Note that some of these may not be covered on the indicated days. So, this is more of a target.

2 September 2014

2.1 Sep. 3

- Catch up with old material.
- Working definition of a cross product.
- Equation of a line in space.

$$
\mathbf{r}=\mathbf{r}_{0}+\mathrm{t}\left(\mathrm{r}_{1}-\mathbf{r}_{0}\right)=(\mathbf{1}-\mathrm{t}) \mathbf{r}_{\mathbf{0}}+\mathrm{tr}_{1}
$$

- Special forms of line in plane and three space.
- Equation of a plane.

$$
\mathbf{n} \cdot\left(\mathbf{r}-\mathbf{r}_{\mathbf{0}}\right)=\mathbf{0} .
$$

- Equation of a plane in parametric form. $\mathbf{r}=\mathbf{r}_{\mathbf{0}}+\mathbf{s v}+\mathbf{t w}$. If we eliminate parameters s, t, then we get

$$
\left(\mathbf{r}-\mathbf{r}_{\mathbf{0}}\right) \cdot v \times w=0
$$

2.2 Sep. 5

- Quick review of determinants.
- Definition of cross product $v \times w$.
- Triple product $u \cdot(v \times w)=(u \times v) \cdot w$.
- Properties of $v \times w$.
- Normal to a plane and vectors in (along) a plane.
- Signed distance to a plane $a x+b y+c z-d=0$ from a point (p, q, r) is given by

$$
\frac{a p+b q+c r-d}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

where the sign helps decide if given points are on the same or opposite sides of the plane.
To be continued ..

