Quiz 15 Vector spaces I.

Ma322 Fall 2018 Avinash Sathaye

Let P_2 be the vector space consisting of all polynomials in one variable x with real coefficients and degree at most 2.

Answer the following questions.

- Prove that the set B = {1, x, x²} is a subset of P₂ with three independent vectors.
 Answer: By definition of polynomials, a · 1 + b · x + c · x² = 0 iff a = b = c = 0.)
- Prove that B is a spanning set of P_2 .

Answer: Again by definition, any polynomial of degree at most two is of the form $a \cdot 1 + b \cdot x + c \cdot x^2$. So, they form a spanning set.

• Does it follow that $\dim(P_2) = 3$? Why?

Answer: Now we know that B is a basis of P_2 . Hence the number of elements in it, gives the dimension of P_2 .

• For meditation: Let f(x), g(x), h(x) be three polynomials in P_2 . Construct a matrix using their coefficients and make tests to determine when $B = (f \ g \ h)$ is a basis of P_2 .

Answer: Write the coefficients as columns and get the 3×3 matrix. Now investigate the columns for the desired properties in \Re^3 .