Quiz 20 Fundamental Theorem.

Ma322 Fall 2018 Avinash Sathaye

Fundamental Theorem.

Suppose that we have a linear transformation $L: V \rightarrow W$ where V has finite dimension $n>0$. Let $H_{1}=\operatorname{Ker}(L)$ be the subspace of V and $H_{2}=\operatorname{Image}(L)$ the subspace of W. Then

$$
\operatorname{dim}(V)=\operatorname{dim}\left(H_{1}\right)+\operatorname{dim}\left(H_{2}\right) .
$$

Verify the theorem for the following example.

1. Let $V=\operatorname{Span}\{\sin (x), \sin (2 x), \cos (x), \cos (2 x)\}$ and $W=V$. Consider $L: V \rightarrow W$ defined by $L(f(x))=f^{\prime \prime}(x)+4 f(x)$. Determine $\operatorname{Ker}(L)$ and Image (L).
Answer: $\operatorname{Ker}(L)=\operatorname{Span}\{\sin (2 x), \cos (2 x)\}$ and $\operatorname{Image}(L)=\operatorname{Span}\{\sin (x), \cos (x)\}$.
2. Determine the dimensions of $\operatorname{Ker}(L)$ and $\operatorname{Image}(L)$.

Answer: Since each has 2 generators, the dimension is at most 2 . But they are linear independent since the ratios of the two generators are $\tan (2 x)$ and $\tan (x)$ are not constants.
3. Explain why $\operatorname{dim}(V)=4$. You may not have a complete proof during the quiz, but it should at least be done at home.
Answer: Long way:Make a linear combinations of the four generators and get four equations by plugging in special values for x. Deduce that the resulting linear equations have only trivial solutions.
shortcut: We can use the fundamental theorem and deduce that the di-
mension of V is $2+2=4$.
4. For meditation: Think how one may be able to prove

$$
\sin (x), \cos (x), \sin (2 x), \cos (2 x), \cdots, \sin (n x), \cos (n x)
$$

are independent for all integers $n \geq 1$. This will need a bit deeper meditation!

