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1 Line Integrals in Plane.

1.1 Introduction.

1.1.1 Curves.

A piece of a smooth curve C is assumed to be given by a vector valued position function P (t) (or
r(t) ) as the parameter t moves in an interval I on the real line. The smoothness means the function
is differentiable and the derivative P ′(t) = v(t) = r′(t) is non zero on I.

If I is closed, then the curve has a well defined starting point and an end point.
A curve is said to be simple if different values of t give different points P (t), except the beginning

point is allowed to be the same as the end point. For example, consider the curve:

P (t) =< cos(t), sin(t) > for t ∈ [a, b].

Depending on the values of a, b, this curve traces parts of the unit circle and has the starting and end
points as P (a) and P (b).

If [a, b] = [0, π], then we get the upper semicircle. If [a, b] = [0, 2π] then we get the complete circle
S where the starting and end point are the same. This is an example of a simple closed curve, where
each value of t gives a different point of the curve, except for the start and end.

If we take [a, b] = [0, 4π], then this is not a simple curve and each point is visited twice!
The curve given by the formula P (t) =< cos(2π− t), sin(2π− t) > describes the same set as S, but

traced in reverse. We denote such a curve by −S or curve S traced backwards.
A curve in general is composed by smooth pieces joined at one point. Given two curves C1, C2 such

that the end point of C1 is equal to the start of C2, we define the curve C1 +C2 as the curve obtained
by tracing C1 followed by C2. We can add several pieces as desired.

By C − C we mean C + (−C) i.e. the travel on C followed by a return trip!
Given a piece of curve, we may describe it by a different parametrization and we will consider it as

the same piece of the curve if the points are in one to one correspondence. 1

For example, our circle S is also described by the parametrization P (2t) where t ∈ [0, π].

1.1.2 Integral on curves.

Given a piece of a plane curve C : r(t) =< u(t), v(t) > with t ∈ [a, b] and a function f(x, y), we define
integral of f(x,y) on C to be:∫

C
f(x, y)ds =

∫ b

a
f(u(t), v(t))

√
u′(t)2 + v′(t)2dt.

It is not hard to show that this integral is independent of the choice of parametrization.
If we have a vector field F (x, y) =< F1(x, y), F2(x, y) > , then integral of F(x,y) on C to be:∫

C
F · Tds =

∫
C
F (u(t), v(t)) · T (t)

√
u′(t)2 + v′(t)2dt.

1If our parametrization runs through our geometric curve multiple times, then the new parametrization has to run
the same number of times. Usually, we avoid such technicalities and use simple curves.
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If we recall that T (t) = <u′(t),v′(t)>√
u′(t)2+v′(t)2dt

, then it is easy to see that

∫
C
F · Tds =

∫
C

(F1(u(t), v(t))u′(t) + F2(u(t), v(t))v′(t)) dt.

This is clearly equal to
∫
C F · dr and independent of parametrization.

More generally, we can define the integral of any differential P (x, y)dx + Q(x, y)dy (also briefly
written as Pdx+Qdy ) on a parametric curve C by∫

C
< P,Q > · < dx, dy >=

∫
C
Pdx+Qdy =

∫ b

a
(P (u(t), v(t))u′(t) +Q(u(t), v(t))v′(t)) dt.

For a space curve, there are obvious generalizations:∫
C
f(x, y, z)ds =

∫ b

a
f(u(t), v(t), w(t))

√
u′(t)2 + v′(t)2 + w′(t)2dt∫

C
Pdx+Qdy+Rdz =

∫ b

a
(P (u(t), v(t), w(t))u′(t) +Q(u(t), v(t), w(t))v′(t) +R(u(t), v(t), w(t))w′(t)) dt.

and∫
C
F · Tds =

∫
C

(F1(u(t), v(t), w(t))u′(t) + F2(u(t), v(t), w(t))v′(t) + F3(u(t), v(t), w(t))w′(t)) dt.

1.2 Fundamental Theorem

If we have a vector field F = ∇(f) for some function f , then we see that∫
C
F ·dr =

∫ b

a
(fx(u(t), v(t))u′(t) + fy(u(t), v(t))v′(t)) dt =

∫ b

a
d(f(u(t), v(t)) = f(u(b), v(b))−f(u(a), v(a)).

Thus, the integral depends only on the values of f(x, y) at the two endpoints of C. In particular,
we get the same integral if we replace the curve by any other curve which has the same starting and
ending point.

We define vector fields of the form ∇(f) to be conservative.
If F denotes the force field acting on a particle moving on a curve C from r(a) to r(b), then the

work done is known to be given by
∫
C F ·dr. Thus, if F = ∇(f), then the work does not depend on the

path and evaluates to f(r(b))− f(r(a)). This is the reason for the term “conservative”. The function
f is called the potential function of the field.

Given a field < P,Q >, when is it conservative? If P,Q have continuous derivatives in a domain,
then by Clairaut’s theorem, we get Py = fxy = fyx = Qx as a necessary condition.

This may not be sufficient unless our domain of definition is nice. The technical term is “simply
connected” and roughly means it has no “holes”.

A standard example of a non conservative field which satisfies the necessary condition is given by

F =< P,Q >=<
−y

x2 + y2
,

x

x2 + y2
> .

It can be readily shown that
∫
C F ·dr = 2π if we let C the unit circle r(t) =< cos(t), sin(t) > as t varies

in [0, 2π]. Since the answer is not zero even though the starting and ending points are the same, it is
not conservative. The problem is that the vector field is not defined at the origin which is enclosed by
the curve.
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1.3 Green’s Theorem

One of the most important and useful theorem about line integrals is:
Green’s Theorem Suppose that C is a piecewise smooth, simple closed curved traced counter-

clockwise (positively oriented) and D is the enclosed region. If the functions P,Q have continuous
partial derivatives on an open region containing D, then∫

C
Pdx+Qdy =

∫ ∫
D

(Qx − Py) dA.

Comments:

• One way to formally define positive orientation is to require that the unit normal N points towards
the region at all points (where it exists).

• Note that continuous differentiability is assumed in a slightly bigger region than D itself. Thus,
the functions have to be well behaved in D as well as in a neighborhood of C.

• Sometimes the integral around the positively oriented C is denoted as
∮
C .

• It is possible to define a formalism whereby the oriented boundary C can be thought of as a
derivative of the region ∂D. Moreover, it is possible to set up a formalism of derivatives of
differentials which give

d(Pdx+Qdy) = −Py dx dy +Qx dx dy.

Then the theorem can be reworded as∫ ∫
D
d(Pdx+Qdy) =

∫
∂D
Pdx+Qdy.

The fundamental theorem of Calculus can also be rephrased in the same language∫
I
d(f) =

∫
∂I
f = f(b)− f(a)

where we interpret the oriented boundary of an interval I = [a, b] as [b]− [a].

Later on we will see two more theorems with the same philosophy.

1.3.1 Uses of Green’s Theorem.

Many results can be deduced using the theorem.

1. If Pdx+Qdy is closed, meaning Qx−Py = 0, then
∫
C Pdx+Qdy = 0. Thus, it proves the result

about the conservative vector fields without finding the potential function.

2. ∫
C
−ydx =

∫
C
xdy =

1

2

∫
C

(xdy − ydx) = the area of the enclosed region D

For example the area inside the ellipse r(t) =< a cos(t), b sin(t) > is easily found by

1

2

∫
C

(xdy − ydx) =
1

2

∫
C
a cos(t)(b cos(t)− b sin(t)(−a sin(t)) dt =

1

2

∫ 2π

0
abdt = πab.

Note how the third formula made the work easier!
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3. Changing the path without changing the integral. Suppose that we have Py = Qx in a region
D around the origin. Then for any simple closed positively oriented piecewise smooth curve C
going around the origin the integral

∫
C Pdx+Qdy is the same.

The idea of the proof is to consider some small circle totally contained inside C and apply the
Green’s theorem to the region between the two curves, using a mild generalization of the theorem.

2 Line Integrals in Space.

If we consider a curve in space lying over a surface, then it can enclose a region of the surface. We now
set up notation for line integrals on such curves and get a generalization of Green’s Theorem known as
Stokes’ Theorem.

2.1 Curl and Div.

We wish to know whether a three dimensional vector field F =< P,Q,R > is conservative, i.e. F =
∇(f) for some f .

We define a vector operation curl F =< Ry − Qz, Pz − Rx, Qx − Py >. We note that this can be
formally understood as a cross product∇×F , where∇ is interpreted as a vector operator< ∂

∂x
, ∂
∂y
, ∂
∂z
>.

It is readily checked that curl ∇(f) = 0 by Clairaut’s theorem in three dimensions.
Thus, curl F = 0 is a necessary condition for F to be a conservative field. In general, it may not be

sufficient, unless our field F is defined with continuous partial derivatives in a simply connected region.
Another useful function is divergence, defined for a vector field F =< P,Q,R > as div F = ∇·F =

Px +Qy +Rz. This is called the divergence of the field F .
It is easily checked (assuming continuous partial derivatives) that ∇ · ∇ × F = div curl F = 0.

Thus, div G = 0 is a necessary condition for a field G to be of the form curl F . 2

The meaning of the Curl and Div If F =< P,Q,R > describes the vector field of the velocity
of a fluid flow, then the field curl F denotes the axis of rotation of the fluid at a given point and the
scalar quantity div F measures the tendency to move away from (diverge) the point.

This idea can be visualized by considering the simplest examples of F .

• If F =< x, 0, 0 > then it is easy to see that the flow from any point (a, b, c) is strictly along the
x-axis, in the positive or negative direction depending on the sign of a. The fact that div F = 1
expresses this nature. If we fix a little sphere around a point, then it can be argued by a suitable
integration that there is net fluid movement in the positive x-direction. curl F = 0 and there is
no rotation.

• If F =< y, 0, 0 >, then curl F =< 0, 0,−1 > suggesting a rotation in a plane parallel to the
xy plane in the clockwise direction. This rotation is caused by the fluid moving faster with the
increasing value of y. There is a simple way to measure this. Choose a clockwise path around a
point, say (0, 1, 0) in this plane by r(t) =< cos(t), 1− sin(t), 0 > as t goes from 0 to 2π. Integrate
our field along this path, i.e. compute∫ 2π

0
F · dr =

∫ 2π

0
(1− sin(t))(− sin(t))dt = π.

2As before, we may ask for the converse, but it leads to more complicated notions of contractible spaces. This is
beyond the scope of our course.
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This integral is called the circulation of the fluid in our field. Along a counterclockwise field, this
would have come out −π and this can be shown to be the value of the curl F times the area
enclosed by our path. The divergence div F = 0, as the net fluid movement across a little sphere
is zero across all lines parallel to the x-axis.

• A similar analysis can be done for F =< z, 0, 0 > to get curl F =< 0, 1, 0 > indicating a rotation
about the y-axis. The divergence is zero for a similar reason.

Another useful function is the Laplacian (∇ · ∇ or shortened to ∇2) which is defined as

div (∇(f)) = ∇2(f) = ∇· < fx, fy, fz >= fxx + fyy + fzz.

Even though we have used a three variable definition, the definition naturally makes sense for any
number of variables.

A function f is said to be harmonic if ∇2(f) = 0.

3 Surface Integrals.

If a surface S is given in parametric form r =< x(u, v), y(u, v), z(u, v) > where (u, v) ∈ D, we define
the integral of a function f(x, y, z) on S by the formula:∫ ∫

S
f(x, y, z) dS =

∫ ∫
D
f(r(u, v))|ru × rv| dA.

However, surfaces don’t usually come with a ready parametrization and it is useful to have a more
general formula handy.

Let the surface S be described by an equation g(x, y, z) = 0, so that we have the basic relation
gxdx+ gydy + gzdz = 0.

It is possible to think of x, y as parameters at a point where gz 6= 0. In this case, taking u = x, v = y,
we see that

ru × rv =< 1, 0,−gx
gz
> × < 0, 1,−gy

gz
>=<

gx
gz
,
gy
gz
, 1 >=

1

gz
∇(g).

Thus, our integral reduces to∫ ∫
S
f(x, y, z) dS =

∫ ∫
D
f |∇(g)| dx dy

|gz|
.

It is easy to see that a similar formula holds when gy 6= 0 and we take x, z as parameters and when
gx 6= 0 we take y, z as parameters.

We define the Fundamental differential on S to be:

ωg =
dx dy

gz
=
dy dz

gx
=
dz dx

gy
.

Now we have a single formula for all cases:∫ ∫
S
f(x, y, z) dS =

∫ ∫
D
f |∇(g)| |ωg|.

Orientable Surface. We note that ∇(g) defines a normal to our surface at all smooth points
(points where ∇(g) is defined and non zero.) Also, it varies continuously if g is continuous. Then such

a surface has a well defined unit normal vector field at all smooth points, namely n = ∇(g)
|∇(g)| .

5



If our surface encloses a bounded solid (like a sphere, then we can even make sense out of an outward
or inward normal.

We now define the surface integral of a vector field F on the surface S by defining it as the integral
of the function F · n = F · ∇(g)

|∇(g)| . Our formula becomes∫ ∫
S
F · n|∇(g)| |ωg| =

∫ ∫
D
F · ∇(g) |ωg|.

For a parametric surface, the formula becomes:∫ ∫
D
F (r(u, v)) · ru × rv dA.

Note that the above formula presumes a certain direction of the unit normal as determined by ∇(g)
or ru × rv. We multiply by −1 if we wish to change the direction.

4 Stokes’ Theorem.

Green’s theorem equates the line integral around a plane curve with the integral on the enclosed region,
which is a flat surface. Stokes’ theorem gives a similar relation for a space curve bounding a surface.
Indeed, the Green’s theorem is but a special case of Stokes’ theorem.

The theorem states: ∫
C
F · dr =

∫ ∫
S

curl F · n dS

where S is an oriented surface enclosed by the curve C and we use the induced orientation on C.
This is best imagined as follows. Assume that you are walking on the curve C such that the chosen

normal points overhead. Then the curve C is positively oriented, if the surface lies on your left hand
side!

Let us further note that if g(x, u, z) = 0 is the equation of the surface, then curl F · n dS =
curl F · ∇g ωg as explained above.

The proof of Stokes’ theorem is usually deduced by cutting up the surface into small enough pieces
so that each piece can be arranged to be parametrized by (x, y) or (y, z) or (z, x). Then the proof
reduces to a plane integral and works as in the Green’s theorem.

The Green’s theorem itself is also established by cutting up the plane region into pieces of type I or
II (i.e. where the double integration is done by vertical or horizontal sections between parallel lines.)

One of the most useful consequences of the Stokes’ Theorem is that it says that if two surfaces share
a common oriented boundary curve, then the integral of a vector field of the form curl F is the same
on both of them.

Then, integrals of such vector fields can be conveniently evaluated by changing the surface to
something more convenient.

Example. Consider the surface S : z = x2 + y2 − 1 below the (x, y)-plane. Let G =< 1, 1, 1 > and
consider

∫ ∫
S G · n dS

It is easily seen that G = curl < z, x, y > the surface integral can be easily evaluated as a line
integral along the boundary curve C :< cos(t), sin(t), 0 > as t goes from 0 to 2π and evaluates to π.

Now the surface can be made a lot more complicated, say z(1 + x4 + x2y2 + y4) = x2 + y2 − 1 and
the corresponding surface integral is quite messy! But we know its value already.

One of the trivial but useful consequences is that the integral of any field of the form curl F on a
closed orientable surface is zero. Thus, the integral of a constant vector field on such a surface is seen
to be zero!
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