Quiz 25 Using Eigenvectors.

Ma322 Fall 2018 Avinash Sathaye

Let $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 5\end{array}\right)$
Answer the following questions.

1. Determine all the eigenvalues of A. No calculations are needed.

Answer: The characteristic polynomial shall be clearly $-(\lambda-1)^{2}(\lambda-5)$, so the values are 1,5 .
2. For each of the eigenvalues, determine the dimension of the corresponding eigenspaces.
Answer: Both are 1-dimensional, since the corresponding ranks of $A-\lambda I$ are easily seen to be 2 each.
3. Does the above calculation show that A is diagonalizable? Why?

Answer: Sum of the eigenspace dimensions is only 2 which is less than 3 the dimension of the column space of A. So, no!
4. For meditation: What will happen if we change the entries $2,3,4$ into zeros? What can we say if an $n \times n$ matrix has n distinct eigenvalues? Is it diagonalizable or it may fail to be diagonalizable? What are the possible values for the sum of dimensions of eigenspaces of an $n \times n$ matrix?
Answer: Try various examples of triangular matrices as above and see what happens.

