MA322

Week 5

September 17-21.

1 Summary

- 1. Matrices and their Operations.
- 2. Special matrices: Zero, Square, Identity.
- 3. Elementary Matrices, Permutation Matrices.
- 4. Voodoo Principle.

2 What is a Matrix.

1. A Matrix is a rectangular array A of numbers (also called scalars, in vector space terminology.) The number of rows is denoted by rownum(A) and the number of columns by colnum(A).

Convention: We write $A = A_{m \times n}$ to indicate that A has m rows and n columns and may also express this by saying that A has type (or size) $m \times n$.

- 2. Notation: An entry in the i^{th} row and j^{th} column of a matrix A may be conveniently denoted as A(i, j). Often in books this is written as A_{ij} or even a_{ij} if the author makes a convention of using corresponding small letters for entries.
- 3. The set of all matrices of type $m \times n$ with entries from a field K will be denoted by $M_K(m, n)$. We may drop the subscript K, if the scalars are already known, e,g, \Re .

3 Matrix Operations.

- 1. We wish to define two operations on $M_K(m, n)$.
- 2. Scalar Multiplication. Given a matrix A and a scalar $c \in K$, we define a new matrix cA defined by (cA)(i, j) = c(A(i, j)).
- 3. Thus if c = 5, then

for
$$A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & -5 \\ 2 & 3 & 0 \end{pmatrix}$$
 we have $5A = \begin{pmatrix} 5 & 0 & 15 \\ 10 & 5 & -25 \\ 10 & 15 & 0 \end{pmatrix}$.

3.1 Matrix Addition.

1. Matrix Addition. Given $A, B \in M_K(m, n)$, we define $A + B \in M_K(m, n)$ by

$$(A+B)(i,j) = A(i,j) + B(i,j).$$

- 2. We remark that this is just like the definition in \Re^n . Indeed, \Re^n can be thought as a special case of matrices, namely $\Re^n = M_{\Re}(n, 1)$.
- 3. Thus we get

$$\begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & -5 \\ 2 & 3 & 0 \end{pmatrix} + \begin{pmatrix} 4 & 1 & -3 \\ -2 & 4 & 5 \\ 2 & -3 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 4 & 0 & 1 \end{pmatrix}.$$

3.2 Matrix Product.

- 1. The most complicated and most important operation is the product.
- 2. Matrix Multiplication. Important: Given matrices A, B, the product AB is defined only if colnum(A) = rownum(B).
- 3. When this condition is satisfied, suppose that the common number colnum(A) = rownum(B) is equal to s.
- 4. Then we define

$$(AB)(i,j) = \sum_{k=1}^{s} A(i,k)B(k,j)$$

5. For example, we take matrices $A_{2\times 3}$ and $B_{3\times 2}$ to calculate:

$$AB = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 5 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 4 & -10 \end{pmatrix} = \begin{pmatrix} 0 & 15 \\ 13 & 2 \end{pmatrix}.$$

3.3 Comments on the Product.

- We had earlier defined AX when A had type $m \times n$ and X was a column with n entries, i.e. X had type $n \times 1$. This is a special case of our general product.
- It is important to note that if we multiply AB where $A = A_{m \times s}$ and $B = B_s \times n$, then $AB = AB_{m \times n}$.
- Thus, in our example of product we can see that BA would be a matrix of type 3×3 . Thus, in general, BA need not be equal to AB.
- Indeed, it is easy to make examples such that AB is defined, but BA is not! For example take, $A_{2\times 2}$ and $B_{2\times 3}$.

4 Some Special Matrices.

- The Zero Matrix 0 is a matrix with all zero entries. To simplify our notation, we often use the same symbol 0 for the scalar zero as well as any sized zero matrix. Its type is deduced from the equation that it fits in.
- A zero matrix serves the purpose of zero in matrix additions.
- Thus A + 0 = 0 + A = A for all A, where 0 is understood to be the same type as A.
- A Square Matrix is a matrix of type $n \times n$ for some positive integer n. These are the only matrices A for which AA is defined!
- The power A^m is defined only for a square matrix A and some positive integer m. It is interpreted as a product of m copies of A.
- Later, we shall extend the definition of A^m to zero or negative integer values of m.

4.1 The Unit Matrix.

- The Unit Matrix I is a square matrix A which has all zero entries except for 1's down the main diagonal. We often specify the type of the unit matrix I by writing I_n , if we have an $n \times n$ matrix.
- For example:

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- I behaves like 1 for multiplication. Thus, AI = IA for all matrices A.
- Important: If A is of type 2×3 , then the above equation has to be interpreted as $AI_3 = I_2A$.

4.2 The Transpose.

• A natural flipping operation converts all members of $M_K(m,n)$ into $M_K(n,m)$. We define A^T to be the matrix obtained by turning all rows of A into columns. Thus

$$\left(\begin{array}{rrrr}1&2&3\\4&5&6\end{array}\right)^T = \left(\begin{array}{rrrr}1&4\\2&5\\3&6\end{array}\right)$$

• It is easy to verify the following:

$$(A+B)^T = A^T + B^T, \ (cA)^T = c(A^T).$$

Also, $(A^T)^T = A$.

• With a little more work we check

$$(AB)^T = B^T A^T.$$

4.3 Symmetric Matrices.

- A matrix A is said to be symmetric if $A^T = A$. Also, A matrix A is said to be antisymmetric if $A^T = -A$. Note that A must be square for either of these definitions to hold.
- We leave it as an exercise to prove:
- Let A be any square matrix.
 - 1. $A + A^T$ is symmetric.
 - 2. $A A^T$ is antisymmetric.
 - 3. Challenge: A can be written as the sum B + C where B is symmetric and C is antisymmetric. Moreover, B and C are uniquely determined by A.

4.4 Elementary Matrices.

- Let $p \neq q$ with $1 \leq p, q \leq n$ and let $c \in K$. we define $E_{pq}^n(c)$ to be the matrix I_n where we have replaced the (p,q)-entry by c.
- Thus, for example

$$E_{23}^{3}(7) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 7 \\ 0 & 0 & 1 \end{pmatrix}, \quad E_{32}^{4}(-4) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -4 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

• Observation: We can remember $E_{pq}^n(c)$ as the matrix obtained from I_n by applying the elementary row operation $R_p + cR_q$.

4.5 Diagonal Matrices.

- A matrix similar to the Identity but slightly different is the diagonal matrix.
- A diagonal matrix $diag(a_1, a_2, \dots, a_n)$ is a square matrix of type $n \times n$ which has all zero entries, except for the entries a_1, a_2, \dots, a_n on the main diagonal.
- We can see that $diag(a_1, a_2, \dots, a_n)M$ gives a matrix which is same as M, except its successive n rows are multiplied by the scalars a_1, a_2, \dots, a_n .
- If we multiply the diagonal matrix on the right, then it multiplies the columns instead.

4.6 Permutation Matrices.

- Let $i \neq j$ be chosen with $1 \leq i, j \leq n$.
- We define the matrix P_{ij}^n by swapping the *i*-th row of I_n with its *j*-th row.
- Thus,

$$P_{23}^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, P_{14}^{4} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

- As before, we drop the superscript n when convenient.
- Multiplication by P_{ij} on the left swaps rows i, j while multiplication on the right permutes columns i, j.

5 Voodoo Principle.

- An important principle of working with matrices is the voodoo principle.
- Row operations.

If you wish to do something to the rows of a matrix M, make a matrix A obtained by performing it on I and then take AM.

Naturally, choose I so that colnum(I) = rownum(A).

• Example:

Let

$$M = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 3 & 4 & 5 \end{array}\right).$$

If you wish to swap its first two rows, then multiply it by P_{12}^3 . Thus you can check

$$P_{12}^2 M = \left(\begin{array}{rrr} 3 & 4 & 5 \\ 1 & 2 & 3 \end{array}\right).$$

5.1 More Voodoo.

• To perform $R_2 - 2R_1$ multiply by $E_{21}(-2)$.

$$\left(\begin{array}{rrr}1&0\\-2&1\end{array}\right)\left(\begin{array}{rrr}1&2&3\\3&4&5\end{array}\right)=\left(\begin{array}{rrr}1&2&3\\1&0&-1\end{array}\right)$$

- To multiply the third row by $\frac{1}{3}$, multiply by $diag(1, 1, \frac{1}{3})$.
- To make the sum of all three rows multiply by $(1 \ 1 \ 1)$.
- **Column operations.** These can be performed by the same idea, except you multiply the prepared matrix on the right.
- Thus $M\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$ permutes the two columns of M.