1 Summary

1. Linear Transformations from \Re^{n} to \Re^{m}.
2. Matrix of a given transformation.
3. Subspaces associated to a Linear Transformation.
4. Injective (one-to-one) and Surjective (onto) transformations.
5. Transformation with desired properties.

2 A Linear Transformation.

1. A Linear Transformation extends the idea of a function so that the domain is \Re^{n} rather than just the field of real numbers.
The word "Linear" also means that it has the simplest possible formula consisting of ordinary linear functions.
2. Def.27: A Linear Transformation is a map $L: \Re^{n} \rightarrow \Re^{m}$ satisfying two properties:
(a) $L(v+w)=L(v)+L(w)$ for all $v, w \in \Re^{n}$ and
(b) $L(c v)=c L(v)$ for all $v \in \Re^{n}$ and $c \in \Re$.
3. The map defined by $L\left(\binom{x}{y}\right)=\left(\begin{array}{c}x+y \\ x-y \\ 2 x+3 y\end{array}\right)$ defines a Linear Transformation from \Re^{2} to \Re^{3}.
4. Verification of the definition. This is checked from definition thus: Let $v=\binom{v_{1}}{v_{2}}$ and $w=\binom{w_{1}}{w_{2}}$. Then $L(v+w)$ equals:

$$
L\left(\binom{v_{1}+w_{1}}{v_{2}+w_{2}}\right)=\left(\begin{array}{r}
v_{1}+w_{1}+v_{2}+w_{2} \\
v_{1}+w_{1}-v_{2}-w_{2} \\
2 v_{1}+2 w_{1}+3 v_{2}+3 w_{2}
\end{array}\right)
$$

which simplifies:

$$
\left(\begin{array}{r}
v_{1}+v_{2} \\
v_{1}-v_{2} \\
2 v_{1}+3 v_{2}
\end{array}\right)+\left(\begin{array}{r}
w_{1}+w_{2} \\
w_{1}-w_{2} \\
2 w_{1}+3 w_{2}
\end{array}\right)=L(v)+L(w)
$$

5.

$$
L(c v)=L\left(\binom{c v_{1}}{c v_{2}}\right)=\left(\begin{array}{r}
c v_{1}+c v_{2} \\
c v_{1}-c v_{2} \\
2 c v_{1}+3 c v_{2}
\end{array}\right)=c L(v)
$$

itemWhen does the definition fail? The reason that the calculations work is that the formulas are homogeneous linear expressions in the coordinates of the vectors in \Re^{n}.
6. Thus

$$
S\left(\binom{x}{y}\right)=\left(\begin{array}{r}
x+y+1 \\
x-y \\
2 x+3 y
\end{array}\right) \text { and } T\left(\binom{x}{y}\right)=\left(\begin{array}{r}
x+y \\
x y \\
2 x+3 y
\end{array}\right)
$$

both fail the definition.
This should be checked.

3 Matrix of a Linear Transformation.

1. Here is an example of a map guaranteed to give a Linear Transformation. Let A be a matrix with real entries having m rows and n columns.
Def.28: The transformation T_{A}.
Define the map $T_{A}: \Re^{n} \rightarrow \Re^{m}$ by the formula $T_{A}(X)=A X$.
2. Then the following calculation shows that T_{A} is a Linear Transformation.

$$
T_{A}(v+w)=A(v+w)=A v+A w=T_{A}(v)+T_{A}(w)
$$

and

$$
T_{A}(c v)=A(c v)=c A v=c T_{A}(v)
$$

This can be called as the Linear Transformation defined by A.
3. How to find the Matrix of a Linear Transformation?
(a) We first need some notation.

Notation: Define a vector e_{i}^{n} to be a column with n entries which are all zero except the i-th entry is 1 .
(b) Thus for $n=3$ we have:

$$
e_{1}^{3}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), e_{2}^{3}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), e_{3}^{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

While working with \Re^{n} for a fixed n, we often drop the superscript n to simplify our display.
4. The matrix calculated.

Given a map $L: \Re^{n} \rightarrow \Re^{m}$, we calculate the n columns

$$
v_{1}=L\left(e_{1}^{n}\right), v_{2}=L\left(e_{2}^{n}\right), \cdots, v_{n}=L\left(e_{n}^{n}\right)
$$

Let A be the matrix with n columns $v_{1}, v_{2}, \cdots, v_{n}$ in order.
5. Then the theorem is: L is a Linear Transformation iff $L(X)=A X$ for all $X \in \Re^{n}$.

In other words, $L=T_{A}$.

6. Spaces associated with a Linear Transformation..

Given any matrix A with m rows and n columns, we have two natural sets associated with it.
Def.29: Column and Null spaces of a Matrix.
(a) $\operatorname{Col}(A)=\left\{A X \mid X \in \Re^{n}\right\}$.
(b) $\operatorname{Nul}(A)=\left\{X \mid A X=0\right.$ and $\left.X \in \Re^{n}\right\}$.
7. We now consider a Linear Transformation $L: \Re^{n} \rightarrow \Re^{m}$.

Def.30: Kernel and Image of a Linear Transformation.
(a) $\operatorname{Image}(L)=\left\{L(X) \mid X \in \Re^{n}\right\}$.
(b) $\operatorname{Ker}(L)=\left\{X \mid L(X)=0\right.$ and $\left.X \in \Re^{n}\right\}$.
8. We shall later define subspaces and show that $\operatorname{Col} A$ is a subspace of \Re^{m} and $N u l A$ is a subspace of \Re^{n}.

4 Relationship with properties of a Linear Transformation.

1. Def.31: Injective or One-to-one transformation. A function is said to be one-to-one, if it maps different elements to different elements. For a linear transformation L, it is enough to check $L(v) \neq 0$ if $v \neq 0$.
In other words if $\operatorname{Ker}(L)$ contains only the zero vector. In this case, we call the transformation to be injective or one-to-one.
2. Def.32: Surjective or onto transformation. A function is said to be onto if every element of the target space is an image of some element.
For a linear transformation $L: \Re^{n} \rightarrow \Re^{m}$, the target space is \Re^{m} and thus the condition reduces to $\operatorname{Image}(L)=\Re^{m}$. In this case, we call the transformation to be surjective or onto.

5 The criteria for Injectivity and Surjectivity.

1. When $L=T_{A}$, we know that $\operatorname{Ker}(L)=\operatorname{Nul}(A)$ and so we have $L=T_{A}$ is injective iff $N u l(A)=0$, or $\operatorname{rank}(A)=$ $\operatorname{colnum}(A)=n$.
2. When $L=T_{A}$, we also know that $\operatorname{Image}(L)=\operatorname{Col}(A)$ and so we have $L=T_{A}$ is surjective iff $\operatorname{Col}(A)=\Re^{m}$, or $\operatorname{rank}(A)=\operatorname{rownum}(A)=m$.
3. A Fundamental Fact: The rank of a matrix with m rows and n columns: It is obvious that $\operatorname{rank}(A)$ is less than or equal to $\min (m, n)$.
4. This gives some easy but important conclusions which are well worth memorizing!
5. Let A be a matrix with $\operatorname{rownum}(A)=m$ and $\operatorname{colnum}(A)=n$. Let $L=T_{A}$. Then $\operatorname{rank}(A) \leq \min (m, n)$.
6. If $n>m$, then $\operatorname{rank}(A)<n=\operatorname{colnum}(A)$ and hence $N u l(A)$ is non zero. Consequently, $\operatorname{Ker}(L) \neq 0$ and L cannot be injective.
7. If $m>n$, then $\operatorname{rank}(A)<m=\operatorname{rownum}(A)$ and hence $\operatorname{Col}(A)$ is smaller than \Re^{m}. Consequently, $\operatorname{Image}(L) \neq \Re^{m}$ and hence L cannot be surjective.
8. If $n=m$ then $\operatorname{rank}(A)$ may be equal to this common value or may be smaller.

We discuss this next.
9. Observations continued.

If $\operatorname{rank}(A)$ equals this common value $n=m$, then the map L is both surjective and injective.
Def.33: Isomorphism. The Linear transformation L is said to be an isomorphism if it is both surjective and injective. In this case, it is a one-to-one onto map from \Re^{n} to \Re^{n}.
10. If $\operatorname{rank}(A)<n=\operatorname{colnum}(A)$, then $L=T_{A}$ is not injective.
11. If $\operatorname{rank}(A)<m=\operatorname{rownum}(A)$, then $L=T_{A}$ is not surjective.

12. Creating a Suitable Linear Transformation.

We now show how to use the matrix of a transformation to create a Linear Transformation with a desired property.
13. Suppose we want $L: \Re^{3} \rightarrow \Re^{3}$ to rotate all vectors about the z-axis.
14. Recall that the vectors $e_{1}^{3}, e_{1}^{3}, e_{1}^{3}$ are along the x, y, z axes respectively.
15. It is clear that we want

$$
L\left(e_{1}^{3}\right)=e_{2}^{3}, L\left(e_{2}^{3}\right)=-e_{1}^{3}, L\left(e_{3}^{3}\right)=e_{3}^{3} .
$$

16. Thus $L=T_{A}$ where $A=\left(\begin{array}{rrr}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$.
17. Now, we can find the rotated image of any desired vector, say $L\left(\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right)=\left(\begin{array}{rrr}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right)$.
