MathExcel Worksheet # 7: Continuity

Reminders: Worksheet 2 is NOW due on FRIDAY.
Homework A3 and A4 are due tonight by Midnight
Exam I: Tuesday, Sept. 23, 7:30 pm -9:30 pm, CB 246.

1. Give the formal definition for a function \(f(x) \) to be continuous at a point \(x = a \).
 Give the formal definition for a function to be continuous on a domain. Then give an
 intuitive description of continuity.

2. Sketch the graph of a function that has a jump discontinuity at \(x = 2 \), is continuous
 from the right at \(x = 2 \), and has a removable discontinuity at \(x = 5 \).

3. Using the definition of continuity and the properties of limits, show that the following
 functions are continuous at the given number \(a \).
 (a) \(f(x) = \pi \), \(a = 1 \)
 (b) \(f(x) = \frac{x^2 + 3x + 1}{x + 3} \), \(a = -1 \)
(c) \(f(x) = \sqrt{x^2 - 9}, \ a = 4 \)

4. Specify the domain on which \(f \) is continuous. Use interval notation.

(a) \(f(x) = \frac{x + 1}{x^2 + 4x + 3} \)

(b) \(f(x) = \frac{x}{x^2 + 1} \)

(c) \(f(x) = \sqrt{2x - 3} + x^2 \)

(d) \(f(x) = \begin{cases}
 x^2 + 1 & \text{if } x \leq 0 \\
 x + 1 & \text{if } 0 < x < 2 \\
 -(x - 2)^2 & \text{if } x \geq 2
\end{cases} \)
5. For what value of the constant c is the function f continuous on $(-\infty, \infty)$?

$$f(x) = \begin{cases}
 cx^2 + 2x & \text{if } x < 2 \\
 x^3 - cx & \text{if } x \geq 2
\end{cases}$$

6. Let c be a number and consider the function

$$f(x) = \begin{cases}
 cx^2 - 5 & \text{if } x < 1 \\
 10 & \text{if } x = 1 \\
 \frac{1}{x} - 2c & \text{if } x > 1
\end{cases}$$

(a) Find all numbers c such that $\lim_{x \to 1} f(x)$ exists.

(b) Is there a number c such that $f(x)$ is continuous at $x = 1$? Justify your answer.

7. State the Intermediate Value Theorem.
8. Use the Intermediate Value Theorem to show that the given equation has a real solution in the specified interval.

(a) \(2x^3 + x - 5 = 0, \ [0, 2]\)

(b) \(\cos x = x, \ [0, \pi/2]\)

9. (Problem 61 in the book) Is there a number that is exactly 1 more than its cube?

10. (Problem 40 in the book) The gravitational force exerted by the earth on a unit mass at a distance \(r\) from the center of the planet is

\[
F(r) = \begin{cases}
\frac{GMr}{R^3} & \text{if } r < R \\
\frac{GM}{r^2} & \text{if } r \geq R
\end{cases}
\]

where \(M\) is the mass of the earth, \(R\) is its radius, and \(G\) is the gravitational constant. Is \(F\) a continuous function of \(r\)?
11. Let f and g be functions which are discontinuous at a. Give examples to show the following.

(a) $f + g$ can be discontinuous at a

(b) $f + g$ can be continuous at a

(c) fg can be discontinuous at a

(d) fg can be continuous at a