1. a. Given a sequence \(a_k \), the \(n \)th partial sum is the sum of the first \(n \) terms: \(S_n = \sum_{k=1}^{n} a_k \).

b. A sequence is an ordered list of numbers. A series is the sum of a sequence over the index. That is, given \(a_k \), the corresponding series is \(\sum_{k=1}^{\infty} a_k \).

c. A series converges when the sequence of partial sums \(\{S_n\}_{n=1}^{\infty} = \{\frac{1}{2}a_1, \frac{1}{2}a_1 + \frac{1}{4}a_2, \frac{1}{2}a_1 + \frac{1}{4}a_2 + \frac{1}{8}a_3, \ldots\} \) is a convergent sequence.

d. The sequence \(\{S_n\} \) converges to \(1 \). The sequence \(\{A_n\} \) converges to 0 (otherwise, the series would diverge).

e. The geometric series converges for \(|r| < 1 \) and diverges for \(|r| \geq 1 \). If \(|r| < 1 \) then

\[S_n = \sum_{k=1}^{n} a r^{n-1} = \frac{a}{1-r} \]

f. The harmonic sequence is \(\sum_{n=1}^{\infty} \frac{1}{n} \). The harmonic series is \(\sum_{n=1}^{\infty} \frac{1}{n} \) and it diverges.
2. \(\sum_{k=1}^{8} \left(\frac{3}{4} \right)^k = \sum_{k=1}^{8} \left(\frac{3}{4} \right)^{k-1} = \frac{3/4}{1 - 3/4} \)

Geometric Series, converges: \(\frac{2}{3} \)

3. Diverges, geometric series w/ \(r > 1 \).

3. \(\sum_{k=3}^{\infty} \left(\frac{1}{3} \right)^{k-1} = -1 - \frac{1}{3} + \sum_{k=1}^{\infty} \left(\frac{1}{3} \right)^{k-1} \) w/ \(|r| < 1 \)

\[= -1 - \frac{1}{3} + \frac{1}{1 - \frac{1}{3}} \]

\[= -1 - \frac{1}{3} + \frac{3}{2} = \frac{1}{6} \]

4. \(\sum_{n=1}^{\infty} \frac{2 + 3^n}{4^n} = \sum_{n=1}^{\infty} \left(\frac{1}{4} \right)^{n-1} + \sum_{n=1}^{\infty} \left(\frac{3}{4} \right)^n \)

\[= \frac{\frac{1}{2}}{1 - \frac{1}{4}} + \frac{\frac{3}{4}}{1 - \frac{3}{4}} \]

\[= \frac{2}{3} + 3 = \frac{11}{3} \]

5. \(\sum_{n=2}^{\infty} \frac{2^{n-1} + 3^{n-1}}{4^{n-1}} = -2 + \sum_{n=1}^{\infty} \left(\frac{1}{2} \right)^{n-1} + \sum_{n=1}^{\infty} \left(\frac{3}{4} \right)^{n-1} \)

\[= -2 + \frac{1}{1 - \frac{1}{2}} + \frac{1}{1 - \frac{3}{4}} \]

\[= -2 + 2 + 4 = 4 \]
\[0.04 = \frac{4}{10^2} + \frac{4}{10^4} + \frac{4}{10^6} + \frac{4}{10^8} + \ldots + \frac{4}{10^{2n}} \]

\[= \sum_{n=1}^{\infty} \frac{4}{10^{2n}} = \sum_{n=1}^{\infty} 4 \left(\frac{1}{100} \right)^n \]

\[= \sum_{n=1}^{\infty} \frac{4}{100} \left(\frac{1}{100} \right)^{n-1} \]

\[= \frac{\frac{4}{100}}{1 - \frac{1}{100}} = \frac{4}{99} \]

\[\text{Proof } 0.99999\ldots = \sum_{n=1}^{\infty} \frac{9}{10^n} = \sum_{n=1}^{\infty} \frac{9}{10} \left(\frac{1}{10} \right)^{n-1} \]

\[= \frac{\frac{9}{10}}{1 - \frac{1}{10}} = \frac{9/10}{9/10} = 1 \]

5. For any fixed \(x \) this is a geometric series \(\text{w/ } a = 2 \) and \(r = \cos(x) \). A geometric series converges when \(|r| < 1 \) and diverges otherwise. Therefore the series converges when \(|\cos(x)| < 1 \), that is when \(x \neq k\pi \) where \(k \) is an integer.
6) Note that since \(a_n > 0 \) the sequence of partial sums is increasing. Also, the sequence of partial sums is bounded by 0 and 10^15. Therefore, \(\sum_{n=1}^{\infty} a_n \) is a bounded monotonic sequence and hence converges. Then by definition the series \(\sum_{n=1}^{\infty} a_n \) is convergent.

7) a) False. One is infinite the other is finite.
 b) False. For example, if \(a_n = (-1)^n \) then \(\lim_{n \to \infty} |a_n| = 1 \) but \(\lim_{n \to \infty} a_n \) diverges.
 c) False. For example, \(\left| \sum_{n=1}^{N} (-1)^n \right| \leq 1 \)
 but the series does not converge.
 d) False. (This is only true if \(\sum a_n = 0 \))
 e) True \(\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \ldots = \sum_{n=0}^{\infty} a_n(n+1) \)