Notes and Questions.

New Light on Bhaskara’s Chakravala or Cyclic Method of
solving Indeterminate Equations or the Second Degree in two Varlables,

1. Introduction.

‘The equation @®— Ny* = 1* has a long and interesting historyt
behind it of more than 2000 years. The earliest civilized nations of the
world, the Indians and the Greeks, were fascinated by the problem.
‘While the latter never gave more than particular solutions for some
simple cases like 22 — y® = =% 1, the former were the first to realize
the true inwardness of the problem and to give a general solution based
on the principle of composition of quadratic forms, More than thousand
years before Ituler re-discovered, after spending much thought and

labour on the problem, what he calls ths following remarkable theorem
which contains within it the foundation of higher solutions:

“If @ = a, y = b satisfies an’ +p= y’.
and @ = ¢, y = d satisfies az®+ ¢ = 3%,
then @ = bo * ad, y = bd = a.ac satisfies az® + pg=y*"
we {ind Brahmagupta dealing with the same theorem in a special

chapter * Vargaprakriti ' and drawing important corollaries from it. In
particular, he derives the identity

2 242
a (fﬂ!f) +1= (b—ﬂi-v"'—“u ) from aa® + p = B,
P P

Special identities are also given by him for deriving integral solutions of
Ny + 1 = 2? from those of Ny* = 4 = 2%

In the period between Brahmagupta (born 598 A.D.) and Bhaskara

* It is understood throughout this paper that N is a non-square integer,

t There is a whole hook * Geschichte der Gleichung ¥ — Dy = 1" devoted
to this history by I, Konen. It contains a comparison belween Lagrange's
procedure and the Indian, The bouk, however, has not been accessible to me
for direct reference,

29
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(born 1114 A.D.), there must bave taken place some modifications* on
Brahmagupta’s work, of which, however, we have little knowledge
except from the indirect references thrown out by Bhaskara. About
1150 A.D., Bhaskara surprises us with his brilliant method for integral
solutions, designating it as ‘Chakravala’ after the ancients. Thus,
indirectly Bhaskara throws the hint that he does not claim it as his own.
But it is certainly not Brahmagupta’s. Owing probably to the fact that
the mathematical writings of Brahmagupta and Bhaskara, separated
though they are by about five centuries, are put together in the same
volume by H. T. Colebrooke, the credit that is really Bhaskara’s is
sometimes shared by Brahmagupta also. Referring to the cyclic methad,
T. L. Heath says (on p. 281 of his Diophantus): *' If the Greeks did
not accomplish the general solution of our equation, it is all the more
extraordinary we should have such a general solution in practical use
among the Indians as early as the time of Brahmagupta under the name
of the ‘ Cyclic method ’; _— i

(L] ] e (TR ] see veo "ee sew sea

“The ‘cyclic method’ of solving the equation &®— A% =1 is
found in Brahmagupta and Bhaskara and is well described by Ilankel,
Cantor, and Konen.”

Thus, the cyclic method is wrengly attributed to Brahmagupta also.
In the absence of explicit reference to this method in the works of the
earlier writers, it is fair to take it as Bhaskara’s; for there is an element

s 7

of doubt in the interpretation of ¢ FHITSIHE sif: ° and Bhaskara may

be after all giving credit to his predecessors merely for the name
"IHAS* a5 applied to all iterative operations in mathematics.

The true nature of the Chakravala has not been understood by
many eminent authorities from the time of Colebrooke onwards. This
accounts for its neglect even by Colebrooke who speaks so highly of one
of Bhaskara’'s rational solutions which happens to be exactly the same
which Lord Brouncker devised to answer a question proposed by way of

P As an evidence of such modifications may be noted the fact that the
technical terms ¢ W[F{' and 317’ used by Brahmagupta for the two
variables (y, #) in the equation Ny* 4 1 = 2® have changed by Bhaskara's time to

¢ 5‘@' and ¢ S4g.’
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challenge by I'ermat in 16567. H. ]J. Smith in his reports* on the
Theory of Numbers, remarks, probably on the authority of Colebooke,
that Lord Brouncker and Wallis first gave rational solutions just like
Bhaskara and Brahmagupta 700 years before them, having misunder-
stood the nature of the problem. Surely Bbaskara and Brabmagupta
did not misunderstand the problem, like L.ord Brouncker and Wallis,
The Indians never proceeded along the superficial lines adopted by
Diophantusin his Lemma to Book VI, 15 (vide Heath’s Diophantus, p.238)
but shawed their grip over the problem by enunciating the important
formula, which is equivalent to tho composition of quadratic forms
rediscovered by Euler, a thousand years later. Again, T. L. Heath
himself, on p. 285 of his Diophantus, holds that the Indian method is
the same as that rediscovered and expounded by Lagrange in his memoir
of 1768. He is probably inclined to this view through H. Konen’s
comparison of the two methods—the Indian and the L.agrangean—in his
book on the history of the equation.

One may also mention in this connection the definitely contemptuous
view of the late G. R. Kaye in several of his articles. In the article on
‘The Source of Hindu Mathematics’ (J. R. A. S, 1910), he writes:

“ Indeterminate equations play an important part in Hindu mathe-
matics and the discovery of solutions of Du® 4+ 1 = #¥ in Hindu works
of a fairly early date was considered very remarkable. Possibly the
fact that Fermat, Wallis, Brouncker, Euler, Lagrange, and others paid
considerable attention to the problem, gave the discovery of it in Hindu
works @ somewhat fictitious value. ... ...

Bhaskara gives some alternative methods for the solution of the
Pellian Equation but in no essential does hc improve on Brahmagupta.”t

Again, on p. 673, East and West, (Vol. XVII, No. 201, July 1918)
we have such statements as:

“The discovery of Hindu works on rational, integral solutions of
the so-called Pellian Equation az” + 1 = »* made something of @ splash.

® Vide Colleccted Mathematical Papers of 11, J Smith (Edited by | W. L.
Glaisher) Vol, I pp 1¥2—200.

t 1t will be easily conceded after reading this paper how Bliaskara's Cyclic
Method is really an advance on Brahmagupta’s,
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The very problem had not long before been the subject of correspondence
and discussion in lfurope and this gave emphasis to the discovery of the
Hindu solution and the combination of events perhaps led to an over-
estimate of the value of the Hindu contribution. More recent research
leads to the conclusion that the vaery occurrence of these Hindu solutions
is & result of Greek influence.”

Lastly, it is unfortunate that even K. J. Sanjana (in the J.I. M. S.
Notes and Questionsy, Vol. XVIII, No. 1, p. 22), refers to Bhaskara's
method of solving the equation 2* — 674 = 1 as a process of convert-
ing V67 into a continued fraction and gives a table* of his own to show
the reader that Bhaskara's process tallies exactly (this, of course, is not
a fact) with that outlined by Chrystal.

It is the object of this paper to bring out at some length the true in-
wardness of Bhaskara's cyclic method and to point out that the Chakra-
vala is not the same as either the continued fraction method or the crude
metbod of Brouncker and Wallis. On the other hand, it will be shown
in the sequel that Bhaskara’'s method is more in line with Gauss's
solution based on his theory of Quadratic Forms. The present investi-
gation will reveal that Bhaskara’s method leads naturally to a new set
of reduced forms distinct from those of Gauss, Lagrange, Klein, and
Hermite, Further, Bhaskara’s method does not lead straight to a simple
continued fraction but to an irregular one. It has also the advantage of
reducing the number of recurring elements and thus may claim a certain
superiority to the other methods in the matter of practical computation.

2. The Chakravala or Cyclic Method explained.

Brahmagupta’s formula for the composition of quadratic forms, v¢z.:
XX’ = @ YY) —a (XY = X'V)? = (X} — aY?) (X2 — aY"?)

is also repeated by Bhaskara. Both of them realise that with the help
of this, the solutions of the equation

Ny?+ 1 = 2*

® Mr. Sanjana wrongly believes that his table represents Bhaskara's
method, Bhaskara's solution agrees with Sanjana’s table only as far as the
first three steps and from the third step Bhaskara proceeds immediately to
Sanjana's fifth step and from thence takes a short cut to the required solution,
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can be derived easily from those of
Ny? £ 2 = g%, or Ny® = 4= 4%,
Bhaskara has attempted to go one step further to show that the roots of
the equations
Ny*+ L =2 Ny*=2=7" Ny? =4 = z?
can be derived, by successive reduction, from those of the more general

equation
Nyl =+ k - wﬂl

where & is any integer. The method of such reduction is outlined as the
Chakravala:

BES A STRR AP T TH S < ||
Fedl Hegl QEad aAr GERTST |
qEt GFTASAIIT 9% qur ||
aeg ATd AT e IHISY |
quiafed: 9% g% adleagAdrsasd |l
prAl [ITARATHFASING T |
HIEAHIAETAA wAa: 9 ||
satiaTg@ral seaqrETEar | 4
Considering the smaller root, the greater root, and the additive (of
the given equation) as respectively the dividend, addend, and divisor (of
a linear indeterminate equation), the multiplier should be so determined
that the square of this multiplier being subtracted from the given co-
efficient or the co-efficient being subtracted from the square of the

multiplier (as the case may be), the residue is the least (under the
circumstances) ; this residue divided by the original additive is the (next)

® In the Indian rule, N is called the co-efficient, y the lesser root, and & the
grealer root while (& k) is known as the addend or additive. The terms * lesser’
and * greater' are not to be taken in their literal sense, just as the word * imagi.
nary’ in modern mathematics should not be understood too literally.

$ Vide p, 185, verses 46-50; Bijoeganita of Bhaskaracharya with the
Commentary of Durga Prasad Trivedi, 2ud Edn., Lucknow, 1917, lLereafter
referred to as Bijaganita.
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additive, being reversed in sign if the residue be obtained by subtraction
from the co-efficient. The quotient corresponding to the multiplier in
the linear equation is the smaller root, whence the greater root can be
obtained. This process may be repeated with the new additive, smaller
and greater roots, in place of the old ones. Such an iterative process
is styled Chakravala. By this method, we get integral roots for equations
with additives = 4, %= 2, == 1, whence may be derived by the principle
of composition, the roots of the equation with #nity as the additive.

For a clearer understanding of the above rule, one has only to
restate it in modern terms thus:

Let the roots of the equation
Ny + k= a° o
be z=a,y=> (N being a positive, non-square integer).

Solve the linear indeterminate equation

bz + a
PR

in integers and choose a value ! for # so that | I2— N | may be the least
possible.

. ol
Then, the corresponding value for y is —}:—'—'
Bhaskara says that the integral roots of a new equation
a_N
Ny* + - % = wa 00
. bl + «a
are given by y =
al + Nb
and hence @ =

where (* — N)/k is also an integer.

Just as we derived (2) from (1), we can derive another equation
from (2) with known roots and so on, uatil the additive ultimately
reduces to * = 4, = 2. or * L

# Bhaskara's own worked examples illustrate the cases where the additive
reduces to — 4, and — 2; thus, starting with the known solution (¢ = 8, y=1
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As T. L. Heath says, nothing is wanting to the cyclic method
except the proof that it will in every case lead to the desired result,
whenever N is a non-square integer ; but he is wrong in supposing that
Lagrange was the {lrst to supply the proof for Bhaskara’s method.
Indeed, the first complete proof of Bhaskara’s Cyclic Method is the one
sketched in this paper.

3. The Theory underlying the Cyclic Method.

Lemma. If ay b, ay, b;, be integers such that aby — a,b = 1, then
the equations

a2 — Ny' =% s I
and

2/ (a® — Nb?) + 22y’ (aa; — Nb,) + 47 (0> — NbY) = k... (2)

are so related that their integral solutions can be put into one to-one
correspondence by the linear relation

e = aa’ + u.y’
= ba' + by

For, it is readily seen that (2) is derived from (1) by the linear substitution ;
solving for 2’, ¢’ in terms of x, y, we get

O by —ab oW

L be —ay
/ — = e b .
y bd]'—-—ubl " ¥ @y
This shows that, if (o, o) are integral, so are (2, y) and vice-versa.
Thus any solution of one of the equations gives simultaneously a solution

of the other.

In the language of the Theory of Numbers, the two quadratic forms
on the left-side of (1) and (2) are said to be equivalent,

Now, let (a, b) be an integral solution of (1), so that
Put aa;— Nbb, =1 and a,>— Nb? = %,,

- — -_— = _

of the equation 61y'+3 =a% lhe gets at the next stage of reduction the solution
(x =39, 9 = 5) of the equation 61y*—4=x2, where the additive is — 4 ; similarly,
one solution of the equation 67y’ —3=2? leads successively to the solutions of
the equations 6792 4+ 6 - x?, 679*—7 = 2, and 67y2—2 = &7, (the last of theqe
equations having the additive —2).
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It is readily verified that
?— kkl = N (Gbl-— (llb)’ = N.

i, af — N, =y = LN =5
Also, solving the two equations
ab, —ab =1
and aa;— Nbb, =1 for a,, b,
we get a = . -I;‘ B
e e (4)
YTk

The results (3) and (4) lay bare the clue to Bhaskara's method.
In fact, they suggest a method of deriving a pair of integers (a,. b,) and
a triplet (%, L. k) from a solution (g, b) of equation (1), by taking

+ o_
= i k a' kl s !_k_g' and Nb]z + k]. = I‘.l]",

where all the letters represent integers.

by

Thus, if (e, b) be a pair of integral values satisfying the equation
Ny? + k= 2°

then (a;, 4,) are also a pair of integers satisfying a new equation]
Ny? + %, ='2? o WY

Treating the roots (a,, &,) of (5) in the same way as we treated
those of (1), we get the pair (ay, b,) and the triplet (k,, I,, %,) such that
(a,, by) satisfy the equation Ny? + %k, = 2” and so on.

In the notation of the Theory of Numbers, the forms (1, 0, — N)
(&, 1, ky), (kyy Zis ko), ..co.. obtained by the above method are all
equivalent.

Bhaskara’s proposition is that the k's ultimately reach the values
4 4, =2 or =1

We now proceed to show that the k's reach 1 always, but they
- need not necessarily pass through the values =2, =4, —1before reaching 1.
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If they do, however, take these values, Bhaskara's idea is to take a short-
cut from there to the required solution. (Vide, Bhaskara's own solution

to the equations 6ly® + 1 = 2 and 671/ + 1 = 2%, pp. 194—198,
Bijaganiia).

Recurrence Formuolae.

The relalions between the successive pairs (ay b), (a1, U,), eeeese 88
well as those between the successive triplets (&, I, k), (ky, 11, ks)y eee oee
are as follows:

a®—Np* = k; ' 1
al 4+ Nb bl + a *—N
Nb]_a + kl = a; g Gy ~ """"I;‘"‘". bl = -- kv i k] =2 .........k_.__. g
B4 s gd gows WA NG, bhte , LN
Nbg* + k, == ag’, ag e by . : g b
L} LR R ] -ae e ese san L (G)
No 2+ & =ap a="2= by + Nb,_, b, o bemiba +a,_,
kr-—-l kr—-l '
k, = {"_":.1. “_E.
kr—l v,
: _ ﬂ1l]+ N’Dl Z; a LA ( E} A
Now, @a,= h kx +kk, + i "_k)
—
1 a! e .I;_tzl ..I_ E(S____ )
ky kley
[ sen (7)
l+1
= a] T o
1
Similarly, b, = b, . f:'_‘_ﬁ__ .
ky ]

Since ﬂl)l "—bﬂ] = ﬂ]bg""‘"blﬂ2= ses ses l| and we mBY take
a, b to b8 prime to each other and have the same sign, it follows that ihe

pairs (ay, b))y (@sy 0s)s ... ... also contain relatively prime integers
having the same sign.

+1 :

: [fl s ~* be not an integer, then %, or some one of its factors should
1
30
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go into both a; and b;, which is contrary to tha fact that a, and by are

relatively prime. Hence, z—%—ﬁ must be an integer.
1

We may write (7) in the more general form as giving the relation
between any three successive pairs (u,s 0,). (a2 D,,,), and (a, 0 b,.9)
thus:

L kg :
a,. g - i. —  —— “l'
+2 7 Yrh Ty
: -
1+
brpg = Doy s i —0,
krin )
where (I, + 1)/ k.4 is an integer.
Incidentally, we may also notice the relation
“'_"' b' Z"_l | b'—'l k’o (T (9)

In the usual notation of the Theory of Numbers. the triplets
(k, Z. kj} (kl, l]| k2)| Bea wee

represent equivalent adjacent quadratic forms with determinant N,
since

la— !I:k] == 112'— kl kg = der was = N.
Rnd l + ll = 0 ("lOdo kl)’ l‘ + £2 = 0 [mOd. A‘g\’ oee

It is important to nole that these latter congruences can easily take
the place of khaskara’s indeterminate equations

hae + a by + e
— — g e — — y| LYY ]

ky kg
Bhaskara’s Condition for Reduction,

We will now make use of the important condition * 2187 g% gur’
in Bhaskara's method of reduction which distinguishes it from the reduced
forms due to Gauss, Lagrange and others.

" Bhaskara's condition is that !_ should be such a value of 2 in the

indeterminate equation
br + a,

— "=y

k

that I lra — N l is the least. vy (10)
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The values of » satisfying (10) are, by viriue of (9) above, of the
form —1I,_, + n |k, | where n can take all integral values, positive,
zero, and negative. In this sipgly.infinite system of values, there are
bound to be a set of two integers (one of which is less and the other
greater than YN) in the immediate neighbourhood of + YN and
similarly another in the immediate vicinity of —VN. The squares of
these four *integers are evidently nearer to N tkan the square of any
other value of # in the equation (10). According to Bhaskara we bave
to choose the nearest of these four cquares to N.t An exceptional case
may occur when the root corresponding to the nearest square leads back
to the previous step in the process of reduction. In this case, the root
corresponding to the nearest of the remaining squares should be chosen.
This exceptional case is not explicitly noted by Bhaskara though it may
be implied in his cryptic expression i -

We will first consider the case when | k. | > VN,
Let the least positive value of z in (10) be L.

Then L < |k, | and the four squares in question which are nearer
to N than all the others are

L, (L + & 12 (L—[k|)® and (L—2 [k, |)?
of which, o
(L+ 1%1) and (L—2|k1[)®

are both greater than %' and therefore greater than N, and it can be
verified that the nearer of these two squares is always furtber from N
than the nearer of the other two squares, viz., L%, and (L — | k,l )®
whether the latter be both greater than N or less than N or only one of
them is less than N.

# Sometimes either three or two due, to the co-incidence of some of the
integers.

4+ This point has been completely overlooked by writers on Bhaskara, It is
jnteresting to note that, for Gauss s reduction, it is sufficient if we take that value

of x in (10) which is nearest to ¥ x and less than y'N. Thus Bhaskara's condition
goes a step further than Gauss'sand lacks thereby a certain amount of simplicity

{ Bhaskara seems to recognise this necessary modification as for example
in his own solution of the eguation 61y° 4 | = 27,
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For let (L + |%,| )% be nearer to N than (L — 2 | %, | )?¢
and so | k| —L > L., It (L — | |) is nearer to N than L?,
we have obviously (L + |k | )2 —N>N—(L—|% | )* when
(L— | &k |)»<N, and (L+ !k |2—N>(L—|% [}~ N
when (L —]| &k, [)* > N.

If, however, L? be nearer to N than (L — [Z%, | )?, then, evidently
(L + | & |?—N>L?—N when L > VN. When L < N,
| %, | — L cannot also be less than 'J—N, for this implies

IN> [k |—L>L
which contradicts the assumption that

L?is nearer to N than (L —| %, | )%

Ience, |k, |—L>YN>L

S (L4 A [P—=N>(|4]|—=L)P*—N>N—1L2

A similar argument applies to the case where (L — 2| %, |2 is
nearer to N than (L + | %, | 2, to prove that (L—2| %k, | 2 — N is
greater than the lesser of the two differences

N~L*and N~ (L—|%, |)3
From the above discussion, it becomes evident that the value?,
satisfying Bhaskara's condition is either

LorL —| k%, | when | %, | > vN.

Hence 12,] < |&.},
Further, since 1*—k,k.., =N,
we have Lk, Jol &yl <00 or N
anld in either case [ Rl < 1k, |

Therefore, as loﬁg as the %&'s are greater than v N. Bhaskara’s
method of reduction leads to smaller and smaller numerical values for %,
so that at some stage

|k, | < VN, while | k| >k | >k | > oo >k >N
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Let us now consider the case | k, | < YN. Since | 1,> —N/| is
least, we must have

(2, £ 2P —-N|>[1?—N| e (11)

But, here we take into account only the squares of the number-

pairs nearest to VN or — VN and not the nearest of all the four squares
as contemplated on p- 235.%

The inequality relation (11) can be transformed as follows :
() When?2>N, |l [ — |k | < YN and so
N—(I l, I"""' [ kr |)2> lrg-"'N

e N—t2+all | k] —k*>12=N

7.6 |kl (2l 2, | =1k |)>20,"—N)
>2l ke | | by

150 2 Thnl + 81 % | e (19)

Squaring both sides,
22k e+ 16 Lk,
) kol +iri< Nt s (15)
(i) When 2<N, |2,| + |k | > VN andso
(T, 1+ [% |—~N>N—i,?
from which we easily derive as in (i)
12,1 > 1kl — 41 &r | . (14)
which, on squaring, leads again to (13).

# In this connection, it may be mentioned, that if $, ¢ be positive inlegers
nearest to YN and p’, ¢’ the negative integers nearest to — 4/ N, where $, q.
#’. g’ are the values of x salisfying the condition (10), then the two squares
nearest to N can be only one of the sets :

(% 7). (8% 2N (2. 27), (% ¢).

Suppose, for example, (p?, $’?) are the ncarest squares to N and we have
to reject one of them say 4% as it leads back to the previous step in Bhaskara's
method of reduction. Theu the next square we have to choose is either p”? or
¢’* which corresponds to the numnber-pair nearest to — y'N, and thus even in the
exceptional case the relation (11) holds,

t Bhaskara’s condition of reduction (10) amounts to more than (13). 1t
implies further that | k41 | should be the least of the possible values with the
exception of | ky-1] .
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Thus the condition , e b < N is equivalent to

(is (z,,d:k,)‘-’-~N>z}~N
@ 2, ]>%1%k1+[%,, | when?>N
and Gii) |7, | >k, | —41% | when® <N,

Similarly, the condition *? + _l_";‘;f < N can be seen to be equiva-
lentto (i) (I, = & )2 ~ N> | ? ~N,
and (i) |2,] >3 1%, |+]|% |, or

L, 1>k [—4] 4|

according as /,? is greater or less than N.

Cor. (1) In every case, when | %, | < YN, [ %,,, | < YN,

Cor. (2) Sincel? — 'k, k., =N, and |k,.%,,, | < N.

I < Y2N.

NERREN
17, ] 4+ VN

Cor. (3)ll,|~\!_ <| k| and |kl

Cor. (4) Since | &, |, |/, |, |k, can take only a llmlted
set of integral values, the number of forms of rhe type (k,. - ,,, ‘ is
necessarily finite.

Reduced Forms.

When the %'s have become numerically less than VN, since they
cannot continuously decrease numerically, we must bave at some stage

[y | 2= 151 .

The corresponding reduced form evidently saticfies two conditions :

k 2
M k> +—"Z“_<N

(“) k,....lz + T < N
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We shall call a form (A, B, C) of' determinant N. a reduced
Bhaskara form (or simply a Bhaskara [orm), if it satisfies the conditions

Cﬂ
A+ SH O -~<N

In the method of reduction advocated by Bhaskara, the existence
of such reduced forms as (A, B, C) has now been proved.

Incidentally, we prove also the following

THEOREM. A reduced Bhaskara form can ‘always be found
equivalent to any proposed form.

Properties of Bhaskara Forms.

Let (ks 1,4 k,4,) be a Bhaskara form and (k,.,, 7,41, k,.5 be an
adjacent form obtained from the former by Bhaskara's method.

Since (I, = k,.)® ~ N> Ir* ~ N, (videp. 235), — I, is a possible
value of I_,,; but this has to be rejected as it leads back to k,, and so
we have to choose for I, one of the two numbers nearest to + VN or
— VN according as —I, belongs to the number pair nearest to
— YN or + VN.

This shows that 1., and lr are of the same sign. Further, it is
easily seen, from the relative magnitudes of the two squares nearest to
N, that '
by ™l < | By bs

We may suppose, for convenience, that I, is posiiive. The proofs
applicable to this case apply also to the case where I, is negative, for we
may write | 2, | for 1.,

o

With these preliminaries settled, we can now prove the theorem.

THEOREM 1. A successor of a Bhaskara form is also a Bhas-
kara form.

If (k7 44y K40 bea succeseor to the reduced form (k,, 1, ,, )
then it is evident that the successor is also a reduced form in the
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following cases :
D byl <1kl
i [k 4l <1,
i) py SN 28 k0| ,a0d [kl > [Ey 1> 18] .
(iv) 2,0 <IN, 14> kgl sand [ bpyg| > | kgl > 1R 1.

So, the theorem remains to be proved for the remaining cases :
0 4y >IN, ,,<3 Ly | yand [y | > Lhysl > [k
and (vi) 5., < VN, < lkpgql sand Ll | > [k ] > | %, |

Case (V). Since ;’_.!.12-—" N = [ k’__!_l-k,.*.n l > I "r I I kr-&-l'

and |32~N | = | kk,y |,

we have l4a > L, whether I, Z YN

Pl S, T8k ]

Also, Loy NN > ko |-

and b+ 1,,,=0 (mod | £, |)

Hence, bt b =2 kgl

But bgr = < | &gy |

: 6., 2l l—20 <[kl

which implies that L, <| k. l<IN

Now, Ly — N> N—,2

£.6. {2|kr+1|-—-l,}2+l,.3>2N

£48iy P49k, —2 1k, | >N

f\6.y 3yt — 2L | Ay | > N—12
> | &l

.6y - 2l by | =212, > | &, |

f8, e < | lpyy | =41 & |

which contradicts the condition
2 l"’,-}-l [— 41 % |
equivalent to lepyy® -+ 1< N,
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This investigation reveals that Case (v) is an impossible one.

Case (vi).. Asbefore, |1, —N|[>[1*—N|.

But, since Ly < VN,
we get N—7,, 2>N—1%or l?—N
and in either case 3,2 Ly
We know that byl <Vl ]
’, L& Gy ¥ [y

<9 8.1
so that, L+i,<8]lk,1|:
Since L+t = 0(mod. | &, |)
we have Lt Ly =]k lor3lk,, i

Again, (L)' + |2y b= N=02= [k |.] 2y, ]
A T A R A R

B Ltlu=lbal thanl<L,m] bl +FE ],

sothat Lo=3% |k | +5 1kl =51 & | <l lpyy | 58] 20 |

the upper or lower sign to be taken in each case according as 1, is less or
greater than YN. This con'radicts the condition that (%,, !, k,,)) is
a reduced form (vide p. 236). Hence I, + logy # | 8,55 |

Next, if 1, + I,., = 2] &,y |, thenl —1,,, =% |k, .| =5 |, |,
so that =l | =31k 1% 1}
> kg =41 k0 |
which is equivalent to the condition %,,.* + %'/ 4 < N.

Thus in all cases, we prove that the form (%, ,,, 7, %, ,,) satisfies
the conditions

kr_'_’g + kfl-],2/4 - N
and R + kA€ N,

Hence, the theorem is proved.
31
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THeOREM II. Two different Bhaskara forms cannot have the
same successor,

If possible, let (%, L,, k,,\) and (,.,, 1,,,, k,., be two consecu-
tive Bhaskara forms, as also (&', I, &, ) and (&, ,, 1., %,.2)

Then b+ 1, =0 (mod |2, |)
U+ L1 2 0 ( & )
U~ =20( " ) R |

But, since* |I,~VN | <] k,+1l and |/~ VYN | < | L I
S V= | <l 4—IN |+ | '—IN <3|k ] D)
From (1) and (2), we infer
V=1 1=00r |kl
From the condition of reduction,
|@ =k, ) —N|>] 1 —N|

which reduces *o
| B, —N |>] " —N|

where [0 | =] %y |
A siniilar argument proves also the contradictory result
|19 —N|[>]|1'=N |
& TP ] g -
Hence | I! —1, | = 0, d.e. I! = 1,, from which it follows that k' =k, ;
i e. the twa forms (&, 1,, &,,,) and (&', I, %,, )} are identical.
Thus, the theorem is proved. '

Tueor :M 11l The Bhaskara forms repcat in a cycle and the
first member of the cycle is the same as the first Bhaskara form

obtained in the course of reduclicn.

For, if otherwise, two different Bhaskara forms (réz., the predecessor
of the first member of the cycle, as well as the last member), will have the
same successor. _

THEOREM. 1V Two different cycles of Bhaskara forms are non-
equivalent, and so all equivalent Bhaskara forms belong to the same
cycle.

———r—

* Vide p 238, Cor 3,
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To prove this, we have to examine the struclure of a complete cycle
of these forms and perceive the relation between them and Gauss-forms
Ilet (k. z‘ kl)' (kl' Il' kgj! ree (kr‘ l" k#+l)' sen *ON
be a cycle of Bhaskara forms with the I's all positive.

If 7, < YN, the form (k,, I, %,,,) is readily seen to be a Gauss-
form satisfying the conditions VN — ¢, < | &, | < VN + {,, where
N=12?—Fkk . (videp. 74, Mathews' Theory of Numbers).

. +1¥®
If I, > VN, the proper unitary cubstitution (é' 11 ) transforms
]

(k. . k,.) into the equivalent form’ (%, I, — | &, |, k') where
[&! =21 —|k |— |kl

Since VW—1 +|k | <[k |<IN+I1,—]|k ],

the latter form is a reduced Gauss-form.

Thus, we see that with every Bhaskara form, there is always an
associated equivalent Gauss-form,} the associated form being identical
with the Bhaskara form when the middle co-effirient is less than vN.

Now let (%, I, &, ), (&, L, k,+,) be two forms in Bhaskara’s
cycle (where I, !, are each less than YN, so that the forms are also
Gauss-forms) with the intervening forms having their middle co-efficients
all greater than VN. We can now replace all these intervening forms

by their equivalent Gauss-forms, and form the sequence :
(kr‘ Lr' krl-l)' (kr-i—ll lr-l-l — l kr-i-l l 4 kr-H’)' V(ki‘-I-2' £,+,—- I k,--{-! l 'kp-{-'a")

PUOCRL | S S — | k,_y Is &% B 3, k‘H)
in which all the forms are Gauss’s.

We shall now interpolate between any two consecutive forms of the
above sequence (except the first two) another Gauss-‘orm and thus get a
complete succession of unique | Gauss-forms from (%, I, %,.) to
(&, 1. k,.4). For example,

between - (k,.+1| z,.--- '_'l ks-rl Il k’rl'l)

Bnd (k'.*,z. '..1 ‘ k,.] 9 | ] ,+1)

——

# The upper sign is to be lakeu wheu }. is negatne aml lhc lower sign
when %, is positive,

t Not vice-versa.
! Vide p. 76, Art.70. Mathews’ Theory of Numbers.
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we may put in the Gauss-form

(& r+1° Z ¥ ""l kr-f—l ls .-u)
The latter form cannot be also a Bhaskara form, for,
1B i L= 3 ka | = 20, — By | — 31| > 00— Ry
owing to the condition | %, | + 41 &, | <1,

The above process enables us, in general, to convert a Bhaskara
cycle into a unique Gauss cycle and vice-versa.

Two different cycles of Bhaskara formst cannot evidently be
transformed into the same Gauss-cycle and are therefore non-equiva-
lent. Thus, all equivalent Bhaskara forms belong to tha same period.

THEOREM V. If L? be the integral square nearest to N and K
= L® — N, then (K, L, 1) where L is positive, is @ Bhaskara form.

For, let L* < N, then N— L2 < (L + 1)2—N
ies N<L*+L+14
fey, N—IL2dg<],
Etiy =%,
. Squaring, K*4+ K+ } < L?
i K< K
’ . <N

2 o
Hence I: + 1 < K2+ 1 < N, and the criteria for 4 Bhaskara

form are satisfied.
The case L? > N can also be similarly treated.

Now, putting a=L, b= —1, a; =1, I, = 0 in the Lemma on
p. 231, we find that (K, L, 1) and (1, 0, — N) are equivalent forms.
But the Bhaskara forms obtained with the help o! a pair of known integral
roots (a, b) of the equation
2 —Ny? = £

® To prove this to be a Gauss-forn1, we have only to use
bey12 ka4 &k gy
and cor, 3 p 238.

+ Two different Bhaskara cycles cannot have any common form ; for, if one
form is common, all its predecessors and successors also must be commnion, so
that the two cycles entirely coincide.



.

Notes and Questions, 245

are all equivalent to (1, 0, — N). These form a cycle, which includes
as a member the particular form (IS, L, 1).

Thus, we ultimately get one pair of integral roots of the equation
2! — Ny* = 1. '

From this single pair, an infinite number can be obtained by the
principle of composition mentioned at the beginning of this paper. This
completes the proof of Bhaskara's cyclic method.

4, Relation of the Cyclic Method to the Irccgular Continued Fraction.

Just in the same way as in Gauss’s Theory (vide Mathews,
pp. 68, 78, 79), each form of a Bhaskara period, say (%, [, k,) is trans-
formed into the next following (%), 1, 24) by the substitution

0, 1 ) Ltk
(—-—l.w—-sl where 0, = B

If &,, ®," be the principal roots (i.e. roots numerically less than 1)
of Lhese torms,

PO WSO, v
: —wl'—‘SJ 51 o (01‘
1
Similarly, if ( (;' & ) transforms (%, Iy, ,) into the next form of
i Tl
S, |
. . =
the period, | W By 4+ o's
and so on.
] el e
Hence

= sl +_82+ 8:; +-u ean

which is a recurring irregular continued fraction since the ®'s recur with
the forms.

Now, we are in a position to connect Bhaskara's algorithm with
an irregular continued fraction.

To start with, (a, ) are the roots of Ny? + & = 2%; from this, we
derive successively (aj, by) the roots of Ny®+ k&, = 2%
(aal bg) " Nyﬂ -} k2 = ’3.
and so on.
The corresponding quadratic forms are (vide p- 232. supra)
(kl £| k].)l (kll lh k2)| "ev aue

241 l, + 1
with = ~——,9%,= —‘7:_-3
l l!g

g *** a2

(8’s being integers)
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The principal root of the form (%, I, k) is

— 14 VN
k
and we get
s + \fN —1 —1
’f‘; b + 8 +|-.o-
We may write
- a
YN = -
;J_ —
- I . u.
k - 1
by = b+ »
BN+« VN gy ta(YN —1)/%
a 1 —a —1

ﬂb+a1+_87+_5:—+ ses sae
o 8 Ml —1 -1 +
it et B, 30, 4
The successive convergents to this continued fraction are

a a; aq dr Qrl Qri2 .
] § vee re ] ] g wre wrs
b bl by b" br“l‘l br[2

: l
for HQ"" 618 -*'—-ll=' ay. +l'

- kl e b’
L+1 :
(lr+¢2 F— 81__]_1 “r-{-l — (t' = ui"l‘l = ..’__.I_‘._._..'_f.." —_— “r’
r+1
L+ 1,
br+3 * 81"!-1 br+l e br = br-H e = br’
-1
* Since @, = "—‘--J-’—Iié (Vide p. 233.)

} For example, )
8 1/8
V67 = 4 =4/ +
=1 (=1 (=1) (=1 (=1 (= (=1 (=1
2 (=2 H =N+ (=2A4+ 2 4(=5) + 16 +(=3)

the part within the brackets being the recurring portion of the C, F.
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Thus, Bhackara’'s method of finding successively the roots
(a3, B,), (ag 1,), ... is equivalent to finding the successive convergents
of the irregular continued fraction

. y 7 WO, (R |
ﬁ = -‘l T by = y i LN and
N = 5% etad By 4 5y &
This shows clearly that Bhbaskara's method is not related to the

Lagrangean or Eulerian method involving the simple C. F expansion of
VN, as is generally believed to be the case by T. 1. Heath and others.

One point, however, is worth remarking. Lagrange’'s chain of
reductions by which he is able to prove the important theorem that any
integral solution of @® — Ny? =k (| &2 | > VN), must be deducible
from the solution of one or other of a finite group of equations of the
types’ —Ny? = /(| &' | < ¥N) isalmost the same as L haskara's, except
for a slight variation in the choice of roots of a linear indeterminate
equation. Though the methods of reduction appear to be more or less
the same, Bhaskara and Lagrange apply them as it were at opposite
ends with opposite aims in view. While Bbackara tries to solve
2’ — Ny® = 1 [rom a known solution of the equation #* — Ny® = £,
Lagrange attemp!'s the converse problem of salving z® — Ny? = & with
the known solutions of 22 —Ny? = &/ where | & | < VN, (vide Chrystal's
Text- Book of Algebra, pp. 482—185),

5. Bhaskara and Fermat

Since Bhaskara clearly mentions the existence of an infinite number
of solutions (TXTATATAIH), it cannot be :aid that Fermat was the
first* to assert that the equation «*— Ny*® = 1 (N being a non-square
integer) always bas an unlimited number of solutions in integers.
Further, while Fermat claims that he can prove his assertion ‘by the
method of descenie applied in a quite special manner,” we have
presumably in Bhaskara’s work a similar method, For, the cyclic
method possesces the characteristics of the method of descent, starting
as it does from the equation z® — Ny* = k with koown roots and

* This remark is due to T I,. Heath (Vide his Diophantus, p. 285)
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successively reducing | % |, if |k | > VN, to a value less than VN,
and thereafter other k's all numerically less than VN, finally ending in
a cycle containing the desired Kshepa, unity. This anticipation of Fermat
is perhaps sufficient in itself to justify Hankel’s praise of the Indian
method that ‘it is certainly the finest thing achieved in the Theory of
Numbers before Lagrange’ Remarkably enough, one of Bhaskara's
worked examples, viz., to find the roots of the equation 61y® + 1 = &°
is just one of those proposed by Fermat in his letter to Frénicle, of
February, 1657 (Quel est, par example le plus petit quarré qui,
multipliant 61, en prenant I’ unité, fasce un quarré?)* While Fermat
chose this equation evidently for its difficulty, Bhaskara’s reason for
giving it was just the opposite, viz-, to point out that it is one of those
favourable cases where the solution can be made to depend upon the
solution of Ny® = 4 =22, TFor, from the solution (2 = 8, y = 1) of
the equation 61y + 83 = z*, Bhaskara’s method immediately gives in
the next stage of reduction the roots

=39, y=25

for the equation 6ly* — 4 = o”.

Applying repeatedly the principle of composition of forms, DBhas-

kara obtains
@ = 1765319049, y = 2.61563980

as the required roots.

Finally, it may be remarked that the early recognition by the
ancient Hindust of the importance of the fundamental equations
Ny? = 1 = g% and Ny? #= 4 = «* in the solution of the indetermi-
pate equations of the second degree testifies to their instinctive grasp of
the true nature of the problem.

MADRAS, } A. A. KRISHNASWAMI AYYaNGAR, M.A, L.T.
20th Junce 1930.

® Ocuvres de Fermat 11, p. 334

+ In the same way, in the case of the linear indeterminate equation, they
were the first to recognise the fundamental nature of the equation avE 1 = bx,
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