Quiz 28 Orthogonal Bases.

Ma322 Fall 2018 Avinash Sathaye

Let v_{1}, v_{2}, v_{3} be the columns of the matrix $A=\left[\begin{array}{rrr}4 & 2 & 2 \\ 2 & -4 & 1 \\ 1 & 0 & -10\end{array}\right]$.
Answer the following questions.

1. Calculate the I.P. matrix $A^{T} A$ and briefly explain why the three vectors are mutually orthogonal. Why is $B=\left(\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right)$ a basis of \Re^{3} ?
Answer: We get $A^{T} A=\left[\begin{array}{ccc}21 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 105\end{array}\right]$. Since this is a diagonal matrix, our vectors are orthogonal. They form a basis since they are orthogonal and non zero.
2. Use above to determine the coordinate vector $[v]_{B}$ where $v=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.

Answer: The three coordinates of v are in order $7 / 21,-2 / 20,7 / 105$. The easiest way to calculate is to evaluate $v^{T} A=\left(\begin{array}{lll}7 & -2 & 7\end{array}\right)$ and divide by the diagonal entries of the I.P. matrix above.
3. For meditation: Orthogonal bases are very nice, since it is easy to determine coordinate vectors in such bases. So, a natural question is how to convert a given basis (or even a spanning set) into an orthogonal set of vectors by simple row operations. The process is called the GramSchmidt algorithm, but we present a much simpler version not in the book!

