## Quiz 21 Spanning sets.

Ma322 Fall 2018 Avinash Sathaye

We are given that a vector space $V$ over a field $K$ is spanned by a vector sequence $H=\left(\begin{array}{llll}u_{1} & u_{2} & u_{3} & u_{4}\end{array}\right)$.

Answer the following questions.

1. What property should the vectors in $H$ have if $H$ is a basis for $V$ ?

Answer: The vectors in $H$ must be linearly independent.
For all questions below, assume that $H$ is a sequence of linearly independent vectors.
2. Determine if the vectors $B=\left(u_{1}+u_{2}-u_{3} u_{3}+u_{4} u_{3}\right)$ are linearly independent. Justify your answer.
Answer: Yes, they are. Their span is the same as the span of $\left\{u_{1}+\right.$ $\left.u_{2}, u_{3}, u_{4}\right\}$ and this is evidently an independent set. To prove this claim, note that $u_{3}$ is already in the span and since $u_{3}+u_{4}$ is also in the span, it follows that $u_{4}$ is also in the span. Now from the first vector, we deduce that $u_{1}+u_{2}$ is in the span.
3. Let $W=\operatorname{Span}(B)$. Decide if $V=W$. Justify your answer. Answer: No! $W$ has dimension $3<4=\operatorname{dim}(V)$.
4. Find one vector $v$ in $V$ such $v$ together with vectors in $B$ also span $V$.

Answer: We can take $v=u_{1}$ or $v=u_{2}$ or any combination of $u_{1}, u_{2}$ which is not a multiple of $u_{1}+u_{2}$. Using $v$ we can get both $u_{1}, u_{2}$ in our span and thus the span is $V$ itself.
5. For meditation: Practice how a spanning set can be whittled down to a basis and an indenendent set can be enlaroed to a hacic. Think thic oult. If $P \subset Q$
are sets of vectors, then $Q$ is independent implies $P$ is independent. On the other hand, if $Q \subset \operatorname{Span}(P)$, then $\operatorname{Span}(Q)=\operatorname{Span}(P)$.

