Answer all questions and show your work. Unsupported answers may receive no credit. You may not use a calculator on this quiz. Allow 15 minutes for the quiz.

Name: \qquad Section: \qquad

1. (5 points) Let R be the region in the first quadrant bounded by the functions $y=x^{2}, y=6-x$, and $x=0$ (the y-axis). Set up but do not evaluate the integral that calculates the volume of the solid obtained by rotating R about the y-axis using the Shell Method.

Solution:

The points of intersection are $x=-3$ and $x=2$ obtained by solving $x^{2}=6-x$ but only $x=2$ is in the first quadrant. Since the regions is bounded by $y=x^{2}, y=6-x$ and $x=0$, using the Shell Method,

$$
V=2 \pi \int_{0}^{2} x\left(6-x-x^{2}\right) d x
$$

2. (5 points) Let S be a surface obtained by rotating $y=x^{4}$ from $(1,1)$ to $(2,16)$ around the x-axis. Set up but do not evaluate the integral that calculates the surface area of S.

Solution:

Note that for $y=f(x)$, the derivative is $y^{\prime}=4 x^{3}$ then by the formula for the surface area of the revolution,

$$
V=2 \pi \int_{1}^{2} x^{4} \sqrt{1+\left(4 x^{3}\right)^{2}} d x
$$

