Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

Name: \qquad Section: \qquad

1. (5 points) Let S be the solid whose base is the circle $x^{2}+y^{2}=9$ and whose vertical cross sections perpendicular to the x-axis are squares. Set up but do not evaluate the integral that calculates the volume of S.

Solution: The side length of the square is $2 \sqrt{9-x^{2}}$. So the area of the square is

$$
A(x)=4\left(9-x^{2}\right)
$$

Integrating the cross-sectional area of the square along the x-axis from -3 to 3 , we obtain the following integral

$$
V=4 \int_{-3}^{3} A(x) d x=4 \int_{-3}^{3}\left(9-x^{2}\right) d x
$$

2. (5 points) Let R be the region bounded by the functions $y=\sqrt{x}$ and $y=\frac{1}{2} x$. Set up but do not evaluate the integral that calculates the volume of a solid given by rotating R about the x-axis using the washer method.

Solution: Note that the outer radius is \sqrt{x} and the inner radius is $\frac{1}{2} x$. The points of intersection of these two curves are $x=0$ and $x=0$. Then the volume created by the rotation of the region between \sqrt{x} and $\frac{1}{2} x$ about the x-axis is

$$
V=\pi \int_{0}^{4}\left((\sqrt{x})^{2}-\left(\frac{1}{2} x\right)^{2}\right) d x
$$

