Quiz 27 Difference Equations

Ma322 Fall 2018 Avinash Sathaye

Let $v_{1}=\binom{2}{1}$ and $v_{2}=\binom{5}{3}$ and let $P=\left(\begin{array}{ll}v_{1} & v_{2}\end{array}\right)$.
Further assume that A is a 2×2 matrix with v_{1}, v_{2} as e-vectors with e-values $1,0.3$ respectively.

Answer the following questions.

1. Briefly explain why A must be equal to $P D P^{-1}$ where $D=\left(\begin{array}{rr}1 & 0 \\ 0 & 0.3\end{array}\right)$.

Answer: By definition $A P=P D$. Result follows after right multiplication by P^{-1}.
2. Write $e_{1}=\binom{1}{0}=c_{1} v_{1}+c_{2} v_{2}$. In other words $\binom{c_{1}}{c_{2}}=\left[e_{1}\right]_{B}$ where $B=\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]$. Deduce the formula for $A^{n} e_{1}$ as an explicit expression in n.
Answer: The first answer is the first column of P^{-1}, namely $\binom{3}{-1}$.
Then we get: $A^{n} e_{1}=c_{1}(1)^{n} v_{1}+c_{2}(0.3)^{n} v_{2}=3\binom{2}{1}+2(0.3)^{n}\binom{5}{3}$.
3. Determine the limit: $\lim _{n \rightarrow \infty} A^{n} e_{1}$.

Answer: The answer is $3 v_{1}=\binom{6}{2}$ since the second part goes to zero.
4. For meditation: In general, an $m \times m$ matrix A gives a linear transformation from \Re^{m} to \Re^{m}. It can be investigated by starting with a vector w_{0} and iteratively calculating $w_{n}=A^{n} w_{0}$. Such sequences are called dynamical systems. The sequence $\left(w_{n}\right)$ can be effectively understood if w_{0} can be expressed as a combination of e-vectors. In particular the resulting limit, if any, has significant applications in dynamical systems. These systems appear in diverse fields including Biology, Computer Science, Engineering, Social Sciences and so on.

Answer: Google or ask!

