Quiz 15 Vector spaces I.

Ma322 Fall 2018 Avinash Sathaye

Let P_{2} be the vector space consisting of all polynomials in one variable x with real coefficients and degree at most 2.

Answer the following questions.

- Prove that the set $B=\left\{1, x, x^{2}\right\}$ is a subset of P_{2} with three independent vectors.

Answer: By definition of polynomials, $a \cdot 1+b \cdot x+c \cdot x^{2}=0$ iff $a=b=c=0$.)

- Prove that B is a spanning set of P_{2}.

Answer: Again by definition, any polynomial of degree at most two is of the form $a \cdot 1+b \cdot x+c \cdot x^{2}$. So, they form a spanning set.

- Does it follow that $\operatorname{dim}\left(P_{2}\right)=3$? Why?

Answer: Now we know that B is a basis of P_{2}. Hence the number of elements in it, gives the dimension of P_{2}.

- For meditation: Let $f(x), g(x), h(x)$ be three polynomials in P_{2}. Construct a matrix using their coefficients and make tests to determine when $B=(f g h)$ is a basis of P_{2}.
Answer: Write the coefficients as columns and get the 3×3 matrix. Now investigate the columns for the desired properties in \Re^{3}.

