ∂) supported by $T(n, \omega)$ have bases for homology given by the increasing allowable RG-words in $A(n, \omega)$.

Furthermore

$$\sum_{\varepsilon \geq 0} \dim (H_\varepsilon) q^\varepsilon = \left[\begin{array}{c} n-1 - \lfloor \omega/2 \rfloor \\ \lfloor \omega-1/2 \rfloor \end{array} \right]_q.$$
q-Stirling number of the first kind

\[S[n, v] = S[n-1, v-1] + [v] \cdot S[n-1, v] \]

with \(S[n, 0] = S_n, 0 \).

Recall Stirling number \(S(n, v) \) counts \(\# \) of \(\pi \in \mathfrak{S}_n \) with \(v \) disjoint cycles.

Theorem: [de Médicis - Leroux].

\[S[n, v] = \sum_{T \in \mathfrak{P}(n-1, n-v)} q^{|T|} \]

\(\mathfrak{P}(m, n) \) set of ways to place \(n \) rocks on a length \(m \) stairs, no two rocks in same column.

For \(T \in \mathfrak{P}(m, n) \), \(s(T) = \# \) of squares to the south of the rocks in \(T \).
\text{ex. } c[4, a] = q^3 + 3q^2 + 4q + 3
Find a subset $Q(n - 1, n - k)$ of $P(n - 1, n - k)$:
Consider a checkerboard coloring
To find a subset $Q(n-1, n-k)$ of $P(n-1, n-k)$:

\[\begin{align*}
q^2 \\
q^2(1+q) \\
(1+q) \\
\end{align*}\]

\[\begin{align*}
(1+q)^2 \\
(1+q)
\end{align*}\]

\[c[4,3] = q^2 (1+q) + (1+q)^2 + q^2 + 2 \cdot (1+q)\]

\[= q^3 + 3q^2 + 4q + 3.\]
Computing the \(q \)-Stirling number of the first kind \(c_q[4, 2] \) using \(Q(4, 2) \).
Theorem: [Cai-Readdly]

\[c[n,k] = \sum_{T \in Q(n-1,n-k)} q^{s(T)} (1+q)^{r(T)} \]

where \(Q(n-1,n-k) \subseteq R(n-1,n-k) \) are rook placements on the alternating shaded staircase board (shaded alternatingly starting from lowest diagonal),

\[s(T) = \# \text{ squares to the south of the rooks in } T \]

\[r(T) = \# \text{ rooks not in first row} \]
The Stirling poset of
the first kind \(\% \(m,n\) \)

For \(T, T' \in \% \(m,n\) \) let \(T \leq T' \) if
\(T' \) can be obtained from \(T \) by moving one rook to the left (west) or up (north).
Define a matching \(m \):

For \(T \in P(m,n) \), let \(r \) be the first rock (reading left to right) that is not in a shaded square in first row.

Match \(T \) to \(T' \) where \(T' \) is obtained from \(T \) by moving \(r \) one square down if \(r \) is not in a shaded square, or one square up if \(r \) is in a shaded square but not in first row.
Lemma: The unmatched rock placement in $P(m,n)$ have all of the rocks occur in shaded squares in the first row.

Theorem: [Cai- Readdy].
1. The matching described for $P(m,n)$ is acyclic.
2. $\sum_{T \in P(m,n) \text{ unmatched}} \text{wt}(T) = q^{n(n-1)} \left[\begin{array}{c} \text{LMH} \end{array} \right]_{n} q^{2}.$
For $T \in \mathcal{P}(m,n)$, let

\[N(T) = \{ r_i : \text{the rook } r_i \text{ in } T \text{ is not in a shaded square } j \}. \]

\[I(T) = \{ r_j : r_j \in N(T) \text{ and } r_j < r_2 < \ldots < r_i \in N(T) \}. \]

The boundary map ∂ on $\mathcal{P}(m,n)$:

\[\partial(T) = \sum_{r_j \in N(T)} (-1)^{j-1} T_{r_j}. \]

where T_{r_j} is obtained by moving the rook r_j in T down by one square.
Theorem: [Cai- Readdy]

The algebraic complex (\mathcal{C}, d) supported by $P(m,n)$ has basis for homology given by the rock placements in $Q(m,n)$ having all of the rocks occur in shaded squares in the first row.

Furthermore,

$$
\sum_{i \geq 0} \text{dim} \left(H_i \right) q^i = q^{n(n-1)} \left[\begin{array}{c}
\frac{m+n-1}{2} \\
\end{array} \right] q^2.
$$
Orthogonality

Recall the signed q-Stirling numbers of the first kind.

\[s_q[n, \ell] = (-1)^{n-\ell} \, c[n, \ell], \]

Known generating polynomials.

\[(x)_n, q = \sum_{\ell=0}^{n} s_q[n, \ell] \, x^\ell \]

\[x^n = \sum_{\ell=0}^{n} s_q[n, \ell] \, (x)_\ell, q \]

where

\[(x)_n, q = \prod_{m=0}^{n-1} \left(x - [m]_q \right). \]
Define the \((q,t)\) Stirling numbers of the first and second kind by

\[
\begin{align*}
S_{q,t}^{(n,\nu)} &= (-1)^{n-\nu} \sum_{T \in \mathcal{Q}(n-1, n-\nu)} \sigma(T) r(T) \\
S_{q,t}^{(n,\nu)} &= \sum_{\text{\text{wed}}(n,\nu)} A(w) B(w)
\end{align*}
\]

respectively, where \(t = q + 1\).
Let
\[
[k]_{q,t} = \begin{cases}
(q^{k-2} + q^{k-4} + \ldots + 1) \cdot t & \text{for } k \text{ even} \\
q^{k-1} + (q^{k-3} + q^{k-5} + \ldots + 1) \cdot t & \text{for } k \text{ odd.}
\end{cases}
\]

Theorem: [Cai–Readdy].
The generating polynomials for the \((q, t)\)-Stirling numbers are

\[
(ax)_{n,q,t} = \sum_{k=0}^{n} S_{q,t}[n,k] \cdot ax^{k}
\]

\[
x^n = \sum_{k=0}^{n} S_{q,t}[n,k] \cdot (ax)^{k,q,t}
\]

where

\[
(ax)_{n,q,t} = \prod_{m=0}^{n-1} (ax - [m]_{q,t}).
\]
Theorem: [de Médicis - Leroux].
The signed q-Stirling numbers $s_q[n, k]$ and the q-Stirling numbers $S_q[n, k]$ are orthogonal, that is,
\[\sum_{k=m}^{n} s_q[n, k] S_q[k, m] = S_{m, n} \]
and
\[\sum_{k=m}^{n} S_q[n, k] s_q[k, m] = S_{m, n} \]
Furthermore, this orthogonality holds bijectively.
Theorem: [Car- Readdy].

The \((q,t)\)-Stirling numbers are orthogonal, that is,

\[
\sum_{n=1}^{\infty} S_{q,t}^{[n,v]} \cdot S_{q,t}^{[v,m]} = S_{m,n}
\]

and

\[
\sum_{n=1}^{\infty} S_{q,t}^{[n,v]} \cdot S_{q,t}^{[v,m]} = S_{m,n}.
\]

Furthermore, this orthogonality holds bijectively.
Thank you!