Quiz 18 Change of Coordinates.

Ma322 Fall 2018 Avinash Sathaye

1. If V and W are vector spaces over a field K, complete the following definition:

A function $T: V \to W$ is said to be a linear transformation if:

Answer: For all $v_1, v_2 \in V$ and $c \in K$, we have $L(v_1+v_2) = L(v_1)+L(v_2)$ and L(cv) = cL(v).

2. Prove that the function $L: P_2 \to P_2$ defined by L(p(x)) = p''(x) is a linear transformation.

Answer: By rules of differentiation, we get L(p+q) = (p+q)'' = p''+q'' = L(p) + L(q) and L(cp) = (cp)'' = cp'' = cL(p).

3. Determine the $Ker(L) = \{p(x) \in P_2 \mid L(p(x)) = 0.\}$. Give a basis of the Ker(L) and its dimension.

Answer: We know that all polynomials with second derivative zero are linear polynomials, i.e. p(x) = a + bx for $a, b \in \Re$. Thus $Ker(L) = Span\{1, x\}$. The basis is (1, x) and dimension is 2.

- 4. Determine the Image(L). Give a basis of Image(L) and its dimension. **Answer:** If we start with a polynomial of degree at most 2, then its second derivative is a constant. For x^2 , the second derivative is $2 \neq 0$. Hence
 - $Image(L) = Span\{1\}$ and has dimension 1 with basis 1. Notice the rela-

tion: $\dim(P_2) = 3 = \dim(Ker(L)) + \dim(Image(L)).$

5. For meditation: Think of the Fundamental Theorem of Vector Spaces which says:

Suppose that V is a finite dimensional space and we have a linear transformation $L: V \to W$ where W is some vector space. Then $\dim(V) = \dim(Ker(L)) + \dim(Image(L))$. Think why this might be true, at least in the usual euclidean spaces \Re^n .

Answer: We will discuss this in class, of course.