Quiz 22 Extending Bases.

Ma322 Fall 2018 Avinash Sathaye

We are given that a vector space V over a field K has a basis $H = (u_1 \ u_2 \ u_3 \ u_4)$. Answer the following questions.

1. Let $w_1 = u_1 + u_2 + u_3$ and $w_2 = u_2 + u_3 + u_4$. Choose two vectors w_3 and w_4 such that $B = \begin{pmatrix} w_1 & w_2 & w_3 & w_4 \end{pmatrix}$ is also a basis of V. Suggestion: Try to find the simplest vectors which will span V. Then use a known theorem. **Answer:** Take $w_3 = u_2$ and $w_4 = u_3$. Then $u_1 = w_1 - w_3 - w_4$ and

Answer. Take $w_3 = u_2$ and $w_4 = u_3$. Then $u_1 = w_1 - w_3 - w_4$ and $u_4 = w_2 - w_3 - w_4$. Hence they span V and since dimension of V is 4, they are a basis.

- 2. Write H = BP and hence deduce $[H]_B = ([u_1]_B [u_2]_B [u_3]_B [u_4]_B)$. **Answer:** The answers depend on the choice of w_2, w_3 . The coordinate vectors are shown above for my choice.
- 3. Also find $[B]_{H}$. Hint: This is easier to find and useful for the above question. **Answer:** The expressions of the *w*-vectors gives B = HQ for some matrix Q. The columns of Q are the desired coordinate vectors. The above P is simply Q^{-1} .
- 4. For meditation: Think about these statements: If $B = (v_1 \ v_2 \ \cdots v_n)$ is a basis of a vector space V, then the vectors $(v_1, v_2, \cdots, v_n, v)$ are necessarily linearly dependent for every $v \in V$. Moreover we can drop exactly one of v_i from $i = 1, \cdots, n$ such that the resulting sequence is a new basis for V. The one vector being dropped may not be unique.

Answer: This is called the exchange principle.