Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

Name: \qquad Section: \qquad

1. (5 points) Use the root test to determine whether or not the series $\sum_{n=1}^{\infty} \frac{5^{n}}{\left(n^{2}+1\right)^{n}}$ converges or diverges. Clearly show the steps and justify your conclusion.

Solution: Let $a_{n}=\frac{5^{n}}{\left(n^{2}+1\right)^{n}}$. Then

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{5^{n}}{\left(n^{2}+1\right)^{n}}\right|}=\lim _{n \rightarrow \infty} \frac{5}{n^{2}+1}=0<1
$$

Thus by the root test the series converges.
2. (5 points) Find the radius of converges of the series $\sum_{n=1}^{\infty} \frac{n!}{2^{n}} x^{n}$. Show your work!

Solution: Let $a_{n}=\frac{n!}{2^{n}} x^{n}$. Then by the ratio test

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)!/ 2^{n+1} x^{n+1}}{n!/ 2^{n} x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)|x|}{2}
$$

is ∞ if $x \neq 0$ and it is zero if $x=0$. Thus by the ratio test the series converges when $x=0$, so the radius of convergence $R=0$.

