Quiz 29 Inner Products.

Ma322 Fall 2018 Avinash Sathaye

Let V be a vector space with basis $B = (v_1 \ v_2 \ v_3)$. Also suppose that V has the following inner product matrix relative to B:

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 5 & 3 \\ 0 & 3 & 11 \end{bmatrix}$$

Answer the following questions.

1. Determine the inner product $\langle v_1, v_2 + av_1 \rangle$ where a is a parameter. Then choose a value of a for which $v_2 + av_1$ is perpendicular to v_1 .

Set $w_2 = v_2 + av_1$ using your value of a.

Answer: The inner product is 2 + a(1) and hence a = -2.

Determine the inner product < w₂, v₃+bw₂ > where b is a parameter. Then determine a value of b for which v₃ + bw₂ is perpendicular to w₂.
Set w₃ = v₃ + bw₂ using your value of b.

Answer: The inner product is 3 + b(1) and hence b = -3.

3. For meditation: It can be verified that v_1, w_2, w_3 form an orthogonal set of vectors. They are almost orthonormal, except that w_3 is not a unit vector. This is the main idea of the GramSchmidt algorithm. We present a process similar to Gauss-elimination to streamline the work.

Answer: See notes and learn in class.