Answer all questions and show your work. Unsupported answers may receive *no credit*. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

Name: _

1. (5 points) Let S be the solid whose base is the circle $x^2 + y^2 = 9$ and whose vertical cross sections perpendicular to the x-axis are squares. Set up but do not evaluate the integral that calculates the volume of S.

Solution: The side length of the square is $2\sqrt{9-x^2}$. So the area of the square is

$$A(x) = 4(9 - x^2)$$

Integrating the cross-sectional area of the square along the x-axis from -3 to 3, we obtain the following integral

$$V = 4 \int_{-3}^{3} A(x)dx = 4 \int_{-3}^{3} (9 - x^2)dx$$

2. (5 points) Let R be the region bounded by the functions $y = \sqrt{x}$ and $y = \frac{1}{2}x$. Set up but do not evaluate the integral that calculates the volume of a solid given by rotating R about the x-axis using the washer method.

Solution: Note that the outer radius is \sqrt{x} and the inner radius is $\frac{1}{2}x$. The points of intersection of these two curves are x = 0 and x = 0. Then the volume created by the rotation of the region between \sqrt{x} and $\frac{1}{2}x$ about the x-axis is

$$V = \pi \int_0^4 \left((\sqrt{x})^2 - \left(\frac{1}{2}x\right)^2 \right) dx$$

Section: ____