MA322

Week 4

September 10-14.

1 Summary

- 1. Linear Transformations from \Re^n to \Re^m .
- 2. Matrix of a given transformation.
- 3. Subspaces associated to a Linear Transformation.
- 4. Injective (one-to-one) and Surjective (onto) transformations.
- 5. Transformation with desired properties.

2 A Linear Transformation.

1. A Linear Transformation extends the idea of a function so that the domain is \Re^n rather than just the field of real numbers.

The word "Linear" also means that it has the simplest possible formula consisting of ordinary linear functions.

- 2. Def.27: A Linear Transformation is a map $L: \mathbb{R}^n \to \mathbb{R}^m$ satisfying two properties:
 - (a) L(v+w) = L(v) + L(w) for all $v, w \in \Re^n$ and
 - (b) L(cv) = cL(v) for all $v \in \Re^n$ and $c \in \Re$.

3. The map defined by $L\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ x-y \\ 2x+3y \end{pmatrix}$ defines a Linear Transformation from \Re^2 to \Re^3 .

4. Verification of the definition. This is checked from definition thus: Let $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ and $w = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$. Then L(v+w) equals:

$$L\begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \end{pmatrix}) = \begin{pmatrix} v_1 + w_1 + v_2 + w_2 \\ v_1 + w_1 - v_2 - w_2 \\ 2v_1 + 2w_1 + 3v_2 + 3w_2 \end{pmatrix}$$

which simplifies:

$$\begin{pmatrix} v_1 + v_2 \\ v_1 - v_2 \\ 2v_1 + 3v_2 \end{pmatrix} + \begin{pmatrix} w_1 + w_2 \\ w_1 - w_2 \\ 2w_1 + 3w_2 \end{pmatrix} = L(v) + L(w).$$

5.

$$L(cv) = L\begin{pmatrix} cv_1 \\ cv_2 \end{pmatrix} = \begin{pmatrix} cv_1 + cv_2 \\ cv_1 - cv_2 \\ 2cv_1 + 3cv_2 \end{pmatrix} = cL(v).$$

item When does the definition fail? The reason that the calculations work is that the formulas are homogeneous linear expressions in the coordinates of the vectors in \Re^n .

6. Thus

$$S\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y+1 \\ x-y \\ 2x+3y \end{pmatrix} \text{ and } T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x+y \\ xy \\ 2x+3y \end{pmatrix}$$

both fail the definition.

This should be checked.

3 Matrix of a Linear Transformation.

1. Here is an example of a map guaranteed to give a Linear Transformation. Let A be a matrix with real entries having m rows and n columns.

Def.28: The transformation T_A .

Define the map $T_A : \Re^n \to \Re^m$ by the formula $T_A(X) = AX$.

2. Then the following calculation shows that T_A is a Linear Transformation.

$$T_A(v+w) = A(v+w) = Av + Aw = T_A(v) + T_A(w)$$

and

$$T_A(cv) = A(cv) = cAv = cT_A(v).$$

This can be called as the Linear Transformation defined by A.

3. How to find the Matrix of a Linear Transformation?

(a) We first need some notation.

Notation: Define a vector e_i^n to be a column with n entries which are all zero except the *i*-th entry is 1.

(b) Thus for n = 3 we have:

$$e_1^3 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, e_2^3 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, e_3^3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

While working with \Re^n for a fixed n, we often drop the superscript n to simplify our display.

4. The matrix calculated.

Given a map $L: \Re^n \to \Re^m$, we calculate the *n* columns

$$v_1 = L(e_1^n), v_2 = L(e_2^n), \cdots, v_n = L(e_n^n).$$

Let A be the matrix with n columns v_1, v_2, \dots, v_n in order.

- 5. Then the theorem is: L is a Linear Transformation iff L(X) = AX for all $X \in \Re^n$. In other words, $L = T_A$.
- 6. Spaces associated with a Linear Transformation..

Given any matrix A with m rows and n columns, we have two natural sets associated with it.

Def.29: Column and Null spaces of a Matrix.

- (a) $Col(A) = \{AX \mid X \in \Re^n\}.$
- (b) $Nul(A) = \{X \mid AX = 0 \text{ and } X \in \Re^n\}.$

7. We now consider a Linear Transformation $L: \Re^n \to \Re^m$.

Def.30: Kernel and Image of a Linear Transformation.

- (a) $Image(L) = \{L(X) \mid X \in \Re^n\}.$
- (b) $Ker(L) = \{X \mid L(X) = 0 \text{ and } X \in \Re^n\}.$
- 8. We shall later define subspaces and show that Col A is a subspace of \Re^m and Nul A is a subspace of \Re^n .

4 Relationship with properties of a Linear Transformation.

- 1. Def.31: Injective or One-to-one transformation. A function is said to be one-to-one, if it maps different elements to different elements. For a linear transformation L, it is enough to check $L(v) \neq 0$ if $v \neq 0$. In other words if Ker(L) contains only the zero vector. In this case, we call the transformation to be injective or one-to-one.
- 2. **Def.32:** Surjective or onto transformation. A function is said to be onto if every element of the target space is an image of some element.

For a linear transformation $L: \Re^n \to \Re^m$, the target space is \Re^m and thus the condition reduces to $Image(L) = \Re^m$. In this case, we call the transformation to be surjective or onto.

5 The criteria for Injectivity and Surjectivity.

- 1. When $L = T_A$, we know that Ker(L) = Nul(A) and so we have $L = T_A$ is injective iff Nul(A) = 0, or rank(A) = colnum(A) = n.
- 2. When $L = T_A$, we also know that Image(L) = Col(A) and so we have $L = T_A$ is surjective iff $Col(A) = \Re^m$, or rank(A) = rownum(A) = m.
- 3. A Fundamental Fact: The rank of a matrix with m rows and n columns: It is obvious that rank(A) is less than or equal to min(m, n).
- 4. This gives some easy but important conclusions which are well worth memorizing!
- 5. Let A be a matrix with rownum(A) = m and colnum(A) = n. Let $L = T_A$. Then $rank(A) \leq min(m, n)$.
- 6. If n > m, then rank(A) < n = colnum(A) and hence Nul(A) is non zero. Consequently, $Ker(L) \neq 0$ and L cannot be injective.
- 7. If m > n, then rank(A) < m = rownum(A) and hence Col(A) is smaller than \Re^m . Consequently, $Image(L) \neq \Re^m$ and hence L cannot be surjective.
- 8. If n = m then rank(A) may be equal to this common value or may be smaller.

We discuss this next.

9. Observations continued.

If rank(A) equals this common value n = m, then the map L is both surjective and injective.

Def.33: Isomorphism. The Linear transformation L is said to be an isomorphism if it is both surjective and injective. In this case, it is a one-to-one onto map from \Re^n to \Re^n .

- 10. If rank(A) < n = colnum(A), then $L = T_A$ is not injective.
- 11. If rank(A) < m = rownum(A), then $L = T_A$ is not surjective.

12. Creating a Suitable Linear Transformation.

We now show how to use the matrix of a transformation to create a Linear Transformation with a desired property.

- 13. Suppose we want $L: \Re^3 \to \Re^3$ to rotate all vectors about the z-axis.
- 14. Recall that the vectors e_1^3, e_1^3, e_1^3 are along the x, y, z axes respectively.
- 15. It is clear that we want

$$L(e_1^3) = e_2^3, \ L(e_2^3) = -e_1^3, \ L(e_3^3) = e_3^3$$

16. Thus $L = T_A$ where $A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

17. Now, we can find the rotated image of any desired vector, say $L\left(\begin{pmatrix}1\\1\\1\end{pmatrix}\right) = \begin{pmatrix}0 & -1 & 0\\1 & 0 & 0\\0 & 0 & 1\end{pmatrix}\begin{pmatrix}1\\1\\1\end{pmatrix} = \begin{pmatrix}-1\\1\\1\end{pmatrix}$.