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Inequalities.

We discuss inequalities in two or more variables.

e An inequality in one variable looks like 22 + 3 < 5 and is

solved by rearranging it so only the variable appears on the
left hand side: z < 1.

e This can also be done graphically thus:
Convert it to an equation and solve it. Thus:

20+ 3 =5 leads to z = 1.

e On the number line, plot the point z = 1 and notice that
all points to the left of it satisfy the inequality and the ones
on the right don’t.



Examples continued.

e The interval (—oo, 1) on the number line looks like:

To-infinty (10)

We verify test values x = 0 and = = 2 to decide that this
interval consists of the solutions and the other part of the
number line does not.

e The set of solutions is said to be the feasible set of the
inequalities used.

e If we similarly handle another inequality, say 3z 4+ 10 > 4,
then the solution to the associated equation 3z + 10 =4 is
r = —2 and the interval [—2,00) is deduced as before.

(20) T0 infiity

Examples continued.

e [f we try to solve both 22+ 3 < 5 and 3z + 10 > 4 together,
then we get the intersection of the two intervals. But this
can be also explaind thus.

e We solve both associated equations plotting their solutions
on the number line.
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e By using test points on each interval, say z = —3,0,2 we
pick up the ones which satisfy all the inequalities. This
gives the feasible set [—2,1].



Inequalities in two variables.

e An inequality like z + 2y < 4 is the next topic. As before,
we first convert it to the equation z + 2y = 4.
We note that this is a line and we know how to plot it. It is
not difficult to see that the plane is split into two halves so
that on one side of the line the inequality is true, while on
the other side it is not! Thus, having plotted = 4 2y = 4,
we see that at the origin O(0,0) the inequality is satisfied.
So, we choose as the feasible set the half plane containing
the origin.
i
159
$

o In the picture, only the first quadrant is

IIIIIIIIII shown, since inequalities z > 0,y > 0 are
T2 typically going to be part of our conditions.

Two variables continued.

e If we have more than one inequalities, then we solve them
separately and take the common part. Here is the solution
for

x>0,y >0,3z+4y <12, 2+ 2y > 2.

As before, the first two inequalities mean we only draw
things in the first quadrant. Here are the separate regions
for the two inequalities followed by the combined region.

3z + 4y < 12 T+ 2y > 2 Combined.
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Summary of The Graphical Method.

On a common graph paper, draw the equations
corresponding to each inequality, and mark the regions
indicated by each inequality using a directional arrow. In
our course, the assumption always puts the region in the
first quadrant.

The directional arrow is usually decided by using a test
point. For any inequality at least one of the three points
(0,0),(1,0),(0,1) is always a good point to use.

Take the common part of the plotted regions.

Calculate and list all the corner points. Make sure that the
chosen corner points actually satisfy all ineualities.

Some corner points, or even some whole lines may be lost,
meaning they do not have any points in the region.

Summary Continued.

The aim of sketching and marking the corner points is to
solve an optimization problem for a linear function on the
resulting region.

Review various examples in the section 3.2 where a
practical situation leads to a set of inequalities and a linear
function to be optimized (i.e. maximized or minimized).

The first step is to clearly name the variables and write
down the inequalities and the function to be optimized.

Then you sketch the region carefully, provided that you
have only two variables. More variables are handled in the
next chapter using the Simplex algorithm.

Then you list all the corner points of the region in order
and evaluate the function at each of the corners. The
optimum value of the function is among the values at the
corner points, with one exception, which we discuss next.



Further Comments.

If the region is not bounded, then the function may not
have a maximum or a minimum. This can be decided by
checking along the edges of the polygon running off to
infinity.

Why does the graphical method work? We give a
brief explanation below.

Parametric lines. Consider a line in the plane, say,

y = 3z + 5. It passes through a point (1,8). We want to
study the line near this point. So we take a point on this
line whose z-coordinate is 1 + ¢ and notice that its
corresponding y-coordinate shall be
y=3(1+1t)+5=8+3t.

In fact, all points of this line can now be described by the
parametric equations:

r=14+1ty=8+ 3t.

This is called the parametric form of the line. It is
useful to be able to calculate such a form near any
convenient point!

Explanation Continued.

Thus for the same line, we could also have started with a
point (—2,—1) and concluded a different parametric form

r=-24+ty=—14 3t.

Functions on Parametric lines. Consider a function,
say f(z,y) = 3z + 4y. We can analyze how it behaves on
our parametric line by plugging in the parametric form.

Thus we have f(z,y) = 35+ 15¢.

This shows that as t increases, so does the function value.
Remember that the parameter ¢ was the change in the
z-coordinate from the point (1,8). Thus, as we let
x-coordinate increase on our line, the function value
increases.



Explanation continued.

e Conclusion. Thus on a line in parametric form, a linear
function increases or decreases with the parameter
depending on the coefficient of the parameter.

e For the above line, if we consider a different function, say
g(z,y) = 3z — y+ 2, then we see that
g(1+t,843t) =3(1+t) — (84 3t) + 2 and this simplifies
to g(1+t,8 + 3t) = —3.

e Thus, a linear function on a line is either constant at all
points or increases in one of the two available directions
and decreases in the opposite direction.

Why Corners?

e Consider the plane region of feasible points that we can
plot for our problem. Where would a linear function
become maximum on such a region? If we take any point
in the interior of our region, then we can draw a little line
segment through the point which is still entirely in the
region.

e Now if our function is not constant on the line, it would be
increasing in one of the two directions and thus would not
be maximum at our given point. If by luck, we had chosen
a line segment on which the function happens to be
constant, we can choose a different segment through the
same point and make the same argument. We could not
have the same function constant on the second segment as
well, for it is clear that then the function would be
identically constant on the whole plane Think why!! and
our problem has a trivial answer: every point is a
maximum point!



Continued discussion.

Thus, our maximum point has to be on the boundary!

It could be on a boundary segment or at a corner. Note
that if it is on a segment, but not at a corner, then the
function has to be constant on the whole boundary
segment (for otherwise we get a contradiction as above).

This is why it is enough to only check the corner points for
locating a maximum.

This also explains that if we find two maximum points
which are corners, then the line joining them must form a
boundary line, i.e. they must be adjacent points on the
boundary polygon.

If the region is unbounded, then it has boundary lines
running off to infinity and we may find that the maximum
point may not exist in the sense that it has to be a point of
infinity on one such boundary line.

Some Sample Problems.

Problem 3.2.2 by graphing The problem is to maximize
the profit P = 2z + 1.5y subject to
>0,y > 0,3z +4y < 1000 and 6z + 3y < 1200

We first sketch the lines and find their common point.
Then we decide on the region.

Note that in the picture below, the inequality

3z + 4y < 1000 corresponds to the line BC' and the
inequality 6z 4+ 3y < 1200 matches the line AB. Their
regions both point towards the origin, since the origin
satisfies both of them! The axes are automatically included
with regions pointing towards the first quadrant.



Problem continued.

150: The corners are
i 0(0,0), A(200,0), B(120,160), C(0, 250).
SEP Ao The values of 2z + 1.5y at these are
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(0,400,480, 375).
e So the maximum is at B(120, 160) with maximum value
480.

More Solved Problems.

Consider the problem (similar to B2.8). Suppose that

r+ 2y <2 and y+ 5z <5 together with z > 0,y > 0. The
maximum value of the function 6x + 9y + 2 on the resulting
region occurs £ = --- and y = ---. The maximum value of
the function is - - -.

We first convert all inequalities to equations and plot after
finding common points. The equations are:

r+2y=2,y+5z=5,r =0,y =0.

(1,0),(8/9,5/9),(0,1),(0,0).
The values of 6x + 9y + 2 at these are
05 1 15 2 (8,37/3,11,2).
So the maximum is at (8/9,5/9) and the maximum value is
37/3.
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More Solved Problems.

Consider the problem (similar to B2.9). Suppose that

y < b5z,y >3z and z/4 4+ y/5 < 1 together with

x>0,y >0.

The maximum value of the function z + y on the resulting
region occurs z = --- and y = ---. The maximum value of
the function is - - -.

We first convert all inequalities to equations and plot after
finding common points. The equations are:

y=5x,y=3z,z/4+y/5=1,2=0,y=0.
Note that the last two do not contribute to the picture!
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The corners are

(0,0), (4/5,4), (20/17,60,/17).

The values of = + y at these are (0,24/5 =
1702040E08 112 4.8,80/17 = 4.7059).

So the maximum is at (4/5,4) and the maximum value is

4.8.
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