Quiz 24 Eigenvectors and eigenvalues II.

Ma322 Fall 2018 Avinash Sathaye

Let $P=\left(\begin{array}{ll}v_{1} & v_{2}\end{array}\right)$ be a 2×2 matrix whose columns are $v_{1}=\binom{2}{3}$ and $v_{2}=\binom{3}{4}$.
Also let A denote a 2×2 matrix.
Answer the following questions.

1. Write down the condition that v_{1} is an eigenvector of A belonging to the eigenvalue $1 / 3$.
Answer: $A v_{1}=\frac{1}{3} v_{1}$ or $A\binom{2}{3}=\frac{1}{3}\binom{2}{3}$.
2. Write down the condition that v_{2} is an eigenvector of A belonging to the eigenvalue $-1 / 2$.
Answer: $A v_{2}=-\frac{1}{2} v_{2}$ or $A\binom{3}{4}=-\frac{1}{2}\binom{3}{4}$.
3. Using the conditions, determine a diagonal matrix D such that $A P=P D$. Deduce the formula for A.
Answer: $D=\left(\begin{array}{rr}\frac{1}{3} & 0 \\ 0 & -\frac{1}{2}\end{array}\right)$ works. Then $A=P D P^{-1}$.
4. For meditation: By multiplying the matrices of the formula, it is possible to get the explicit matrix A. When we consider the linear transformation $L(X)=A X$ then we can effectively calculate the sequence of vectors $w, A w, A^{2} w, \cdots, A^{n} w, \cdots$. It is often important to decide if this sequence has a limiting vector.

Answer: Try it on the A above.

