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Financial Derivatives

Definition

A derivative is a financial contract whose value is based on the value of
an underlying asset.

Typically, a derivative gives the holder the right to buy an asset at a
pre-determined price over some time horizon.

Buyers and sellers use derivatives to offset risk in their portfolios
(hedgeing).

One of the sophisticated instruments that rose to prominence during
the financial revolutions of the 70’s and 80’s.
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Example

A dairy farmer might agree to a “forward contract” with milk processors
which guarantees a fixed price for future quantities of milk produced.

Shifts the risk of price drops from farmers to producers.

Limits farmers ability to gain from price increases.

In general, the underlying can be any asset or commodity.
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The Pricing Problem

Investors want to trade derivatives.

The value of the derivative is based on the value of the underlying,
market conditions, and terms of the contract.

The value of a derivative itself is unclear.
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Plan for Solving the Pricing Problem

Make some assumptions about the underlying asset and the
derivatives market.

Build a model.

Formulate the problem in terms of a partial differential equation
(Black-Scholes-Merton PDE)

Find a way to solve the PDE

Remarkable Insight

A basic transformation will turn the Black-Scholes equation into a classical
PDE!
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Basic Assumptions:

1 Frictionless and efficient market for derivatives.

2 Trading in assets is a continuous process.

3 Every underlying instrument has a unique, known price.

4 The price of the underlying follows a stochastic process.
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Brownian Motion

Definition

A process z(t) follows standard Brownian motion if

1 z(0) = 0

2 z is continuous at time t with probability 1 for each t.

3 For all t1, t2 such that 0 ≤ t1 ≤ t2, z(t2)− z(t1) is a normally
distributed random variable with mean 0 and variance t2 − t1.

4 The increments are independent: for all times 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn,
z(t2)− z(t1), z(t3)− z(t2), . . . z(tn)− z(tn−1) are independent
random variables.

We can intuitively regard Brownian motion as a random walk with step
sizes tending to zero.
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Price Dynamics for the Underlying Asset

Let S(t) be the value of the underlying. Our model assumes the
instantaneous rate of return on S is given by:

dS

S
= µdt + σdz(t)dt

where

µ is the expected return on the asset.

σ is the variance of the return on the asset.

dz(t) represents a stochastic process, in particular assume it is
Brownian motion.
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Illustration of Brownian Modeling

The log of the value of the underlying obeys Brownian motion. Let
X = ln S

dX = µdt + σdz(t)
√

dt

Discrete form: X (ti+1)− X (ti ) = µ∆t + σdz(ti )
√

∆t

S(ti+1) = S(ti )e
µ∆t+σdz(ti )

√
∆t
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Simulation

Model for stock price over a single trading day:

S(ti+1) = S(ti )e
µ∆t+σdz(ti )

√
∆t

Parameter values: µ = .01, σ = .04,∆t = .004,P(0) = 50.

dz(t) is a random normal variable with mean 0, variance 1.
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Example 1

Figure: Example 1
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Example 2

Figure: Example 2
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Example 3

Figure: Example 3
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Deriving the PDE

To derive the PDE:

S be the price of the underlying.

V (S , t) be the value of the derivative.

Form a portfolio Π by selling the derivative and buying ∆ units of
the underlying.

The value of your portfolio is Π(t) = V (t)−∆S(t).

By linearity: dΠ = d(V −∆S) = dV −∆dS

Need to find a way to compute dV .
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Ito’s Lemma

Lemma (Ito’s Lemma)

Let V = V (S(t), t) where S satisfies

dS = µSdt + σSdz(t)dt

. Then:

dV =

(
µVS + Vt +

σ2

2
VSS

)
dt + σVSdz(t)dt.
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Deriving the PDE

Substituting:

dV =

(
µSVS + Vt +

σ2

2
S2VSS

)
dt + σSVSdW .

dΠ = dV −∆dS

=

[(
µSVS + Vt +

σ2

2
S2VSS

)
dt + σSVSdW

]
−∆ [µStdt + σSVSdW ]

=

(
µS [Vs −∆] + Vt +

σ2

2
S2VSS

)
dt + σS(VS −∆)dW
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Deriving the PDE

We have:

dΠ =

(
µS [Vs −∆] + Vt +

σ2

2
S2VSS

)
dt + σS(VS −∆)dW .

We would like to eliminate the random term dW. Since ∆ is arbitrary,
we set ∆ = VS and obtain:

dΠ =

(
Vt +

σ2

2
S2VSS

)
dt
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Deriving the PDE

Fundamental Economic Assumption: No arbitrage. Investing in the
portfolio should be no different than the risk-free alternative.

Let r be the prevailing interest rate on risk free bonds (say
government bonds).

Difference in return should be zero:

0 = rΠdt − dΠ

So
rΠdt = dΠ
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Deriving the PDE

Substituting:

rΠdt =

(
Vt +

σ2

2
S2VSS

)
dt

r(V −∆S) = Vt +
σ2

2
S2VSS

rV = Vt +
σ2

2
S2VSS + rSVs

The last equation is the Black-Scholes-Merton PDE.
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The PDE

In summary:

S(t) be the value of the underlying at time t.

V (S(t), t) be the value of the derivative at time t.

r be the zero risk interest rate.

σ be the volatility of the underlying.

Then the Black-Scholes PDE is:

rV = Vt +
1

2
σ2S2VSS + rSVS
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Boundary Conditions

Assume that the derivative contract gives the owner the right to buy the
underlying at fixed price K (strike price) at anytime upto and including
time T . Then we have the following boundary conditions:

V (0, t) = 0, for all t

V (S , t) → S as S →∞

V (S ,T ) = max(S − K , 0)
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Black-Scholes IBVP

Goal: Solve the following initial boundary value problem:

rV = Vt +
1

2
σ2S2VSS + rSVS

V (0, t) = 0, for all t
V (S , t) ∼ S as S →∞

V (S ,T ) = max(S − K , 0)
.

We will do this by transforming the Black-Scholes PDE into the heat
equation.

Ryan Walker An Introduction to the Black-Scholes PDE

The Heat Equation

The heat equation in one space dimensions with Dirchlet boundary
conditions is: {

ut = uxx

u(x , 0) = u0(x)

and its solution has long been known to be:

u(x , t) = u0 ∗ Φ(x , t)

where

Φ(x , t) =
1√
4πt

e−
x2

4kt

is the fundamental solution and ∗ is the convolution operator.
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Transforming the PDE

Let 
τ = σ2/2(T − t)

x = ln(S/K )
V (S , t) = Ku(x , τ)

Then by the multivariate chain rule:

VS = Ku = K (uxxs + uττS) =
Kux

S
= e ln(S/K)ux = e−xux

VSS =
−Kσ2

2
uτ

Vt =
−Kσ2uτ

2

Ryan Walker An Introduction to the Black-Scholes PDE



Transforming the Black-Scholes PDE

The original PDE is:

rV = Vt +
σ2

2
S2VSS + rSVs .

Substituting and simplifying obtain:

uτ = uxx + (k − 1)ux − kv

where k = 2r
σ2 . Not quite the heat equation...but closer.
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Another substitution

Let w(x , τ) = eax+bτw(x , τ). Then
wx = eax+bτ (au(x , t) + ux)

wxx = eax+bτ (a2u(x , τ) + 2αux + uxx)
wτ = eax+bτ (bu(x , τ) + uτ )
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Another substitution

With these substitutions:

wτ = (α2 + (k − 1)a− k − b)w + (2a + k − 1)ux + uxx

If 2a + k − 1 = 0 and α2 + (k − 1)a− k − b = 0 the this is the heat
equation.

But a, b are arbitrary and basic algebra gives the solution
a = (1− k/2) and b = −(k + 1)2/4.

So we can make wτ = wxx
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The transformed PDE

Performing the substitutions on the boundary conditions obtain:

wτ = wxx , x ∈ R, τ ∈ (0,Tσ2/2){
w(x , 0) = max{e(k+1)x/2 − e(k−1)x/2, 0}, x ∈ R
w(x , τ) → 0 as x → ±∞, τ ∈ (0,Tσ2/2)

This is the heat equation with Dirchlet boundary conditions!
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The solution

Solving the heat equation with the boundary data and transforming back
to the variables S , t:

Theorem (The Black-Scholes European Call Pricing Formula)

Let N(x) = 1√
2π

∫ x
−∞ e−z2

dz, d1 = ln(S/K)+(r+σ2/2)T

σ
√

T
, d2 = d1 − σ

√
T.

Then:
V (S , t) = SN(d1)− Ke−rTN(d2)
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Interpretation

V (S , t) = SN(d1)− Ke−rTN(d2)

Given the current price of the underlying asset S , the conditions of
the option (T ,K ), and the interest rate on a suitable government
bond, the value of the derivative can be calculated by this formula.

Implicitly derived this equation for a European Call Option. Easy
extensions to a variety of other derivatives.
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Sample Computation:

Example

A European call style option is made for a security currently trading
at $ 55 per share with volatility .45. The term is 6 months and the
strike price is $ 50. The prevailing no-risk interest rate is 3 %. What
should the price per share be for the option?

S = 55, K = 50, T = .5, σ = .45, r = .03.

d1 = 0.50577047542718; d2 = 0.18757242389323

V (S , t) = SN(d1)− Ke−rTN(d2)

Price of the option should be about $ 9.99.
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