1 Vector Functions or space curves.

Basic formulas. Starting notation: $P(t)$ (Position function) or $\mathbf{r}(\mathbf{t})$ (coordinate function).
$v(t)=\mathbf{r}^{\prime}(\mathbf{t})$ velocity or tangent direction $\mathbf{a}(\mathbf{t})=\mathbf{r}^{\prime \prime}(\mathbf{t})$ acceleration or second derivative.

1. $\sigma(t)=|v(t)|, T(t)=\frac{v(t)}{\sigma(t)}$.
2. $s(t)=\int_{0}^{t} \sigma(\tau) d \tau$. Arclength/distance traveled.
3. $a(t)=\sigma^{\prime}(t) T(t)+\sigma^{2}(t) \kappa(t) N(t)$.
4. $H(t)=v(t) \times a(t)=\kappa(t) \sigma^{3}(t) B(t)$, and so $\kappa(t)=\left|\frac{H(t)}{\sigma^{3}(t)}\right|$.
5. $N(t)=B(t) \times T(t)=\frac{H(t) \times v(t)}{|H(t)||v(t)|}=\frac{H(t) \times v(t)}{\kappa(t) \sigma^{4}(t)}$.
6. Tangential component of acceleration $=\sigma^{\prime}(t)=\frac{v(t) \cdot a(t)}{|v(t)|}$.

Normal component of acceleration $=\frac{|H(t)|}{|v(t)|}$.
Plane motion. If $B(t)$ is a constant vector, then the curve lies in a plane with normal $B(t)$. The equation of the plane is then computed as $B(t) \cdot\left(X-P\left(t_{0}\right)\right)=0$. A simpler formula is $H\left(t_{0}\right) \cdot\left(X-P\left(t_{0}\right)\right)=0$. Either of these formulas work at some $t=t_{0}$ for which $H\left(t_{0}\right) \neq 0$.

Tangents. The tangent line to a space curve $X=\mathbf{r}(\mathbf{t})$ at $t=p$ is a line with direction vector $v(p)=\mathbf{r}^{\prime}(\mathbf{p})$ and passing through the point $\mathbf{r}(\mathbf{p})$.
A normal line and a binormal line at the same point is found by using the same point and direction vectors $N(p)$ and $B(p)$. In practice, it is more convenient to use the vectors $H(p) \times v(p)$ and $H(p)$.
The osculating plane at the point is a plane passing through the point and with normal $B(p)$.

2 Functions of Several Variables.

All formulas are samples and need to be adjusted for number of variables.

basic Formulas.

1. Universal derivative $D(f(x, y, z))=f_{x} D(x)+f_{y} D(y)+f_{z} D(z)$.
2. Basic rules $D(a)=0$ if a is a constant, $D(f+g)=D(f)+D(g), D(f g)=f D(g)+g D(f)$.
3. Basic rules for vectors of functions. $D(F \cdot G)=D(F) \cdot G+F \cdot D(G) \cdot D(F \times G)=$ $D(F) \times G+F \times D(G)$.
4. Gradient $\nabla f(x, y, z)=<f_{x}, f_{y}, f_{z}>$.
5. Directional derivative $D_{v}(f)=\nabla(f) \cdot \frac{v}{|v|}$.
6. From the universal derivative: If we have functions A, B, C such that $D(f)=A D(x)+$ $B D(y)+C D(z)$, then $\nabla(f)=<A, B, C>$.

Linear Approximation of a function. Given: $f(X)$ where X stands for many variables, e.g. $X=(x, y, z)$ and a point A, e.g. $A=(a, b, c)$. Then $f(A+\Delta(X)) \approx f(A)+\nabla(f) \cdot \Delta(X)$. Writing $X=A+\Delta(X)$, we have

$$
\text { Linear approximation } L(X)=f(A)+\nabla(f)(A) \cdot(X-A) \text {. }
$$

The approximation is valid provided $\nabla(f)$ is continuous at A and $\Delta(X)=X-A$ is small enough.
Linear Approximation of an implicit function. If we have a relation $F(x, y, z)=0$ then we estimate

$$
\Delta(F)(a, b, c)=F_{x}(a, b, c) \Delta(x)+F_{y}(a, b, c) \Delta(y)+F_{z}(a, b, c) \Delta(z)=0
$$

provided $\nabla(F)$ is continuous at (a, b, c) and $\Delta(x), \Delta(y), \Delta(z)$ are small enough. Then given any two of $\Delta(x), \Delta(y), \Delta(z)$, we can estimate the third, provided the partial derivative with respect to it is not zero.

3 Tangents.

Given a surface $f(x, y, z)=\lambda$ where λ is a constant, and a point (a, b, c) the tangent plane is the plane through (a, b, c) with normal $\nabla(f)(a, b, c)$.

For the graph of a function $z=F(x, y)$ we make the equation $z-f(x, y)=0$ and at $x=a, y=b$, we get

$$
<-f_{x}(a, b),-f_{y}(a, b), 1>\cdot<x-a, y-b, z-f(a, b)>=0 .
$$

A surface also has a normal line, namely the line through the point and normal to the tangent plane.

4 Critical Points and Max/min.

For a function $z=f(x, y)$ a point $(x, y)=(a, b)$ is a critical point if $\nabla(f)(a, b)=<0,0>$.
At a critical point, all directional derivatives are zero.
Technically points where $\nabla(f)$ is undefined is also included here, but the claim about derivatives is not meaningful, since they may fail to exist.

A point is a local max or min only if it is critical.
But a critical point may be a local max or a local min or neither.
We have a second derivative test:

- Assume (a, b) is a critical point.
- Assume that $f_{x x}, f_{x y}$ and $f_{y y}$ are continuous near (a, b) and let their values be p, q, r respectively and at least one of them is non zero.
- Let $D=p r-q^{2}$.
- The point is a local min if p and D are both positive. The point is a local max if $D>0$ and $p<0$. The point is a saddle point if $D<0$ (and neither local max, nor local min).
- If $D=0$, then the test is inconclusive. We need to study higher order tests.

