Quiz 21 Spanning sets.

Ma322 Fall 2018 Avinash Sathaye

We are given that a vector space V over a field K is spanned by a vector sequence $H = (u_1 \ u_2 \ u_3 \ u_4)$. Answer the following questions.

What property should the vectors in H have if H is a basis for V?
Answer: The vectors in H must be linearly independent.
For all questions below, assume that H is a sequence of linearly independent

vectors.

2. Determine if the vectors $B = (u_1 + u_2 - u_3 \ u_3 + u_4 \ u_3)$ are linearly independent. Justify your answer.

Answer: Yes, they are. Their span is the same as the span of $\{u_1 + u_2, u_3, u_4\}$ and this is evidently an independent set. To prove this claim, note that u_3 is already in the span and since $u_3 + u_4$ is also in the span, it follows that u_4 is also in the span. Now from the first vector, we deduce that $u_1 + u_2$ is in the span.

- 3. Let W = Span(B). Decide if V = W. Justify your answer. Answer: No! W has dimension $3 < 4 = \dim(V)$.
- 4. Find one vector v in V such v together with vectors in B also span V.

Answer: We can take $v = u_1$ or $v = u_2$ or any combination of u_1, u_2 which is not a multiple of $u_1 + u_2$. Using v we can get both u_1, u_2 in our span and thus the span is V itself.

5. For meditation: Practice how a spanning set can be whittled down to a basis and an independent set can be enlarged to a basis. Think this out: If $P \subset O$ are sets of vectors, then Q is independent implies P is independent. On the other hand, if $Q \subset Span(P)$, then Span(Q) = Span(P).