DEPARTMENT OF MATHEMATICS

Ma213 - EXAM \#2 Fall 2012

DO NOT TURN THIS PAGE UNTIL YOU ARE INSTRUCTED TO DO SO

There are 7 problems and a total of 6 pages including this one. You may only use the two sheets of formulas distributed by us. It should not have any additional writing on it.

Problem	Maximum Score	Earned Score
1	20	
2	10	
3	10	
4	10	
5	10	
6	20	
7	10	
WHS	10	
Total	100	

NAME:
SECTION No: \qquad
LAST 4 digits of Student No.:

1. (20 points) Consider a particle moving in space by the formula:

Grading Policy: 4 points each. Simplification is not required. Be kind to earlier mistakes causing later ones. Generally, one point per mistake until credit is gone.

$$
P(t)=\mathbf{r}(t)=<2 t,-3 t, 1-t^{2}>
$$

Answer the following questions.
(a) Find the formulas for the velocity and acceleration at time t.

Answer: $v=<2,-3,-2 t>, a=<0,0,-2>$
(b) Find formulas for the unit tangent \mathbf{T}, unit normal \mathbf{N} and \mathbf{B}.

Answer: $T=\frac{1}{\sqrt{13+4 t^{2}}}<2,-3,-2 t>, B=\frac{1}{\sqrt{52}}<6,4,0>, N=\frac{1}{2 \sqrt{169+52 t^{2}}}<-8 t, 12 t,-26>$.
(c) Find the equation of the tangent line to the path at time $t=0$.

Answer: $\mathbf{r}(t)=<0,0,1>+<2,-3,0>t$.
(d) Determine the curvature of the path in space at time $t=0$.

Answer: $\frac{\sqrt{52}}{\sqrt{13}^{3}}$.
(e) Is the path contained in a plane? Justify your answer.

Answer: Yes, because $\frac{1}{|P(t) \times v(t)|} P(t) \times v(t)=<\frac{3}{\sqrt{13}}, \frac{2}{\sqrt{13}}, 0>$ is a constant vector.
Or, because B is constant.
An even simpler reason is that $3 x+2 y=0$ is satisfied by our curve!
2. (10 points)

Grading Policy: Points $3+3+4$. Proof by $\epsilon-\delta$ is good, but not needed. The wording by students can be sloppy; charge a point for possibly wrong statements.
Answer the following questions.
(a) Describe the domain of the function

$$
f(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}-1}}
$$

Answer: Points (x, y, z) on the outside of the sphere $x^{2}+y^{2}+z^{2}=1$.
(b) Describe the domain of the function

$$
g(x, y)=\log \left(\frac{1}{x+y}\right)
$$

Answer: Points (x, y) for which $x+y>0$, i.e. points above the line $x+y=0$.
(c) Determine if the following limit exists and if it does, then find its value. It is necessary to show your argument. Just an answer will not earn any credit.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}+x y^{2}+y^{3}}{x^{2}+y^{2}}
$$

Answer: In polar coordinates, we have

$$
\frac{r^{3}\left(\cos ^{3}(\theta)+\cos (\theta) \sin ^{2}(\theta)+\sin ^{3}(\theta)\right)}{r^{2}}=r\left(\cos ^{3}(\theta)+\cos (\theta) \sin ^{2}(\theta)+\sin ^{3}(\theta)\right)
$$

Now since the first factor r has limit 0 and the second factor is bounded (say, by 3) the limit of the product is 0 .
3. (10 points)

Consider the functions:

$$
f(x, y)=x^{3}+x y-3 y^{2}, g(u, v)=u^{2}-v^{2}, h(u, v)=\frac{1}{u-2 v} .
$$

Calculate the indicated quantities.
(a) Calculate $\nabla(f), \nabla(g), \nabla(h)$.

Grading Policy: 3 points - one each.
Answer: $\left.\left\langle 3 x^{2}+y, x-6 y\right\rangle,\langle 2 u,-2 v\rangle,<-\frac{1}{(u-2 v)^{2}}, \frac{2}{(u-2 v)^{2}}\right\rangle$.
(b) let $z=f(x, y), x=g(u, v), y=h(u, v)$. Using the above calculations (or otherwise), calculate $\frac{\partial z}{\partial v}$.
(Here, you may leave the expression unsimplified.)
Grading Policy: $2+2$ points. Final answer should be simplified for full credit.
Answer: $\frac{\partial z}{\partial v}=\left(3 x^{2}+y\right)(-2 v)+(x-6 y)\left(\frac{2}{(u-2 v)^{2}}\right)$.

Further, find the value of this derivative at $u=1, v=-1$. Here you must simplify your final answer.
Answer: Evaluates to 2/9.
(c) Suppose that x, y, z are related by the equation

$$
x^{3}+y^{3}+z^{3}-5 x y z=6 .
$$

Calculate $\frac{\partial z}{\partial y}(1,1,-1)$.
Grading Policy: 3 points.
Answer: $\nabla(f)=<3 x^{2}-5 y z, 3 y^{2}-5 x z, 3 z^{2}-5 x y>$ and this evaluates to $<8,8,-2>$. This gives: $\frac{8}{2}=4$.
4. (10 points) The cost to make a strong box of length x, width y and height z is known to be $f(x, y, z)=36 x y+12 y z+12 x z+10$ dollars. Answer the following questions.
(a) What is the cost of a box with length 10 , width 8 and height 7 ?

Grading Policy: 2 points.
Answer: 4402\$.
(b) Find the linear approximation to $f(x, y, z)$ at $(x, y, z)=(10,8,7)$.

Grading Policy: 4 points, 3 for $\nabla(f)$ and 1 for using the correct formula. Charge 1 point for inconsistent function value (from part (a)).
Answer: $\nabla(f)=<372,444,216>$ at the point.
So, $L(x, y, z)=4402+372 \Delta(x)+444 \Delta(y)+216 \Delta(z)$.
(c) Using the linear approximation, estimate the cost of a box whose length and height are increased by 0.5 and width is reduced by 0.1 . Final answer should be a correct decimal number.
Grading Policy: 3 points. Again, charge for inconsistency.
Answer: $4402+249.6$.
5. (10 points) Let F be the surface in three space given by

$$
x^{3}+2 x y+y^{2}-3 y z+z^{2}=2 .
$$

(a) Calculate the equation of the tangent plane to the surface F at the point $(1,1,1)$.

Grading Policy: 3 points for correct gradient and 2 points for building the correct equation.
Answer: Tangent plane: $5(x-1)+1(y-1)-1(z-1)=0$.
(b) Use this equation to estimate c, if $(1.2,0.9, c)$ is on the surface.

Grading Policy: 3 points for correct equation, 2 points to solve.
Answer: c satisfies $5(1.2-1)+(0.9-1)-(c-1)=0$, so $c=1.9$.
6. (20 points) Let $f(x, y, z)=x^{2}+x y+y z$.

Grading Policy: Points $7+7+2+2+2$.
(a) Calculate $\nabla(f)(1,2,5)$.

Grading Policy: gradient 4 and evaluation 3.
Answer: Gradient $=\langle 2 x+y, x+z, y>$ evaluates to $<4,6,2>$.
(b) Calculate the directional derivative of f in the direction of $<1,-2,3\rangle$ at the point the point $(1,2,5)$ (In notation: $\left.D_{v}(f)(1,2,5)\right)$.
Grading Policy: Gradient 4, evaluation of formula 3. One off for forgetting to divide by length.
Answer: The derivative is $\frac{-2}{\sqrt{14}}$.
(c) Find a vector v such that $D_{v}(f)(1,2,5)=0$.

Answer: Perpendicular to the gradient: Many possible answers. For example $<6,-4,0>$.corrected typo.
(d) Find a vector w such that $D_{w}(f)(1,2,5)$ has largest value. What is this largest value?

Answer: $w=<4,6,2>$ and the derivative is $\sqrt{4^{2}+6^{2}+2^{2}}=2 \sqrt{14}$.
(e) Find a vector p such that $D_{p}(f)(1,2,5)$ has smallest value. What is this smallest value?

Answer: $w=-<4,6,2>$ and the derivative is $-\sqrt{4^{2}+6^{2}+2^{2}}=-2 \sqrt{14}$.
7. (10 points)

Grading Policy: Points $4+6$. Half for gradient, half for solutions.
(a) Calculate all the critical points of $f(x, y)=x^{2}+y^{2}+x y+x-2 y+5$.

Answer: We solve

$$
[2 x+y+1,2 y+x-2]=[0,0] .
$$

Solution is $[x=-4 / 3, y=5 / 3]$.
(b) Calculate all the critical points of $g(x, y, z)=x^{2}+y^{2}-z^{2}+x-y+z+y z$.

Answer: We solve

$$
[2 x+1,2 y-1+z,-2 z+1+y]=[0,0,0] .
$$

Solution is: $[x=-1 / 2, y=1 / 5, z=3 / 5]$.

