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Inner product. Given a real vector space V , an inner product is defined to be a bilinear
map F : V × V → < such that the following holds:

• Commutativity: For all v1, v2 ∈ V , we have F (v1, v2) = F (v2, v1).

• Distributivity:For all v1, v2, v3 ∈ V , we have F (v1, v2 + v3) =
F (v1, v2) + F (v1, v3).

• Scalar multiplicativity: For all v1, v2 ∈ V and c ∈ < we have
F (cv1, v2) = F (v1, cv2) = cF (v1, v2).

• Positivity:For all v ∈ V , we have F (v, v) ≥ 0. Moreover F (v, v) =
0 iff v = 0.

Notation. We usually do not use a name like F , but write < v,w >
in place of F (v, w). Often, we also just write v · w and call it a “dot”
product.

Warning. Many books will define a more general inner product where
the last property of positivity is not assumed in the beginning but
imposed later. The positivity is essential for definitions of angles and
lengths.

Norm, angle. We now use the shortened notation < , > for an inner product and
define

• ||v||2 =< v, v > or ||v|| =
√
< v, v >. This ||v|| is the length of

the vector v for the chosen inner product, so strictly speaking, it
should carry a marker indicating the inner product. Here, using
a function name F helps us put such a marker and write ||v||F .

• It can be proved that for any two vectors v, w, we have

| < v,w > | ≤ ||v||||w||Cauchy Schwartz Inequality..

Moreover, we get equality iff v, w are linearly dependent.

Further, if v, w are non zero vectors, then | < v,w > | = ||v||||w||
implies that one of the following two things happens.

Either we have: < v,w >= ||v||||w|| in case v, w are positive
multiples of each other (or can be considered to be in the same
direction) or < v,w >= −||v||||w|| in case v, w are negative mul-
tiples of each other (or can be considered to be in the opposite
direction).

• We define the angle between non zero vectors v, w by

6 (v, w) = arccos(
< v,w >

||v||||w||
.
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The Cauchy Schwartz inequality guarantees that we get a mean-
ingful angle between 0 and 180 degrees.

Warning: One should not lose sight of the fact that this is de-
pendent on the chosen inner product and as before, a marker F
can be attached if necessary.

Examples. Here are some examples of inner products in known vector spaces.

• The most common example is in <n. We define < v,w >= vTw.
This gives the usual dot product. It is obvious that ||v|| corre-
sponds to the usual length of a vector and for n = 2, 3, direct
calculations can verify the angles to be consistent with usual con-
vention.

• Still in <n a more general inner product can be defined by a
symmetric matrix A = An×n by defining:

F (v, w) = vTAw.

We may write < v,w >A as a shortened notation, or as an alter-
native drop all special references to A if no confusion follows.

A random choice of A will not satisfy the positivity condition. It
can be shown that a necessary and sufficient condition for a sym-
metric matrix A to define an inner product is that all its principle
minors be positive. This means all the determinants using first
few entries of the main diagonal are positive.

• If we go to the space of polynomials Pn or even P , the infinite
dimensional space, then we can define an inner product:

F (p(t), q(t)) =
∫ 1

0
p(t)q(t)dt.

Clearly, the interval can be changed to other finite intervals leading
to different inner products.

• The above example can be generalized to define an inner product
on the space C[a, b] which is the space of continuous functions on
the interval [a, b]. The inner product is defined as

F (f(t), g(t)) =
∫ b

a
f(t)g(t)dt.

• In the space of polynomials Pn, define an inner product thus:

Choose a set of distinct numbers a0, a1, · · · , an and define

< p(t), q(t) >= p(a0)q(a0) + p(a1)q(a1) + · · ·+ p(an)q(an).

This defines an inner product. A little thought shows that the
map

p(t)→


p(a0)
p(a1)
· · ·

p(an)
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is an isomorphism of Pn onto <(n+1) and all we are doing is using
the usual inner product in the target space <(n+1) to define our
inner product.

This is a usual method of building new inner products.

Orthogonal sets. Given an inner product < , > on a vector space V we say that a set of
vectors v1, · · · , vr is orthogonal, if for any i 6= j we have < vj, vj >= 0.

It is easily seen that a set of non zero orthogonal vectors are linearly
independent.

Proof. Suppose v1, · · · , vr are non zero orthogonal vectors and c1v1 +
· · · + crvr = 0. Take the inner product of both sides with some vi to
get:

c1 < vi, v1 > + · · ·+ ci < vi, vi > + · · ·+ cr < vi, vr >=< vi, 0 >= 0.

Clearly all but the term ci < vi, vi > are zero. Moreover, < vi, vi >6= 0,
so ci = 0. Thus each ci is zero and we have proved independence of our
vectors.

This is the most important reason to study and use the inner product!

The set of vectors v1, · · · , vr is said to be orthonormal if it is orthog-
onal and also < vi, vi >= 1 for all i. This last condition means that
||vi|| = 1 for each i = 1, · · · r.

Vectors with norm (length) equal to 1 are said to be unit vectors.
Note that given any non zero vector v, the vector ± v

||v|| is always a

unit vector. Moreover, if we take the plus sign, then it is in the same
direction as v and is in the opposite direction if we use the minus sign.

This gives a simple but useful observation:

Every nonzero vector v is of the form cu where u is a unit vector and
c = ±||v||.

Coordinate vectors. If we have a set of n non zero orthogonal vectors, v1, · · · , vn in an n-
dimensional vector space V , then, in view of the above result, they
clearly form a basis B =

[
v1 v2 · · · vn

]
of V .

Moreover, for any vector v ∈ V , it is easy to find its coordinate vector
[v]B as follows.

Suppose we write v = c1v1 + · · · cnvn. By taking inner product with vi
and using the same reasoning as above, we see that < v, vi >= ci <

vi, vi > and thus ci = < v, vi >
< vi, vi > . This defines the coordinate vector:

[v]B =

 c1
· · ·
cn

 =


< v, v1 >
< v1, v1 >

· · ·
< v, vn >
< vn, vn >

 .
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Projections. One of the main goals of Linear Algebra is to give efficient methods to
solve linear equations AX = B. In general, if there are more equations
than variables (i.e. A has more rows than columns), then the solutions
may not exist. However, in many Scientific and Statistical applications,
it makes sense to ask for an answer which makes the equation close to
true as much as possible.

If we have an inner product in our vector space, then we can reformulate
the problem of solution of AX = B as “find a vector w such that
||B − Aw|| is as small as possible.

This can be shown to be equivalent to finding a w such that B−Aw is
orthogonal to each column of A. If we are using the usual inner product
in <n, then this is easily seen to be guaranteed by:

Normal Equations. ATAw = ATB

From the properties of the inner product, we can show that if the
columns of A are independent, then the matrix ATA is invertible. (See
proof below). Using this, we get a formal solution:

w = (ATA)−1ATB.

The vector Aw so obtained is geometrically the projection of the vector
B into the space Col A.

Proof that ATA is invertible. Suppose if possible, ATA is singular.
Then there is a non zero vector u such that ATAu = 0. Then

< Au,Au >= uTATAu = uT (ATAu) = 0.

Hence Au = 0. But since columns of A are independent, this implies
u = 0, a contradiction!

Associated Spaces. Given an m× n matrix A, we know the two associated spaces Col(A)
and Nul(A) which are respectively subspaces of <m and <n.

If we use the transpose AT instead, then we get two other spaces:
Col(AT ) which we call Row(A) or the row space of A and also Nul(AT )
or sometimes called the left null space of A.

Note that Row(A) is a subspace of <n and consists of rows of A trans-
posed into column vectors.

Similarly, Nul(AT ) is a subspace of <m consisting of all column vectors
X such that ATX = 0. Taking transpose, we see that these correspond
to row vectors X such that XTA = 0. Hence the name of “left null
space.”

The concept of inner product gives another meaning to these. Thus,
the left null space Nul(AT ) can be thought of all vectors orthogonal to
all vectors of Col(A).
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In general, we define an orthogonal subspace to a given space W as
{v | < v,w >= 0 for all w ∈ W}. We denote this as W⊥.

It is not hard to see that (W⊥)⊥ = W for any subspace W . Thus,
we note that Col(A) = (Nul(AT ))⊥. This expresses the starting space
Col(A) as a null space of some other matrix. This was the basis of our
results on writing a column space as a null space or conversely, writing
a null space as a column space.

Note We already know another method to find this left null space.
Recall the consistency matrix G obtained by finding an REF of (A|I)
and taking the part of the transformed I in front of zero rows in REF
of A. We know that vectors v ∈ Col(A) are characterized by Gv = 0.
This means vTGT = 0 and thus Nul(AT ) = Col(GT )) as desired.

Similarly, we can describe Row(A) as (Nul(A)))⊥.

It is easy to see that for any subspace W of V we have dim(W ) +
dim(W⊥) = dim(V ). This is another formulation of the fundamental
dimension theorem.

Proof. Write W = Col(A) for some m × n matrix A, so that W is a
subspace of <m. We know that dim(W ) = rank(A).

Then
W⊥ = {Y | < w, Y >= 0 for all w ∈ W}.

Since < w, Y >= wTY , we see that W⊥ = Nul(AT ) and we know that
its dimension is m− rank(AT ) = m− rank(A). Thus, we have proved
that

dim(W ) + dim(W⊥) = rank(A) + m− rank(A) = m.

Orthonormal Bases.
Suppose that we have a vector space V with an inner product and a given

subspace W .
The above results make it clear that we would greatly benefit if given

any basis (or even a spanning set) of the subspace W , we can find a suitable
orthogonal (or even orthonormal ) basis for W from the given set.

This can be accomplished by a slight modification of our row reduction
algorithm. This is a way of codifying the Gram-Schmidt process discussed
in the book. We show the method below, which is not in the book.

I.P. matrix Suppose that v1, · · · vr is a spanning set for W . First step is to make a
matrix M∗ such that M∗

ij =< vi, vj > for all i, j = 1, · · · r.

Note that M∗ is a symmetric r × r matrix and we can think of M∗ as
< B,B > where B is the row of vectors

[
v1 v2 · · · vr

]
. This is

said to be the I.P. (Inner Product) matrix of the spanning set B.

If we replace B by linear combinations of v1, · · · vr then we can think
of the new set of vectors as BP where P is the matrix describing the
combinations.
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If P is invertible, then vectors of BP form a new spanning set for the
same space W and its I.P. matrix is P TM∗P . We shall show that there
is an invertible matrix R such that RTM∗R is a diagonal matrix.

It follows that the new generating set BR consists of orthogonal vectors.

If the original vectors of B were independent, then the new vectors BR
will indeed be an orthogonal basis. Moreover, in this case, the matrix
R can be chosen to be (unit) upper triangular. This is known as the
Gram-Schmidt theorem.

The Algorithm. We present a different Gram-Schmidt algorithm which is lot easier to
implement than the one in the book. It is based on just the usual row
reduction algorithm and does not involve complicated expressions.

Start with the I.P. matrix M∗ of a spanning set v1, · · · , vr for W . If
we are working with the “usual inner product” in <n, then we simply
have M∗ = ATA where A is the matrix whose columns are v1, · · · , vr.
In either case, M∗ is a square r × r square matrix.

Let Ir be the usual identity matrix. Set M = (M∗|Ir) the augmented
matrix as usual.

Perform the usual row reductions on M to try and convert it to REF
to get a matrix G = (N |S) where N is upper triangular and S is the
lower triangular, invertible matrix such that G = SM∗ .

(Note that for N to be upper triangular one can only do row operations
in which a row is modified by adding to it a multiple of row above it
and in which a row with a zero in the intended pivot position is inter-
changed with one below it. Scaling rows is permitted.)

Let R = ST . Since R and RTM∗ = SM∗ are both square, upper
triangular, so is their product RTM∗R.

In case M∗ = ATA this expression is RTATAR =< AR,AR >.

In the more general case with M∗ =< B,B > we get that RTM∗R =<
BR,BR >.

Finally, we note that this matrix RTM∗R is upper triangular and equal
to its own transpose, hence it must be a diaagonal matrix!

It follows immediately that the columns of AR (or vectors in BR )are
mutually orthogonal.

If columns of A are linearly dependent, then we will simply have some
columns in AR as zero columns and the non zero columns will give a
basis of Col(A).

Similarly, if v1, · · · , vr are linearly dependent, then some of the vectors
in BR will be zero and we get a basis for Span(B) after dropping them.
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Simple Example Let A =

 −2 1
2 −2
1 1

. Then the innerproduct matrix

IP = AtA =

[
9 −5
−5 6

]
.

We augment IP by the identity to get

M =

[
9 −5 1 0
−5 6 0 1

]

The row operation R2 → R2 + 5
9
R1 produces

[
9 −5 1 0
0 29

9
5
9

1

]

We stop at this point since the IP matrix is now in REF.

Now we take R to be the transpose of the matrix derived from the

identity. R =

[
1 5

9

0 1

]

Then the row operations have multiplied ATA by RT on the left and the
column operations have multiplied it by R so we have RT (ATA)R =[

9 0
0 29

9

]
.

This says that (AR)t(AR) =

[
9 0
0 29

9

]

Since R is invertible, AR has the same linear span as the columns of
A. So the columns of AR are spanning set for col(A). Since they are
mutually independent they are then an independent spanning set for
Col(A) so the columns of

AR =

 −2 1
2 −2
1 1

 [
1 5

9

0 1

]
=

 −2 −1
9

2 −8
9

1 14
9

 .
are an orthoginal basis for the column space of A

If we want an orthonormal basis then since (AR)T (AR) =

[
9 0
0 29

9

]
we have that 9 is the square of the length of column 1 of AR and 9

29

is the square of the length of column 2. To convert an orthogonal set
to an orthonormal set all we have to do is divide each element by its

length. That is we divide column 1 by 3 and column 2 by
√

29
9

to get

S =


−2

3
−
√
29
87

2
3
−8
√
29
87

1
3

14
√
29
87

 . which is a matrix whose columns are an or-

thonormal basis for Col(A). We can check the orthonormality by cal-

culating STS =

[
1 0
0 1

]
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In the above example the matrix A had independent columns. Even if
A has dependent columns then the matrix AR will still have mutually
orthogonal columns- only some of them would be the zero vector (which
is orthogonal to everything). Then all one has to do is delete the zero
columns to have an orthogonal basis.

Example 1 Here is an example where the starting vectors are not independent. To
emphasize the basic details we give only the IP matrix.

Suppose the matrix A has columns v1, v2, v3 and the following I.P. ma-
trix:

ATA =


2 1 3

1 5 6

3 6 9

 .
As before, we make the augmented matrix < ATA|I >:

2 1 3 1 0 0

1 5 6 0 1 0

3 6 9 0 0 1

 .
• 

2 1 3 1 0 0

0 9/2 9/2 −1/2 1 0

0 0 0 −1 −1 1

 .
•

RT =


1 0 0

−1/2 1 0

−1 −1 1

 .

•

R =


1 −1/2 −1

0 1 −1

0 0 1

 .

RTATAR = (AR)T (AR) =


2 0 0

0 9/2 0

0 0 0

 .
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• Note that the third new vector ( column 3 of AR) has norm zero

and hence it is zero! This is A


−1

−1

1


so the process indicates that the third vector is w3 = v3−v2−v1 =
0 and thus it identifies the linear dependence relation too!

• We can now conclude that our vector space Span{v1, v2, v3} is
actually two dimensional with w1 = v1 and w2 = v2 − (1

2
)v1 as an

orthogonal basis. The lengths of w1, w2 are
√

2,
√

9
2

respectively.

9


