
MA322 Weekly topics and quiz preparations Spaces

Week 2 August 28-September 1.

1 Topics

1. Review of the Standard Gauss Elimination Algorithm: REF+ Backsub

2. The rank of a matrix.

3. Vectors and Linear combinations.

4. Span of a set of vectors.

5. Linear equations as a test of membership to a span.

6. The system of an augmented matrix (A|B) reinterpreted as AX = B.

2 Gaussian Elimination.

1. By a linear system of equations we mean an augmented matrix (A|B) with or without a title row specified. The
separator bar is also optional.

As we have seen, it is useful to have the system reduced to REF (i.e. with a strict pc list).

2. The big theorem is that a suitable sequence of elementary operations applied to this matrix will always produce
such an REF. There is no claim (or hope) of uniqueness of the final form, however, a certain associated integer
called its rank will turn out to be a very useful tool for the solution process.

3. While there are many choices of operations, we describe a certain well defined choice which is guaranteed to work.
This will be described as the standard algorithm.

3 The standard algorithm.

1. Here is the set up. We assume that our augmented matrix is renamed M and it has m rows. We assume that

� The top i rows of M are already in REF and

� All the pivot columns in rows i + 1 to m are strictly bigger than the pivot columns for the first i rows.

2. We describe this situation as having the top i rows inactive.

3. The Plan: We can always begin with i = 0 and our algorithm will push i to m. Clearly, at the end, we have REF!

4. Now we show how to make the i + 1-th row inactive. This is the iterative step.

5. Among the rows from i + 1 to m, we pick the one whose pivot column number is the least, say s.

We do a row swap only if needed to make this row the i + 1-th.

6. Important rule. We always choose the smallest numbered row to swap into this (i + 1)-th place. This is the only
time we use a row swap, and only if really needed.

7. Now we do a sequence of row operations to arrange the pivot column numbers of all rows from i + 2 to m to be
bigger than the pc s of the (i + 1)th row.

� For each j > i + 1 we do the following well defined operation.

� Consider the pivot entry of the (i + 1)th row, namely M(i + 1, s).

� For each j > i + 1 we wish to arrange the pc of the j-th row to be bigger than s. We already know that it is
at least s.

� This exactly means that we need M(j, s) = 0 for all such j > i + 1. We call this entry M(j, s) the target - to
be made zero!
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� Important Formula: We use the operation Rj − cRi+1 where c is given by the formula c = M(j,s)
M(i+1,s) .

� Note that the formula for c can be remembered as target
pivot .

� Note that this step is carried out for each j > i+ 1 whenever M(j, s) 6= 0. We typically do it in sequence, but
as long as i + 1 is fixed, all these steps can be done at the same time, since they do not interfere with each
other!

4 Using the algorithm.

1. As seen above, we can make all the m rows inactive and thus have REF. The pc-list is now strict and thus all rows
which become zero appear only after the non zero rows.

� At this stage, we are ready to solve the original equations.

� Def.12: Rank of M . The number of pivots in the final REF is called the rank of M and is denoted by
rank(M).

� Note that we have not proved the rank to be well defined. That proof will come much later.

� Write the final form as M∗ = (A∗|B∗).

� We note that both A∗ and M∗ are in REF and these are respectively REF of A and M .

2. Def.13: Consistency: A system (A|B) is said to be consistent if it has at least one solution.

3. Def.14: Consistency Condition. We note that the original system represented by (A|B) is consistent if and
only if rank(A) = rank(M).

4. Explicitly, this means that all the pivots in M∗ occur in the A∗ part. In other words, if some row of A∗ is zero,
then it must be also the zero row of M∗.

5. Example of an inconsistent system.

� Consider our old example with the RHS changed in the last equation.
x y z RHS
1 1 3 12
0 1 6 20
2 0 3 11
−1 1 −2 t


� It can be shown that the same REF steps as before, produce:

x y z RHS
1 1 3 12
0 1 6 20
2 0 3 11
−1 1 −2 t

→


x y z RHS
1 1 3 12
0 1 6 20
0 0 9 27
0 0 0 t + 5


� Thus, our original system is consistent if and only if t + 5 = 0 or t = −5.

� Our original system had t = −5 and hence was consistent! For that system, both A and M had the same rank
3.

5 Vector Spaces.

1. Now we present a different way of understanding our work.

Def.15: Vectors in n-dimensions. A column of n scalars v =


a1
a2
· · ·
an

 is said to be an n-dimensional vector.
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2. Def.16: The set of all n-dimensional vectors forms the vector space <n. The space <n has two natural
operations.

� Given v =


a1
a2
· · ·
an

 and w =


b1
b2
· · ·
bn

 we define addition

v + w =


a1 + b1
a2 + b2
· · ·

an + bn

 .

� Further, for any given scalar c, we define scalar multiplication

cv =


ca1
ca2
· · ·
can

 .

� There are some natural algebraic properties of these operations which will be formally stated later and used
to define abstract vector spaces.

� Examples. Consider a linear system given by 2x + 3y = 5, 4x− 3y = 17.

� Set v =

(
2
4

)
, w =

(
3
−3

)
, b =

(
5

17

)
.

� Consider the vector calculation:

xv + yw = x

(
2
4

)
+ y

(
3
−3

)
=

(
2x + 3y
4x− 3y

)
.

� Thus our linear system can be reinterpreted as a vector equation:

xv + yw = b.

� More generally, Consider a system (A|B).

� Suppose that A has n columns C1, C2, · · · , Cn corresponding to the coefficients of the n variables x1, x2, · · · , xn

respectively,

� then the equation
x1C1 + x2C2 + · · ·+ xnCn = B

has the same meaning as the original system of equations.

3. To make it more succinct, we define

Def.17: Span of a set of vectors Given any set S of vectors, we set:

Span S = {a1v1 + a2v2 + · · · amvm}

where m is any non negative integer, v1, v2, · · · , vm are some m vectors in S and a1, a2, · · · , am are some scalars.

4. Note that the definition is designed to work for an infinite set S, but for a finite set with n elements, we can fix
n = m.

5. To make our statements even simpler, we now define:

Def.18: Matrix times a vector Given a matrix A with n-columns C1, C2, · · ·Cn, and a vector v ∈ <n we set

Av = a1C1 + a2C2 + · · ·+ anCn where v =


a1
a2
· · ·
an

.
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6. Thus, we can now rewrite the system (A|B) as AX = B where X =


x1

x2

· · ·
xn

, i.e. B ∈ Span{C1, C2, · · · , Cn}.

7. Now we define

Def.19: Column Space of a Matrix For a matrix A with columns C1, C2, · · · , Cn we define Col(A) =
Span{C1, C2, · · · , Cn}.

8. Thus, our consistency condition can be reformulated as (A|B) is consistent iff AX = B has a solution iff B ∈ Col(A).

9. In view of our earlier consistency condition, this says that B is in Col(A) iff augmenting B to A does not increase
its rank!
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