Quiz 23 Eigenvectors and eigenvalues.

Ma322 Fall 2018 Avinash Sathaye

Consider a matrix $A=\left(\begin{array}{rr}3 & 5 \\ 4 & -5\end{array}\right)$.
Answer the following questions.

1. Determine the characteristic polynomial $P(t)=\operatorname{det}(A-t I)$ for A.

Answer: Use the simple formula for a 2×2 matrix, namely $P(t)=$ $t^{2}-(3-5) t+((3)(-5)-(5)(4))=t^{2}+2 t-35$.
2. Determine all the eigenvalues of A, i.e. determine all the roots of $P(t)$.

Answer: $P(t)=(t+7)(t-5)$ so the roots are $t=-7, t=5$.
3. For each eigenvalue $t=s$, find an eigenvector v_{s} such that $v_{s} \neq 0$ and $A v_{s}=s v_{s}$.
Answer: For $t=-7$ find a basis for $\operatorname{Nul}(A+7 I)=\operatorname{Nul}\left(\left(\begin{array}{rr}10 & 5 \\ 4 & 2\end{array}\right)\right.$ and an easily guessed answer is $\binom{1}{-2}$. Similarly, for the value $t=5$, we get an answer: $\binom{5}{2}$.
4. For meditation: If $P(t)$ is the characteristic polynomial of a matrix A, the the famous Cayley Hamilton theorem says that $P(A)=0$. Test it for the above matrix and others square matrices.

Answer: What could be a proof?

