Quiz 26 Complex Eigenvalues.

Ma322 Fall 2018 Avinash Sathaye

Let $A=\left(\begin{array}{rr}1 & 3 \\ -1 & -2\end{array}\right)$
Answer the following questions.

1. Determine the eigenvalues of A, They are not real!

Answer: The characteristic polynomial is $\lambda^{2}+\lambda+1$, so the e-values are $\frac{-1 \pm \sqrt{3}}{2}$.
2. Choose one of the e-values, say $p+i q$ and determine a corresponding e-vector written as $v_{1}+i v_{2}$. Explicitly write down your choice.
Answer: e-value is $\frac{-1}{2}+i \frac{\sqrt{3}}{2}$ and the corresponding e-vector is $\binom{3}{\frac{-3}{2}}+$ $i\binom{0}{\frac{\sqrt{3}}{2}}$.
3. Now we can create the standard form M from the matrix $A=P M P^{-1}$ where P is the matrix with columns v_{1}, v_{2} respectively and M is assembled from $p+i q$ by a standard formula.
Write these out.

Answer: $\quad P=\left[\begin{array}{cc}3 & 0 \\ -3 / 2 & -1 / 2 \sqrt{3}\end{array}\right]$ and $M=\left[\begin{array}{cc}-1 / 2 & -1 / 2 \sqrt{3} \\ 1 / 2 \sqrt{3} & -1 / 2\end{array}\right]$.
4. For meditation:Canonical Forms of linear transformations. The above work is a sample of how to classify infinitely many possible matrices of linear transformations into a finite number of possible types and then produce a corresponding canonical form for each type. For transformations on two dimensional real spaces, there are only three types, two real roots, two cases of a real double root and complex conjugate roots. Study what happens in higher dimensions.
Answer: Google or ask!

