Formulas for Applications.

1. Mass

$$
m=\iint_{R} \rho(x, y) d A \text { for plane region } R \text { and } \iiint_{R} \rho(x, y, z) d v \text { for solid region } R
$$

where ρ is the density function.
2. Moment The moment about y axis is $M_{y}=\iint_{R} x \rho(x, y) d A$.

Moment about x axis is $M_{x}=\iint_{R} y \rho(x, y) d A$.
More generally, for moment about a general line, use signed distance from it.
There is a similar extension for three dimensions.

3. Center of mass

Center of mass is

$$
(\bar{x}, \bar{y})=\left(\frac{M_{y}}{m}, \frac{M_{x}}{m}\right)
$$

There is a similar extension for three dimensions.
4. Second Moment of Moment of Inertia

Second moment about y axis is $I_{y}=\iint_{R} x^{2} \rho(x, y) d A$.
Second moment about x axis is $I_{x}=\iint_{R} y^{2} \rho(x, y) d A$.
More generally, for Second moment about a general line, use square of the distance from it.

5. Radius of gyration

The radius of gyration about x-axis is defined by $\sqrt{\frac{I_{x}}{m}}$.
The radius of gyration about y-axis is defined by $\sqrt{\frac{I_{y}}{m}}$.
The radius of gyration about a general line is defined similarly.
The radius of gyration about the origin is $\iint_{R}\left(x^{2}+y^{2}\right) \rho(x, y) d A$.
Corresponding radius about a point (a, b) uses $(x-a)^{2}+(y-b)^{2}$ in place of $x^{2}+y^{2}$.

6. Probability

Let $p(x, y)$ be the probability density function.
Then probability of a point being in a region R is $\iint_{R} p(x, y) d A$.
The expected value of a function $f(x, y)$ on R is $\iint_{R} f(x, y) p(x, y) d A$.

