# Green's Theorem. 

## Spring 2016

Attendance Quizzes
April 15, 2016

## Quiz 28 Green's Theorem.

Use Green's theorem to calculate the area enclosed by the $x$-axis and the curve $r(t)=<\cos (3 t), \sin (2 t)>$ as $t$ goes from 0 to $\pi / 2$. You should set up the correct integrals and then evaluate the area. You may need the formula $\cos (A) \cos (B)=\frac{1}{2}(\cos (A+B)+\cos (A-B))$.
Answer: If we consider points $P(0,0)$ and $Q(1,0)$, then the boundary curve is the line $P Q$ followed by the curve going from $Q$ to $P$.
We use the integral of $x d y$ on this curve.
Clearly, we get 0 on $P Q$ and on the curve from $Q$ to $P$, we have:

$$
\int_{0}^{\pi / 2} 2 \cos (3 t) \cos (2 t) d t=6 / 5
$$

To get this, we note that the integrand is $\cos (5 t)+\cos (t)$.

