Quiz 14 Using Rank.

Ma322 Fall 2018 Avinash Sathaye

Suppose that A is a matrix such that the linear transformation $L(X)=A X$ maps vectors in \Re^{4} to \Re^{3}.

Answer the following questions.

1. It is possible to decide if L is injective? State your conclusion with a brief explanation.
Answer: A must be of type 3×4 and hence $\operatorname{rank}(A)$ is at most 3 . The equations $A X=0$ are consistent (being homogeneous) and would have at least one free variable, so there are non zero vectors X with $A X=0$.
2. Suppose that $\operatorname{rank}(A)$ is known to be 2 . Then you can deduce that L is not surjective.

Prove this claim.

Answer: The image of the map L is spanned by only two vectors and so cannot contain three independent vectors in \Re^{3}.
3. Write down an example of such an $A=A_{3 \times 4}$ having rank 2. Then exhibit a concrete vector v not in the image of L.
Hint: Try to write down a matrix A so that no row operations are needed for the conclusion!
Answer: $A=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$. It is clear that $v=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$ cannot be of the
form $A X$ since the last row gives an inconsistent system.

