Financial Derivatives

Definition

A derivative is a financial contract whose value is based on the value of an underlying asset.

- Typically, a derivative gives the holder the right to buy an asset at a pre-determined price over some time horizon.
- Buyers and sellers use derivatives to offset risk in their portfolios (hedging).
- One of the sophisticated instruments that rose to prominence during the financial revolutions of the 70’s and 80’s.

The Pricing Problem

- Investors want to trade derivatives.
- The value of the derivative is based on the value of the underlying, market conditions, and terms of the contract.
- The value of a derivative itself is unclear.

Example

A dairy farmer might agree to a “forward contract” with milk processors which guarantees a fixed price for future quantities of milk produced.

- Shifts the risk of price drops from farmers to producers.
- Limits farmers ability to gain from price increases.
- In general, the underlying can be any asset or commodity.
Plan for Solving the Pricing Problem

- Make some assumptions about the underlying asset and the derivatives market.
- Build a model.
- Formulate the problem in terms of a partial differential equation (Black-Scholes-Merton PDE)
- Find a way to solve the PDE

Remarkable Insight

A basic transformation will turn the Black-Scholes equation into a classical PDE!

Basic Assumptions:

- Frictionless and efficient market for derivatives.
- Trading in assets is a continuous process.
- Every underlying instrument has a unique, known price.
- The price of the underlying follows a stochastic process.

Brownian Motion

Definition

A process \(z(t) \) follows **standard Brownian motion** if

- \(z(0) = 0 \)
- \(z \) is continuous at time \(t \) with probability 1 for each \(t \).
- For all \(t_1, t_2 \) such that \(0 \leq t_1 \leq t_2 \), \(z(t_2) - z(t_1) \) is a normally distributed random variable with mean 0 and variance \(t_2 - t_1 \).
- The increments are independent: for all times \(0 \leq t_1 \leq t_2 \leq \cdots \leq t_n \), \(z(t_2) - z(t_1), z(t_3) - z(t_2), \ldots, z(t_n) - z(t_{n-1}) \) are independent random variables.

We can intuitively regard Brownian motion as a random walk with step sizes tending to zero.

Price Dynamics for the Underlying Asset

Let \(S(t) \) be the value of the underlying. Our model assumes the instantaneous rate of return on \(S \) is given by:

\[
\frac{dS}{S} = \mu dt + \sigma dz(t)dt
\]

where

- \(\mu \) is the expected return on the asset.
- \(\sigma \) is the variance of the return on the asset.
- \(dz(t) \) represents a stochastic process, in particular assume it is Brownian motion.
Illustration of Brownian Modeling

- The log of the value of the underlying obeys Brownian motion. Let $X = \ln S$
- $dX = \mu dt + \sigma dz(t)\sqrt{dt}$
- Discrete form: $X(t_{i+1}) - X(t_i) = \mu \Delta t + \sigma dz(t_i)\sqrt{\Delta t}$
- $S(t_{i+1}) = S(t_i)e^{\mu \Delta t + \sigma dz(t_i)\sqrt{\Delta t}}$

Simulation

- Model for stock price over a single trading day: $S(t_{i+1}) = S(t_i)e^{\mu \Delta t + \sigma dz(t_i)\sqrt{\Delta t}}$
- Parameter values: $\mu = .01, \sigma = .04, \Delta t = .004, P(0) = 50.$
- $dz(t)$ is a random normal variable with mean 0, variance 1.

Example 1

Figure: Example 1

Example 2

Figure: Example 2
Example 3

Figure: Example 3

Deriving the PDE

To derive the PDE:

- S be the price of the underlying.
- $V(S, t)$ be the value of the derivative.
- Form a portfolio Π by selling the derivative and buying Δ units of the underlying.
- The value of your portfolio is $\Pi(t) = V(t) - \Delta S(t)$.
- By linearity: $d\Pi = d(V - \Delta S) = dV - \Delta dS$
- Need to find a way to compute dV.

Ito’s Lemma

Lemma (Ito’s Lemma)

Let $V = V(S(t), t)$ where S satisfies

$$dS = \mu S dt + \sigma S dz(t)dt$$

Then:

$$dV = \left(\mu V_S + V_t + \frac{\sigma^2}{2} V_{SS} \right) dt + \sigma V_S dz(t)dt.$$
Deriving the PDE

We have:

\[d\Pi = \left(\mu S [V_s - \Delta] + V_t + \frac{\sigma^2}{2} S^2 V_{SS} \right) dt + \sigma S (V_s - \Delta) dW. \]

We would like to eliminate the random term \(dW \). Since \(\Delta \) is arbitrary, we set \(\Delta = V_s \) and obtain:

\[d\Pi = \left(V_t + \frac{\sigma^2}{2} S^2 V_{SS} \right) dt \]

Substituting:

\[r\Pi dt = \left(V_t + \frac{\sigma^2}{2} S^2 V_{SS} \right) dt \]

\[r(V_s - \Delta S) = V_t + \frac{\sigma^2}{2} S^2 V_{SS} \]

\[rV = V_t + \frac{\sigma^2}{2} S^2 V_{SS} + rSV_s \]

The last equation is the Black-Scholes-Merton PDE.

Deriving the PDE

Fundamental Economic Assumption: No arbitrage. Investing in the portfolio should be no different than the risk-free alternative.

Let \(r \) be the prevailing interest rate on risk free bonds (say government bonds).

Difference in return should be zero:

\[0 = r \Pi dt - d\Pi \]

So

\[r\Pi dt = d\Pi \]

The PDE

In summary:

- \(S(t) \) be the value of the underlying at time \(t \).
- \(V(S(t), t) \) be the value of the derivative at time \(t \).
- \(r \) be the zero risk interest rate.
- \(\sigma \) be the volatility of the underlying.

Then the Black-Scholes PDE is:

\[rV = V_t + \frac{1}{2} \sigma^2 S^2 V_{SS} + rSV_s \]
Boundary Conditions

Assume that the derivative contract gives the owner the right to buy the underlying at fixed price K (strike price) at anytime up to and including time T. Then we have the following boundary conditions:

\[
\begin{align*}
V(0, t) &= 0, \text{ for all } t \\
V(S, t) &\to S \text{ as } S \to \infty \\
V(S, T) &= \max(S - K, 0)
\end{align*}
\]

Black-Scholes IBVP

Goal: Solve the following initial boundary value problem:

\[
rV = V_t + \frac{1}{2}\sigma^2 S^2 V_{SS} + rSV_S
\]

\[
\begin{align*}
V(0, t) &= 0, \text{ for all } t \\
V(S, t) &\sim S \text{ as } S \to \infty \\
V(S, T) &= \max(S - K, 0)
\end{align*}
\]

We will do this by transforming the Black-Scholes PDE into the heat equation.

The Heat Equation

The heat equation in one space dimensions with Dirichlet boundary conditions is:

\[
\begin{align*}
&u_t = u_{xx} \\
u(x, 0) = u_0(x)
\end{align*}
\]

and its solution has long been known to be:

\[
u(x, t) = u_0 * \Phi(x, t)
\]

where

\[
\Phi(x, t) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}}
\]

is the fundamental solution and $*$ is the convolution operator.

Transforming the PDE

Let

\[
\begin{align*}
\tau &= \frac{\sigma^2/2}{T - t} \\
x &= \ln(S/K) \\
V(S, t) &= Ku(x, \tau)
\end{align*}
\]

Then by the multivariate chain rule:

\[
\begin{align*}
V_S &= Ku = K(u_x x_s + u_x \tau_S) = K\frac{u_x}{S} = e^{\ln(S/K)} u_x = e^{-x} u_x \\
V_{SS} &= \frac{-K\sigma^2}{2} u_x \\
V_t &= \frac{-K\sigma^2 u_x}{2}
\end{align*}
\]
Transforming the Black-Scholes PDE

The original PDE is:

\[rV = V_t + \frac{\sigma^2}{2}S^2V_{SS} + rSV_s. \]

Substituting and simplifying obtain:

\[u_{\tau} = u_{xx} + (k - 1)u_x - kv \]

where \(k = \frac{2r}{\sigma^2} \). Not quite the heat equation...but closer.

Another substitution

Let \(w(x, \tau) = e^{ax + b\tau}w(x, \tau) \). Then

\[
\begin{align*}
 w_x &= e^{ax + b\tau}(au(x, \tau) + u_x) \\
 w_{xx} &= e^{ax + b\tau}(a^2u(x, \tau) + 2\alpha u_x + u_{xx}) \\
 w_{\tau} &= e^{ax + b\tau}(bu(x, \tau) + u_{\tau})
\end{align*}
\]

Another substitution

With these substitutions:

\[w_{\tau} = (\alpha^2 + (k - 1)a - k - b)w + (2a + k - 1)u_x + u_{xx} \]

- If \(2a + k - 1 = 0 \) and \(\alpha^2 + (k - 1)a - k - b = 0 \) the this is the heat equation.
- But \(a, b \) are arbitrary and basic algebra gives the solution
 \(a = (1 - k/2) \) and \(b = -(k + 1)^2/4 \).
- So we can make \(w_{\tau} = w_{xx} \)

The transformed PDE

Performing the substitutions on the boundary conditions obtain:

\[
\begin{align*}
 w_{\tau} &= w_{xx}, \quad x \in \mathbb{R}, \tau \in (0, T\sigma^2/2) \\
 w(x, 0) &= \max\{e^{(k+1)x/2} - e^{(k-1)x/2}, 0\}, \quad x \in \mathbb{R} \\
 w(x, \tau) &\to 0 \text{ as } x \to \pm\infty, \quad \tau \in (0, T\sigma^2/2)
\end{align*}
\]

This is the heat equation with Dirichlet boundary conditions!
The solution

Solving the heat equation with the boundary data and transforming back to the variables S, t:

Theorem (The Black-Scholes European Call Pricing Formula)

Let $N(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-z^2} dz$, $d_1 = \frac{\ln(S/K) + (r + \sigma^2/2)T}{\sigma \sqrt{T}}$, $d_2 = d_1 - \sigma \sqrt{T}$.

Then:

$$V(S, t) = SN(d_1) - Ke^{-rT} N(d_2)$$

Interpretation

- $V(S, t) = SN(d_1) - Ke^{-rT} N(d_2)$
- Given the current price of the underlying asset S, the conditions of the option (T, K), and the interest rate on a suitable government bond, the value of the derivative can be calculated by this formula.
- Implicitly derived this equation for a European Call Option. Easy extensions to a variety of other derivatives.

Sample Computation:

Example

- A European call style option is made for a security currently trading at $55 per share with volatility 0.45. The term is 6 months and the strike price is 50. The prevailing no-risk interest rate is 3%. What should the price per share be for the option?
- $S = 55$, $K = 50$, $T = 0.5$, $\sigma = 0.45$, $r = 0.03$.
- $d_1 = 0.50577047542718$; $d_2 = 0.1875724389323$
- $V(S, t) = SN(d_1) - Ke^{-rT} N(d_2)$
- Price of the option should be about $9.99.

References