Quiz 22 Extending Bases.

Ma322 Fall 2018 Avinash Sathaye

We are given that a vector space V over a field K has a basis $H=\left(\begin{array}{llll}u_{1} & u_{2} & u_{3} & u_{4}\end{array}\right)$. Answer the following questions.

1. Let $w_{1}=u_{1}+u_{2}+u_{3}$ and $w_{2}=u_{2}+u_{3}+u_{4}$. Choose two vectors w_{3} and w_{4} such that $B=\left(\begin{array}{llll}w_{1} & w_{2} & w_{3} & w_{4}\end{array}\right)$ is also a basis of V. Suggestion: Try to find the simplest vectors which will span V. Then use a known theorem.
Answer: Take $w_{3}=u_{2}$ and $w_{4}=u_{3}$. Then $u_{1}=w_{1}-w_{3}-w_{4}$ and $u_{4}=w_{2}-w_{3}-w_{4}$. Hence they span V and since dimension of V is 4 , they are a basis.
2. Write $H=B P$ and hence deduce $[H]_{B}=\left(\begin{array}{lll}\left.u_{1}\right]_{B} & {\left[u_{2}\right]_{B}} & {\left[u_{3}\right]_{B}}\end{array}\left[_{4}\right]_{B}\right)$.

Answer: The answers depend on the choice of w_{2}, w_{3}. The coordinate vectors are shown above for my choice.
3. Also find $[B]_{H}$. Hint: This is easier to find and useful for the above question.

Answer: The expressions of the w-vectors gives $B=H Q$ for some matrix Q. The columns of Q are the desired coordinate vectors. The above P is simply Q^{-1}.
4. For meditation: Think about these statements: If $B=\left(v_{1} v_{2} \cdots v_{n}\right)$ is a basis of a vector space V, then the vectors $\left(v_{1}, v_{2}, \cdots, v_{n}, v\right)$ are necessarily linearly dependent for every $v \in V$. Moreover we can drop exactly one of v_{i} from $i=1, \cdots, n$ such that the resulting sequence is a new basis for V. The one vector being dropped may not be unique.
Answer: This is called the exchange principle.

