
MA322 Determinants

Quick Summary.

1. Given any square matrix A = (aij), we define its determinant variously denoted as
det(A) or |A| or ||A||. The definition needs some auxiliary terms.

• First for any (i, j) such that aij is defined, we define the index of (i, j) to be
ind(i, j) = (−1)(i+j).

• Further we define the minor of (i, j) to be minor(A, i, j) which is the subdeterminant
of A obtained by throwing away the i-th row and the j-th column.

• We also define the cofactor of (i, j) to be cofactor(A, i, j) = ind(i, j)minor(A, i, j).

• Then the determinant |A| can be computed as
∑
aijcofactor(A, i, j) where the sum

is taken over all entries aij coming from any chosen row or column.

2. The value of the determinant gets multiplied by k if all entries in a single row or column
are multiplied by k.

3. The value of the determinant gets multiplied by −1, if a single exchange of two rows or
two columns is carried out. For more complicated permutations, we multiply by the sign
of the permutation.

4. The value of the determinant is unchanged if we add a multiple of one row to another.
Similar result holds for columns.

5. The value of a determinant is 0 if some row or column consists of zero entries only! (This
follows from the definition.)

6. The value of a lower triangular determinant is equal to the product of its diagonal entries.
Ditto for upper triangular. In general, this is how determinants are computed: reduce
the determinant to upper or lower triangular form and then evaluate the product of the
diagonal entries. If permutations are used along the way, then suitable sign is attached to
the answer. Sometimes, an expansion along a suitable row/column is also used to reduce
the work.

7. There is a more general expansion, the so-called Laplace expansion, which works with
several rows (or columns) at once, instead of the single row (or column) as in the definition.

8. The adjoint of a matrix A is a matrix denoted by Aadj whose (i, j)-th entry is equal to
cofactor(A, j, i). Do notice the switch in the order! The adjoint satisfies the identity

AAadj = AadjA = |A|I.

This lets us write the inverse of A as Aadj/|A|. Of course it exists iff |A| 6= 0.

We often use the notation adj(A) in place of Aadj.

9. For a general matrix M its rank rank(M) is defined to be the largest number r such
that M has a nonzero subdeterminant of size r. Thus a square n× n matrix is invertible
iff its rank is n. Rank of a matrix is obviously less than or equal to its rownum as well as
colnum.



10. In general, the equations AX = B are solvable iff rank(A) = rank(A|B). Here A|B
stands for the augmented matrix. Obviously, if rank(A) = rownum(A) then AX = B is
solvable for all B. The converse is true too!

11. Cramer’s Rule. If we wish to solve a system AX = B where A is a square n×n matrix
we proceed thus.

Define a convenient notation: A(v, i) which is obtained from A by swapping the i-th
column of A with the column v.

We claim that when AX = B, then det(A)Xi = det(A,B, i). The proof can be seen
as follows. Consider adj(A)AX = adj(A)B. Since adj(A)A = det(A)I by comparing
i-th row entries on both sides, we deduce that det(A)Xi = Row(adj(A), i)B. If we recall
the definition of the adjoint, we know that the i-th row of adj(A) gives the sequence of
cofactors of the i-th column of A. Thus the RHS is nothing but the det(A(B, i)).

• Assume det(A) 6= 0. Then the above calculation gives a formula for the solution,

namely Xi = det(A,B,i)
det(A)

. This is the Cramer’s rule.

• If det(A) = 0 but one of det(A(B, i)) is not zero, then we get that the system is
inconsistent.

• If det(A) = 0 and det(A(B, i)) = 0 for all i, then it can be seen that one of the
equations can be dropped (being dependent on the others ) and one of the variables
becomes free. Moving the free variables entries to the RHS (and treating them as
constants) we reduce the problem to a smaller sized determinant!

Example: Consider the system AX = B where A =

 1 1 3
2 1 4
4 3 10

 and B = −2
4
0

. We check that det(A) = 0 and all det(A(B, i)) = 0. In fact we see

that the third equation is simply the sum of the second equation with twice the first.
So, we drop it and see if some pair of variables (corresponding to a pair of columns)

give a nonzero 2×2 determinant. We see that

(
1 1
2 1

)
has a nonzero determinant,

so the (remaining) third variable (say X3 ) can be free. Thus we get a new pair of

equations PY = Q where P =

(
1 1
2 1

)
, Y =

(
X1

X2

)
and Q =

(
−2− 3X3

4− 4X3

)
.

This can now be solved by the above rule, leaving X3 free.
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Theory behind Determinants.
After having learned how to compute a determinant of a square matrix, we now discuss the

basic idea behind the notion of determinants. A determinant is a number associated with a
sequence of n vectors in <n. It is supposed to help us determine the various properties of the
geometric object described by these vectors.

Thus, in <2 consider two vectors which can be thought of as two arrows coming out from the
origin. They define a parallelogram. If one of the vectors is simply a multiple of the other, then

the parallelogram collapses to a line. If we take the two vectors v1 =

(
a
b

)
and v2 =

(
c
d

)
,

then we can form the determinant

det(v1, v2) = det(

(
a c
b d

)
= ad− bc = ∆ say.

With some geometric calculations, it is easy to establish that |∆| gives the area of the
parallelogram and moreover, the sign of ∆ even gives us a measure of the angle from v1 to v2.

Here is the calculation. Using the usual idea of polar coordinates, we can write

v1 =

(
a
b

)
= r1

(
cos(θ1)
sin(θ1)

)
where r1 =

√
a2 + b2

and θ1 is the angle made by v1 with the x-axis measured counterclockwise.
Similarly, we write

v2 = r2

(
cos(θ2)
sin(θ2)

)
where r2 =

√
c2 + d2

and θ2 is the angle made by v2 with the x-axis measured counterclockwise.
Then we have

∆ = r1r2 (cos(θ1) sin(θ2)− sin(θ1) cos(θ2)) = r1r2 sin(θ)

where θ = θ2 − θ1 which is the angle measured from v1 to v2 counterclockwise.
Thus the determinant gives the signed area of the parallelogram constructed from v1 towards

v2. It also lets us decide if the vectors are linearly dependent. We note that for dependent
vectors, the angle θ is either 0 or π. In either case sin(θ) = 0. Thus ∆ = det(v1, v2) = 0 iff
v1, v2 are linearly dependent. 1

We also note three natural properties enjoyed by these determinants:

1. If a vector is scaled by multiplying by a constant p then the determinant also gets multi-
plied by the same p.

2. If the vectors are swapped, the determinant gets multiplied by −1.

3. If a vector w is equal to w1 + w2, then

det(w, v) = det(w1, v) + det(w2, v).

This is easily checked from the formula and it can also be geometrically verified for the
areas of parallelograms.

1We have not paid careful attention to the zero vector in this analysis. Fortunately, when one of the two
vectors is zero, then the vectors are clearly linearly dependent and also the det(v1, v2) = 0. Thus, our conclusion
is easily verified!
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We can appeal to the geometric argument in three space <3 as well. But in higher di-
mensions, we don’t have a preconceived idea of “volumes”. We therefore take a clue from the
algebraic calculations and define the n-dimensional determinant as follows.

Axioms of determinants.

1. Given any ordered n-tuple v1, v2, · · · , vn in <n the expression det(v1, v2, · · · , vn) shall be
a well defined real number. Thus det is a function from n-tuples of vectors to <.

2. Alternating property. This function shall be an alternating function. This means, if
any two vectors vi, vj are exchanged, then the value of the determinant shall be multiplied
by −1.

3. Linearity. The determinant shall be a linear function of each of its arguments v1, v2, · · · , vn.
This means:

det(w1 + w2, v2, · · · , vn) = det(w1, v2, · · · , vn) + det(w2, v2, · · · , vn)

and
det(kv1, v2, · · · , vn) = k det(v1, v2, · · · , vn) for any k ∈ <.

Similar conditions hold for each of the n arguments.2

4. If v1, v2, vn are the unit vectors, i.e. the matrix with columns v1, v2, · · · vn in order gives
the identity matrix In, then det(v1, v2, · · · , vn) = 1.

Outline of the argument.
It can be shown that subject to these conditions, there exists a unique determinant function.

Moreover, it satisfies all the properties that we informally asserted.
Here is a sketch of the argument.

1. We prove the result by induction on the size n of the determinant.

Our inductive statement is:

Let A be the matrix formed by the vectors v1, v2, · · · , vn as columns. We note that the
entries of v1 are A(1, 1), A(2, 1), · · · , A(n, 1).

For any i = 1, 2, · · ·n consider vectors wi
2, w

i
3, · · · , wi

n in <n−1 obtained by dropping the
i-th entry from each of the n− 1 vectors v2, v3, · · · , vn.

Then

det(v1, v2, · · · , vn) = det(A) = A(1, 1)cofactor(A, 1, 1)+A(2, 1)cofactor(A, 2, 1)+· · ·+A(n, 1)cofactor(A, n, 1)

where

cofactor(A, i, 1) = (−1)i+1minor(A, i, 1) = (−1)i+1 det(wi
2, w

i
3, · · ·wi

n).

2. Thus the starting case shall be n = 2 and here we know everything already.

2A little thought may show that in view of the alternating condition, it would be enough to assume this
condition just for the argument v1, since we can deduce it for other arguments by swapping the vectors and
then swapping them back.
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3. Now assume the result for n = 2.

For n = 3, our formula gives the usual expansion for the first column. The formula is
easily seen to satisfy the linearity condition for the first argument v1 and the linearity as
well as the alternating property for the second and third components is easily seen from
the inductive assumption.

The only non trivial calculation is the proof that det(v1, v2, v3) = − det(v2, v1, v3). This
is checked by an easy but tedious calculation of expanding both determinants completely.

4. Now assume the result for all determinants of size less than or equal to n− 1 and define
det(v1, v2, · · · , vn) as in the statement, where the cofactors are defined and satisfy known
properties by induction hypothesis.

We note that the linearity of the formula is again easily seen to be true and as before, it
is enough to prove that det(v1, v2, · · · , vn) = − det(v2, v1, · · · , vn). We may either do the
easy but tedious calculation or make the following shortcut. Note that any vector in <n

can be written as a sum of at most n-vectors which have only one non zero entry. Using
this, we can assume that our v1 and v2 each have only one non zero entry. In that case,
the cofactor expansions by the first two vectors give an easy formula for both sides.

Suppose v1 has only one non zero entry p in ith position and v2 has only one non zero
entry in position j. We invite the reader to verify these statements:

• If i = j, then det(v1, v2, · · · , vn) = det(v2, v1, · · · , vn) = 0. So the claim is true.

• If i < j then det(v1, v2, · · · , vn) = (−1)i+j−1∆ where ∆ is the determinant formed
by vectors w3, · · ·wn which are obtained from v3, · · · , vn after droppin their i-th and
j-th entries. Moreover det(v2, v1, · · · , vn) = (−1)j+i∆. Thus det(v1, v2, · · · , vn) =
− det(v2, v1, · · · , vn).

• If i > j, then the calculation is similar, except det(v1, v2, · · · , vn) = (−1)i+j∆ and
det(v2, v1, · · · , vn) = (−1)j+i−1∆.

5. Thus, the inductive step is complete and the result is proved.

Once the existence of the determinant function is proved, it is easy to prove uniqueness as
well as all the properties asserted in the quick introduction.
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