Quiz 3 Solution

1. (a) (5 points) Find the partial fraction decomposition of

$$
\frac{x^{2}-3 x+1}{x^{3}+x}
$$

Solution:

$$
\frac{x^{2}-3 x+1}{x^{3}+x}=\frac{A}{x}+\frac{B x+C}{x^{2}+1}=\frac{A\left(x^{2}+1\right)+(B x+C) x}{x^{3}+x}=\frac{(A+B) x^{2}+C x+A}{x^{3}+x}
$$

Comparing the powers of x, we obtain $A=1, B=0, C=-3$.
(b) (5 points) Use the trapezoidal rule to estimate the integral $\int_{1}^{4} x^{2} d x$ using three steps, i.e., compute T_{3}. You do not need to simplify your answer.

Solution: Since $n=3, \Delta x=(b-a) / n=1$. Then,

$$
\begin{aligned}
\int_{1}^{4} x^{2} d x & \approx \frac{\Delta x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+f\left(x_{3}\right)\right] \\
& =\frac{1}{2}\left[1^{2}+2 \cdot 2^{2}+2 \cdot 3^{2}+4^{2}\right] \\
& =\frac{43}{2}=21.5
\end{aligned}
$$

where $f(x)=x^{2}$.

