- Polar

$$
\begin{gathered}
x=r \cos (\theta), y=r \sin (\theta) \\
r=\sqrt{x^{2}+y^{2}}, \theta=\arctan \left(\frac{y}{c}\right) .
\end{gathered}
$$

Actually, the angle θ has to be found between $[0,2 \pi)$ by looking at signs of x, y.

- Cylindrical Same as polar, except there is a z coordinate which is same in both rectangular and cylindrical systems.

- Spherical

$$
x=\rho \sin (\phi) \cos (\theta), y=\rho \sin (\phi) \sin (\theta), z=\rho \cos (\phi) .
$$

For reverse transformation,

$$
\rho=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{r^{2}+z^{2}}, \theta \text { is same as in polar and } \phi=\arccos \left(\frac{z}{\rho}\right) .
$$

