1 Topics

1. Review of the Standard Gauss Elimination Algorithm: REF + Backsub
2. The rank of a matrix.
3. Vectors and Linear combinations.
4. Span of a set of vectors.
5. Linear equations as a test of membership to a span.
6. The system of an augmented matrix $(A \mid B)$ reinterpreted as $A X=B$.

2 Gaussian Elimination.

1. By a linear system of equations we mean an augmented matrix $(A \mid B)$ with or without a title row specified. The separator bar is also optional.
As we have seen, it is useful to have the system reduced to REF (i.e. with a strict pc list).
2. The big theorem is that a suitable sequence of elementary operations applied to this matrix will always produce such an REF. There is no claim (or hope) of uniqueness of the final form, however, a certain associated integer called its rank will turn out to be a very useful tool for the solution process.
3. While there are many choices of operations, we describe a certain well defined choice which is guaranteed to work. This will be described as the standard algorithm.

3 The standard algorithm.

1. Here is the set up. We assume that our augmented matrix is renamed M and it has m rows. We assume that

- The top i rows of M are already in REF and
- All the pivot columns in rows $i+1$ to m are strictly bigger than the pivot columns for the first i rows.

2. We describe this situation as having the top i rows inactive.
3. The Plan: We can always begin with $i=0$ and our algorithm will push i to m. Clearly, at the end, we have REF!
4. Now we show how to make the $i+1$-th row inactive. This is the iterative step.
5. Among the rows from $i+1$ to m, we pick the one whose pivot column number is the least, say s.

We do a row swap only if needed to make this row the $i+1$-th.
6. Important rule. We always choose the smallest numbered row to swap into this $(i+1)$-th place. This is the only time we use a row swap, and only if really needed.
7. Now we do a sequence of row operations to arrange the pivot column numbers of all rows from $i+2$ to m to be bigger than the pc s of the $(i+1)^{t h}$ row.

- For each $j>i+1$ we do the following well defined operation.
- Consider the pivot entry of the $(i+1)^{t h}$ row, namely $M(i+1, s)$.
- For each $j>i+1$ we wish to arrange the pc of the j-th row to be bigger than s. We already know that it is at least s.
- This exactly means that we need $M(j, s)=0$ for all such $j>i+1$. We call this entry $M(j, s)$ the target - to be made zero!
- Important Formula: We use the operation $R_{j}-c R_{i+1}$ where c is given by the formula $c=\frac{M(j, s)}{M(i+1, s)}$.
- Note that the formula for c can be remembered as $\frac{\text { target }}{\text { pivot }}$.
- Note that this step is carried out for each $j>i+1$ whenever $M(j, s) \neq 0$. We typically do it in sequence, but as long as $i+1$ is fixed, all these steps can be done at the same time, since they do not interfere with each other!

4 Using the algorithm.

1. As seen above, we can make all the m rows inactive and thus have REF. The pc-list is now strict and thus all rows which become zero appear only after the non zero rows.

- At this stage, we are ready to solve the original equations.
- Def.12: Rank of M. The number of pivots in the final REF is called the rank of M and is denoted by $\operatorname{rank}(M)$.
- Note that we have not proved the rank to be well defined. That proof will come much later.
- Write the final form as $M^{*}=\left(A^{*} \mid B^{*}\right)$.
- We note that both A^{*} and M^{*} are in REF and these are respectively REF of A and M.

2. Def.13: Consistency: A system $(A \mid B)$ is said to be consistent if it has at least one solution.
3. Def.14: Consistency Condition. We note that the original system represented by $(A \mid B)$ is consistent if and only if $\operatorname{rank}(A)=\operatorname{rank}(M)$.
4. Explicitly, this means that all the pivots in M^{*} occur in the A^{*} part. In other words, if some row of A^{*} is zero, then it must be also the zero row of M^{*}.
5. Example of an inconsistent system.

- Consider our old example with the RHS changed in the last equation.

$$
\left(\begin{array}{rrr|r}
x & y & z & R H S \\
\hline 1 & 1 & 3 & 12 \\
0 & 1 & 6 & 20 \\
2 & 0 & 3 & 11 \\
-1 & 1 & -2 & t
\end{array}\right)
$$

- It can be shown that the same REF steps as before, produce:

$$
\left(\begin{array}{rrr|r}
x & y & z & R H S \\
\hline 1 & 1 & 3 & 12 \\
0 & 1 & 6 & 20 \\
2 & 0 & 3 & 11 \\
-1 & 1 & -2 & t
\end{array}\right) \rightarrow\left(\begin{array}{rrr|r}
x & y & z & R H S \\
\hline 1 & 1 & 3 & 12 \\
0 & 1 & 6 & 20 \\
0 & 0 & 9 & 27 \\
0 & 0 & 0 & t+5
\end{array}\right)
$$

- Thus, our original system is consistent if and only if $t+5=0$ or $t=-5$.
- Our original system had $t=-5$ and hence was consistent! For that system, both A and M had the same rank 3.

5 Vector Spaces.

1. Now we present a different way of understanding our work.

Def.15: Vectors in n-dimensions. A column of n scalars $v=\left(\begin{array}{c}a_{1} \\ a_{2} \\ \ldots \\ a_{n}\end{array}\right)$ is said to be an n-dimensional vector.
2. Def.16: The set of all n-dimensional vectors forms the vector space \Re^{n}. The space \Re^{n} has two natural operations.

- Given $v=\left(\begin{array}{c}a_{1} \\ a_{2} \\ \cdots \\ a_{n}\end{array}\right)$ and $w=\left(\begin{array}{c}b_{1} \\ b_{2} \\ \ldots \\ b_{n}\end{array}\right)$ we define addition

$$
v+w=\left(\begin{array}{c}
a_{1}+b_{1} \\
a_{2}+b_{2} \\
\ldots \\
a_{n}+b_{n}
\end{array}\right)
$$

- Further, for any given scalar c, we define scalar multiplication

$$
c v=\left(\begin{array}{c}
c a_{1} \\
c a_{2} \\
\cdots \\
c a_{n}
\end{array}\right)
$$

- There are some natural algebraic properties of these operations which will be formally stated later and used to define abstract vector spaces.
- Examples. Consider a linear system given by $2 x+3 y=5,4 x-3 y=17$.
- Set $v=\binom{2}{4}, w=\binom{3}{-3}, b=\binom{5}{17}$.
- Consider the vector calculation:

$$
x v+y w=x\binom{2}{4}+y\binom{3}{-3}=\binom{2 x+3 y}{4 x-3 y} .
$$

- Thus our linear system can be reinterpreted as a vector equation:

$$
x v+y w=b
$$

- More generally, Consider a system $(A \mid B)$.
- Suppose that A has n columns $C_{1}, C_{2}, \cdots, C_{n}$ corresponding to the coefficients of the n variables $x_{1}, x_{2}, \cdots, x_{n}$ respectively,
- then the equation

$$
x_{1} C_{1}+x_{2} C_{2}+\cdots+x_{n} C_{n}=B
$$

has the same meaning as the original system of equations.
3. To make it more succinct, we define

Def.17: Span of a set of vectors Given any set S of vectors, we set:

$$
\operatorname{Span} S=\left\{a_{1} v_{1}+a_{2} v_{2}+\cdots a_{m} v_{m}\right\}
$$

where m is any non negative integer, $v_{1}, v_{2}, \cdots, v_{m}$ are some m vectors in S and $a_{1}, a_{2}, \cdots, a_{m}$ are some scalars.
4. Note that the definition is designed to work for an infinite set S, but for a finite set with n elements, we can fix $n=m$.
5. To make our statements even simpler, we now define:

Def.18: Matrix times a vector Given a matrix A with n-columns $C_{1}, C_{2}, \cdots C_{n}$, and a vector $v \in \Re^{n}$ we set

$$
A v=a_{1} C_{1}+a_{2} C_{2}+\cdots+a_{n} C_{n} \text { where } v=\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\cdots \\
a_{n}
\end{array}\right)
$$

6. Thus, we can now rewrite the system $(A \mid B)$ as $A X=B$ where $X=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \ldots \\ x_{n}\end{array}\right)$, i.e. $B \in \operatorname{Span}\left\{C_{1}, C_{2}, \cdots, C_{n}\right\}$.
7. Now we define

Def.19: Column Space of a Matrix For a matrix A with columns $C_{1}, C_{2}, \cdots, C_{n}$ we define $\operatorname{Col}(A)=$ $\operatorname{Span}\left\{C_{1}, C_{2}, \cdots, C_{n}\right\}$.
8. Thus, our consistency condition can be reformulated as $(A \mid B)$ is consistent iff $A X=B$ has a solution iff $B \in C o l(A)$.
9. In view of our earlier consistency condition, this says that B is in $\operatorname{Col}(A)$ iff augmenting B to A does not increase its rank!

