Quiz 19 Change of Coordinates.

Ma322 Fall 2018 Avinash Sathaye

Recall that a standard basis of \Re^{2} is given by $e_{1}=\binom{1}{0}$ and $e_{2}=\binom{0}{1}$.
Let $v_{1}=\binom{4}{3}$ and $v_{2}=\binom{3}{2}$.
Answer the following questions.

- Let $B=\left(\begin{array}{ll}e_{1} & e_{2}\end{array}\right)$ and $C=\left(\begin{array}{ll}v_{1} & v_{2}\end{array}\right)$. Determine the matrix P such that $C=B P$. Briefly explain why C is a basis of \Re^{2}.
Useful comment: Recall that for any vector v, this gives the formula $P[v]_{B}=$ $[v]_{C}$ and hence we can denote P as P_{C}^{B} to help us remember the formula.
Answer: $\operatorname{det}(P)=\operatorname{det}\left(\left(\begin{array}{ll}4 & 3 \\ 3 & 2\end{array}\right)\right)=-1 \neq 0$. So P has rank 2 .
- Define a linear transformation $L: \Re^{2} \rightarrow \Re^{2}$ by setting $L\left(v_{1}\right)=5 v_{1}$ and $L\left(v_{2}\right)=-5 v_{2}$. Using linearity of L determine the formula for $L\left(a v_{1}+b v_{2}\right)$ as a combination of v_{1}, v_{2}, where a, b are arbitrary scalars.
Hint: For example $L\left(2 v_{1}+3 v_{2}\right)=2\left(5 v_{1}\right)+3\left(-5 v_{2}\right)=10 v_{1}-15 v_{2}$.
Answer: $L\left(a v_{1}+b v_{2}\right)=5 a v_{1}-5 b v_{2}$.
- Use the above to determine $\mathcal{M}(L)_{C}^{C}=H$, the matrix identified by $[L(v)]_{C}=$ $H[v]_{C} \cdot\left({ }^{*}\right)$ This was not covered before the quiz, so dropped.
Answer: $H=\left(\begin{array}{rr}5 & 0 \\ 0 & -5\end{array}\right)$.
- For meditation: The above formula for the matrix of transformation can be changed relative to the bases B, B by using the change of basis formula from the first question to yield: $P[L(v)]_{C}=P H[v]_{C}=P H P^{-1} P[v]_{C}$. This says that $L(v)_{B}=\left(P H P^{-1}\right)[v]_{B}$. This shows how the matrix of transformation changes: namely $P \mathcal{M}(L)_{C}^{C} P^{-1}=\mathcal{M}(L)_{B}^{B}$. Often, we start with the more complicated $\mathcal{M}(L)_{B}^{B}$, since it is naturally given and try to find a suitable P to get a much more useful form H.

