Quiz 16 Vector spaces II.

Ma322 Fall 2018 Avinash Sathaye

Let $B=\left(\begin{array}{ll}1 x \sin (x)\end{array}\right)$ be the usual functions defined on \Re.
Let $V=\operatorname{Span}(B)$. Answer the following questions.

1. Write down at least two members of V which are not in B.

Answer: $1-x, x+2 \sin (x), \sin (x)+\pi$, etc.
2. Prove that B is a linearly independent set of vectors, V by following these steps.
(a) Suppose that $a+b x+c \sin (x)=0$ for some real numbers a, b, c. Write down the three equations in a, b, c by putting $x=0, x=\pi / 2, x=\pi$.
Answer: $a+b(0)+c(0)=0$, i.e. $a=0 . a+\pi / 2 b+c(1)=0$ and $a+\pi b+c(0)=0$.
(b) Show that $a=b=c=0$ is the only solution of the three equations.

Answer: Using $a=0$ the last equation gives $b=0$. Using the second equation deduce $c=0$.
(c) Briefly explain why you are done! Answer: The above calculations show independence by definition.
3. Using the definition of a basis, show that B is a basis of V and hence V has dimension 3.

Answer: Since the span of B is defined as V, B is its basis. Hence the dimension of V is 3 .
4. For meditation: Verify that each member of B is a solution to $D^{4}(y)+D^{2}(y)=0$ where $D=\frac{d}{d x}$ is the usual derivative w.r.t. x. The set W of all solutions of this equation is actually of dimension 4 . Can you find a fourth element of its basis?
Answer: $\cos (x)$ also satisfies the equation. How would you prove independence? There is another method also. Write down a linear combination with coefficients a, b, c, d. Since the resulting function

