Quiz 7 Linear Transformation.

Ma322 Fall 2018 Avinash Sathaye

September 10, 2018

Consider a linear transformation $T: \Re^{3} \rightarrow \Re^{2}$ such that the image of a vector $v \in \Re^{3}$ is a vector $w \in \Re^{2}$ which is defined as the column with top entry being the average of the top two entries of v and the bottom entry being the average of the bottom two entries of v.

For example $T\left(\left(\begin{array}{l}3 \\ 5 \\ 7\end{array}\right)\right)=\binom{4}{6}$
Answer the following questions.

- Determine the images by T of the standard basis vectors e_{1}, e_{2}, e_{3} of \Re^{3}. (You also know these as $\mathbf{i}, \mathbf{j}, \mathbf{k}$.).
Answer: The images are $T\left(e_{1}\right)=\binom{1 / 2}{0}, T\left(e_{2}\right)=\binom{1 / 2}{1 / 2}, T\left(e_{3}\right)=$ $\binom{0}{1 / 2}$.
- Using the above, or otherwise, determine the matrix A of the transformation T, i.e. find the matrix A such that $T(X)=A X$ for any $X \in \Re^{3}$.
Answer: Hence $A=\left(\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 0 & 1 / 2 & 1 / 2\end{array}\right)$.
- For meditation later. Without further calculations, you can decide that the transformation T is not injective (i.e. not one to one).

Similarly with a little thought, you can deduce that the transformation T is surjective (i.e. onto).
Think about why.
Answer: Recall that the map T_{A} defined by $X \rightarrow A X$ is surjective iff $\operatorname{rank}(A)=\operatorname{rownum}(A)$ and injective iff $\operatorname{rank}(A)=\operatorname{colnum}(A)$. Since $\operatorname{rank}(A)$ is clearly 2, the results follow

