
MA322 Weekly topics and quiz preparations Spaces

Week 3 September 5-7.

1 Topics

These are already partly covered in lectures. We collect the details for convenience.

1. Solutions of homogeneous equations AX = 0.

2. Using the rank.

3. Parametric solution of AX = B.

4. Linear dependence and independence of vectors in <n.

5. Using REF and RREF as convenient.

The following topics are not in the book and will be covered over several lectures.

1. Working with Generic Solver (A|I).

2. Reading information from the transformed solver.

3. Using the Generic Solver for consistency conditions.

2 Homogeneous Equations

1. Def. 20: Homogeneous System of Equations. A linear system (A|B) is said to be homogeneous when B = 0,
i.e. the RHS entries in B are all 0.

In this case, the REF of M = (A|0) can be seen to be M∗ = (A∗|0), i.e. the column 0 can be omitted through the
reduction process, since it will never change.

2. Clearly, rank(M) = rank(A), so a homogeneous system is always consistent. Indeed, it is also clear that X = 0 is
a solution to AX = 0 and hence consistency is directly obvious!

3. Let the common rank be r. Then there are exactly r pivot variables and n− r free variables.

4. The final solution will consist of solving the pivot variables in terms of the free variables and reporting the conclusion.

Here is an example:

1. Consider a system in REF: 
x y z w t RHS
2 6 0 −4 6 0
0 0 −1 3 2 0
0 0 0 0 7 0
0 0 0 0 0 0


2. Identify pc list as (1, 3, 5,∞), pivot variables as x, z, t and the free variables y, w.

3. The fourth equation is ignored. The third gives t = 0, the second gives z =3w + 2t = 3w and the first gives
x =− 3y + 2w − 3t = −3y + 2w.

4. The above solution is best reported as a vector:
x
y
z
w
t

 =


−3y + 2w

y
3w
w
0

 = yv1 + wv2

1



where

v1 =


−3

1
0
0
0

 , v2 =


2
0
3
1
0

 .

Often, it is preferred to replace the original free variables by suitable parameters.

Thus, we may also write: 
x
y
z
w
t

 = t1v1 + t2v2

We summarize the above results:

1. Thus the solution is seen to be a member of Span{v1, v2}.

2. Denoting a general member of the span as vh, we write X = vh.

It is important to remember that vh stands for any one of an infinite collection of vectors and should not be confused
with a specific single vector or with the whole span!

3. In general, if n is the number of variables and r = rank(A) then the solution of AX = 0 is always a member of the
span of s = n− r vectors {V1, · · · , Vs}.

3 The general case AX = B

1. More generally, if we put the augmented matrix M = (A|B) of a non homogeneous system into REF, say M∗ =
(A∗|B∗). then we need to verify the consistency condition first.

Recall that the consistency condition is: the rank of the LHS matrix A is the the same as the rank of augmented
matrix (A|B).

If the matrix (A|B) is put in REF M∗ = (A∗|B∗), then this amounts to the condition that no row in M∗ has pivot
in the B∗ column. We will develop a “general solver” below, which can easily determine the condition even when
we replace the RHS B.

2. If the condition fails, then there is no solution.

3. If the condition holds, then the solution process and reporting is just as above, except the final answer is a fixed
vector plus a span of s = (n− r) vectors as before.

Here is an example.

1. Consider a system (already) in REF: 
x y z w t RHS
2 6 0 −4 6 18
0 0 −1 3 2 −5
0 0 0 0 7 35
0 0 0 0 0 0


2. Identify pc list as (1, 3, 5,∞), pivot variables as x, z, t and the free variables y, w.

3. The fourth equation is ignored. The third gives t = 5, the second gives z =3w + 2t + 5 = 3w + 10 + 5 = 3w + 15
and the first gives x =− 3y + 2w − 3t + 9 = −3y + 2w − 15 + 9 = −3y + 2w − 6.
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4. The above solution is best reported as a vector:
x
y
z
w
t

 =


−3y + 2w − 6

y
3w + 15

w
5

 = vp + t1v1 + t2v2

where

vp =


−6

0
15
0
5

 , v1 =


−3

1
0
0
0

 , v2 =


2
0
3
1
0

 .

Note that the solution forces y = t1 and w = t2. Sometimes, we may not introduce these new variables, but it is
better to bring them in.

5. Note that Span{v1, v2} is a solution of a related homogeneous equation AX = 0.

Thus, vh = t1v1 + t2v2 describes a general member of the solution of the homogeneous equation.

It is important to remember that vh stands for any one of an infinite collection of vectors and should not be confused
with a specific single vector or with the whole span!

6. Notations rownum, colnum. For any matrix A, we shall define colnum(A) to be the number of columns in A and
rownum(A) to be the number of rows in A.

7. Suppose that r = rank(A) and n = colnum(A). Set s = n− r.

Then we have that the solution of a system AX = B is of the form X = vp + vh where vh is a general linear
combination of s solutions of the associated system AX = 0.

8. Def. 21: Homogeneous and Particular Solutions. We call vp as a “particular” solution and vh as a “homogeneous
solution.” Note that neither of these are unique, but with proper identifications, they exhibit all the solutions of
the system in a parametric form.

9. Def. 22:A homogeneous system AX = 0 always has one obvious solution, namely X = 0. This is defined to
be the “trivial solution.” Moreover, as shown above, the system AX = 0 has a non trivial solution iff s =
colnum(A)− rank(A) > 0, or equivalently, there is at least a free variable.

Since the solution of a homogeneous system is of the form X = t1v1 + · · ·+ tsvs we can say that vp = 0 and X = vh
for a homogeneous system.

4 RREF and its uses

1. We have illustrated how to make and use REF - the “row echelon form”. We did not work much with the RREF.
Roughly, it needs twice as much work as REF and hence we avoided using it, if it was not really needed. It is,
however, needed for some of the later work and we include an illustration of the method to get that form.

Unlike, REF, the form RREF is well defined and thus has theoretical merit. Typically, if we have reached RREF,
then the act of “solving equations”, becomes, “writing down the answers”.

2. A matrix M is said to be in RREF if the following conditions hold:

� M is in REF.

� Every row is either a zero row or has pivot entry 1.

� Pivots of all rows are “lonely” in their columns. This means that the column containing a pivot entry has zero
entry in all other rows.

3. An example of RREF

Here is a worked out example of converting REF into RREF.
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(a) Consider the following augmented matrix (already in REF) and convert to RREF. Use it to write out the
solution of the associated linear system.

(b) 
x y z RHS
1 1 3 12
0 1 6 20
0 0 9 27
0 0 0 0


(c) Notice that the pc list is (1, 2, 3,∞) and the respective pivot entries are 1, 1, 9.

(d) The process is to start with the last pivot, make all entries above it equal to zero and make it 1.

Then repeat with earlier pivots.

(e) Thus, the operations R1 − 3
9R3, R2 − 6

9R3,
1
9R3 give:

(f) 
x y z RHS
1 1 3 12
0 1 6 20
0 0 9 27
0 0 0 0

→


x y z RHS
1 1 0 3
0 1 0 2
0 0 1 3
0 0 0 0


(g) Then the operation R1 −R2 finishes off the RREF.

x y z RHS
1 0 0 1
0 1 0 2
0 0 1 3
0 0 0 0


(h) The answer to the system can now be simply read off!

5 Linear dependence and independence

1. We have learned the alternate view that if A is a matrix with columns C1, · · · , Cn then the equation AX = B is
solvable iff B is in the column space Col(A) = Span(C1, · · · , Cn).

We now introduce new concepts which help us decide the nature of solutions more efficiently.

2. Def. 23: Linearly Dependent vectors The columns C1, C2, · · · , Cn of A are said to be linearly dependent if
the system AX = 0 has a non trivial solution, or equivalently colnum(A) > rank(A), i.e. rank of A is less than its
number of columns.

3. For future use, we restate this definition more generally thus: Def. 24(general): Linearly Dependent vectors.
Any set S of vectors is said to be linearly dependent if there is a positive integer n such that n distinct vectors
v1, v2, · · · , vn of S satisfy

c1v1 + c2v2 + · · ·+ cnvn = 0 where at least one of ci is non zero.

This definition is necessary since in general vector spaces, the vectors may not be columns and we may not be able
to make the matrix A from them.

4. Note that this makes sense even for an infinite set S.

5. Def. 25: Linearly Independent Vectors. A set S of vectors is said to be linearly independent if it is not
linearly dependent!

A better way to understand this is as follows: If we take any distinct vectors v1, v2, · · · , vn in S and solve the
equation c1v1 + · · ·+ cnvn = 0, then it has only the trivial solution 0 = c1 = · · · = cn.
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6. Though logically clear, linear independence can be difficult to verify without better tools. We describe such a tool
next.

7. Convention: We shall often drop the word “linearly” from the terms “linearly dependent” and “linearly inde-
pendent”.

Tests for dependence/independence
Suppose that we have a set of vectors v1, · · · , vn in some vector space V . If w is a given vector, then the vector

equation x1v1 + · · ·+ xnvn = w is the analog of our linear system of equations.
We describe the corresponding ideas for the abstract vector spaces.

1. First we recall what we know.

� For a finite set of vectors in <m, there is a simple criterion for dependence/independence.

� Given vectors v1, v2, · · · , vn in <m, make a matrix A by taking these as columns and find its rank (by using
REF, for example.).

� Suppose rank(A) = r. It is obvious that r ≤ n = colnum(A). Then we have:

v1, v2, · · · , vn are linearly dependent iff r < n

and thus, they are linearly independent iff r = n.

6 Generic Solver

1. We discuss a topic which is not in the book, but is a very efficient technique for solving Linear Algebra problems,
especially if you have a good calculator handy.

We learned how to solve a linear system (A|B) for a given right hand side B. Any vector B ∈ <m can be easily
seen to be a well defined combination of special elementary columns

e1 =


1
0
· · ·

0
0

 , e2 =


0
1
· · ·

0
0

 , em−1 =


0
0
· · ·

1
0

 , em =


0
0
· · ·

0
1

 .

2. Namely
B = b1e1 + b2e2 + · · ·+ bm−1em−1 + bmem.

3. It stands to reason that if we solve each of the systems (A|e1), (A|e2), · · · , (A|em), then we can write down the
complete solution of any (A|B) by simply combining the answers. It would seem like a lot of work, but in reality,
it is just as easy as a single system, since the necessary row operations can stay the same.

4. Thus, we set up an augmented matrix (A|I) where I is the “identity matrix” with columns e1, e2, · · · , em.

5. We then use the row reduction algorithm to change A to its row echelon form (REF) or, even RREF, if desired.
Here is what we shall expect to see:

The final form appears as

(
U U∗

0 G

)
6. The part U has the non zero rows of the REF of our A while 0 below it denotes all its zero rows. Suppose that U

has r = rank(A) rows and the last m− r rows are zero.

The part U∗ is simply the transformed part of I across U and G is the important part of the answer in the last
m− r rows.
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7. We are now ready to handle any given RHS B = b1e1 + b2e2 + · · ·+ bm−1em−1 + bmem.

Let C1, C2, · · · , Cm denote the columns of the final RHS C =

(
U∗

G

)
.

It is not hard to see that the REF for (A|B) will have RHS equal to C


b1
b2
· · ·
bm

 = b1C1 + b2C2 + · · ·+ bmCm.

Further all the entries in the last m − r rows can be shown to be G


b1
b2
· · ·
bm

 and this must be zero if (A|B) is

consistent.

8. Def. 26: Consistency matrix.

The matrix G obtained here is called the “consistency matrix for the system (A|B)

It gives us a simple Consistency test, namely: (A|B) is consistent iff GB = 0.

This equation can be interpreted as a condition that B is perpendicular to all the rows of G (transposed into
columns).

Later on, we will see how a complete solution may also be deduced.
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