Quiz 29 Inner Products.

Ma322 Fall 2018 Avinash Sathaye

Let V be a vector space with basis $B=\left(\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right)$.
Also suppose that V has the following inner product matrix relative to B :

$$
\left[\begin{array}{rrr}
1 & 2 & 0 \\
2 & 5 & 3 \\
0 & 3 & 11
\end{array}\right] .
$$

Answer the following questions.

1. Determine the inner product $\left\langle v_{1}, v_{2}+a v_{1}\right\rangle$ where a is a parameter. Then choose a value of a for which $v_{2}+a v_{1}$ is perpendicular to v_{1}.

Set $w_{2}=v_{2}+a v_{1}$ using your value of a.
Answer: The inner product is $2+a(1)$ and hence $a=-2$.
2. Determine the inner product $\left\langle w_{2}, v_{3}+b w_{2}\right\rangle$ where b is a parameter. Then determine a value of b for which $v_{3}+b w_{2}$ is perpendicular to w_{2}.
Set $w_{3}=v_{3}+b w_{2}$ using your value of b.
Answer: The inner product is $3+b(1)$ and hence $b=-3$.
3. For meditation: It can be verified that v_{1}, w_{2}, w_{3} form an orthogonal set of vectors. They are almost orthonormal, except that w_{3} is not a unit vector. This is the main idea of the GramSchmidt algorithm. We present a process similar to Gauss-elimination to streamline the work.

Answer: See notes and learn in class.

