1 Summary

1. Matrices and their Operations.
2. Special matrices: Zero, Square, Identity.
3. Elementary Matrices, Permutation Matrices.
4. Voodoo Principle.

2 What is a Matrix.

1. A Matrix is a rectangular array A of numbers (also called scalars, in vector space terminology.) The number of rows is denoted by rownum (A) and the number of columns by colnum (A).
Convention: We write $A=A_{m \times n}$ to indicate that A has m rows and n columns and may also express this by saying that A has type (or size) $m \times n$.
2. Notation: An entry in the $i^{t h}$ row and $j^{t h}$ column of a matrix A may be conveniently denoted as $A(i, j)$. Often in books this is written as $A_{i j}$ or even $a_{i j}$ if the author makes a convention of using corresponding small letters for entries.
3. The set of all matrices of type $m \times n$ with entries from a field K will be denoted by $M_{K}(m, n)$. We may drop the subscript K, if the scalars are already known, e,g, \Re.

3 Matrix Operations.

1. We wish to define two operations on $M_{K}(m, n)$.
2. Scalar Multiplication. Given a matrix A and a scalar $c \in K$, we define a new matrix $c A$ defined by $(c A)(i, j)=$ $c(A(i, j))$.
3. Thus if $c=5$, then

$$
\text { for } A=\left(\begin{array}{rrr}
1 & 0 & 3 \\
2 & 1 & -5 \\
2 & 3 & 0
\end{array}\right) \text { we have } 5 A=\left(\begin{array}{rrr}
5 & 0 & 15 \\
10 & 5 & -25 \\
10 & 15 & 0
\end{array}\right) \text {. }
$$

3.1 Matrix Addition.

1. Matrix Addition. Given $A, B \in M_{K}(m, n)$, we define $A+B \in M_{K}(m, n)$ by

$$
(A+B)(i, j)=A(i, j)+B(i, j) .
$$

2. We remark that this is just like the definition in \Re^{n}. Indeed, \Re^{n} can be thought as a special case of matrices, namely $\Re^{n}=M_{\Re}(n, 1)$.
3. Thus we get

$$
\left(\begin{array}{rrr}
1 & 0 & 3 \\
2 & 1 & -5 \\
2 & 3 & 0
\end{array}\right)+\left(\begin{array}{rrr}
4 & 1 & -3 \\
-2 & 4 & 5 \\
2 & -3 & 1
\end{array}\right)=\left(\begin{array}{lll}
5 & 1 & 0 \\
0 & 5 & 0 \\
4 & 0 & 1
\end{array}\right) .
$$

3.2 Matrix Product.

1. The most complicated and most important operation is the product.
2. Matrix Multiplication. Important: Given matrices A, B, the product $A B$ is defined only if $\operatorname{colnum}(A)=\operatorname{rownum}(B)$.
3. When this condition is satisfied, suppose that the common number $\operatorname{colnum}(A)=\operatorname{rownum}(B)$ is equal to s.
4. Then we define

$$
(A B)(i, j)=\sum_{k=1}^{s} A(i, k) B(k, j) .
$$

5. For example, we take matrices $A_{2 \times 3}$ and $B_{3 \times 2}$ to calculate:

$$
A B=\left(\begin{array}{rrr}
1 & 2 & -1 \\
2 & 5 & 1
\end{array}\right)\left(\begin{array}{rr}
2 & 1 \\
1 & 2 \\
4 & -10
\end{array}\right)=\left(\begin{array}{rr}
0 & 15 \\
13 & 2
\end{array}\right) .
$$

3.3 Comments on the Product.

- We had earlier defined $A X$ when A had type $m \times n$ and X was a column with n entries, i.e. X had type $n \times 1$. This is a special case of our general product.
- It is important to note that if we multiply $A B$ where $A=A_{m \times s}$ and $B=B_{s} \times n$, then $A B=A B_{m \times n}$.
- Thus, in our example of product we can see that $B A$ would be a matrix of type 3×3. Thus, in general, $B A$ need not be equal to $A B$.
- Indeed, it is easy to make examples such that $A B$ is defined, but $B A$ is not! For example take, $A_{2 \times 2}$ and $B_{2 \times 3}$.

4 Some Special Matrices.

- The Zero Matrix 0 is a matrix with all zero entries. To simplify our notation, we often use the same symbol 0 for the scalar zero as well as any sized zero matrix. Its type is deduced from the equation that it fits in.
- A zero matrix serves the purpose of zero in matrix additions.
- Thus $A+0=0+A=A$ for all A, where 0 is understood to be the same type as A.
- A Square Matrix is a matrix of type $n \times n$ for some positive integer n. These are the only matrices A for which $A A$ is defined!
- The power A^{m} is defined only for a square matrix A and some positive integer m. It is interpreted as a product of m copies of A.
- Later, we shall extend the definition of A^{m} to zero or negative integer values of m.

4.1 The Unit Matrix.

- The Unit Matrix I is a square matrix A which has all zero entries except for 1 's down the main diagonal. We often specify the type of the unit matrix I by writing I_{n}, if we have an $n \times n$ matrix.
- For example:

$$
I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

- I behaves like 1 for multiplication. Thus, $A I=I A$ for all matrices A.
- Important: If A is of type 2×3, then the above equation has to be interpreted as $A I_{3}=I_{2} A$.

4.2 The Transpose.

- A natural flipping operation converts all members of $M_{K}(m, n)$ into $M_{K}(n, m)$. We define A^{T} to be the matrix obtained by turning all rows of A into columns. Thus

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)^{T}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right) .
$$

- It is easy to verify the following:

$$
(A+B)^{T}=A^{T}+B^{T}, \quad(c A)^{T}=c\left(A^{T}\right)
$$

Also, $\left(A^{T}\right)^{T}=A$.

- With a little more work we check

$$
(A B)^{T}=B^{T} A^{T}
$$

4.3 Symmetric Matrices.

- A matrix A is said to be symmetric if $A^{T}=A$. Also, A matrix A is said to be antisymmetric if $A^{T}=-A$.

Note that A must be square for either of these definitions to hold.

- We leave it as an exercise to prove:
- Let A be any square matrix.

1. $A+A^{T}$ is symmetric.
2. $A-A^{T}$ is antisymmetric.
3. Challenge: A can be written as the sum $B+C$ where B is symmetric and C is antisymmetric. Moreover, B and C are uniquely determined by A.

4.4 Elementary Matrices.

- Let $p \neq q$ with $1 \leq p, q \leq n$ and let $c \in K$. we define $E_{p q}^{n}(c)$ to be the matrix I_{n} where we have replaced the (p, q)-entry by c.
- Thus, for example

$$
E_{23}^{3}(7)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 7 \\
0 & 0 & 1
\end{array}\right), \quad E_{32}^{4}(-4)=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -4 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

- Observation: We can remember $E_{p q}^{n}(c)$ as the matrix obtained from I_{n} by applying the elementary row operation $R_{p}+c R_{q}$.

4.5 Diagonal Matrices.

- A matrix similar to the Identity but slightly different is the diagonal matrix.
- A diagonal matrix $\operatorname{diag}\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ is a square matrix of type $n \times n$ which has all zero entries, except for the entries $a_{1}, a_{2}, \cdots a_{n}$ on the main diagonal.
- We can see that $\operatorname{diag}\left(a_{1}, a_{2}, \cdots, a_{n}\right) M$ gives a matrix which is same as M, except its successive n rows are multiplied by the scalars $a_{1}, a_{2}, \cdots, a_{n}$.
- If we multiply the diagonal matrix on the right, then it multiplies the columns instead.

4.6 Permutation Matrices.

- Let $i \neq j$ be chosen with $1 \leq i, j \leq n$.
- We define the matrix $P_{i j}^{n}$ by swapping the i-th row of I_{n} with its j-th row.
- Thus,

$$
P_{23}^{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), P_{14}^{4}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

- As before, we drop the superscript n when convenient.
- Multiplication by $P_{i j}$ on the left swaps rows i, j while multiplication on the right permutes columns i, j.

5 Voodoo Principle.

- An important principle of working with matrices is the voodoo principle.
- Row operations.

If you wish to do something to the rows of a matrix M, make a matrix A obtained by performing it on I and then take $A M$.
Naturally, choose I so that $\operatorname{colnum}(I)=\operatorname{rownum}(A)$.

- Example:

Let

$$
M=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5
\end{array}\right)
$$

If you wish to swap its first two rows, then multiply it by P_{12}^{3}. Thus you can check

$$
P_{12}^{2} M=\left(\begin{array}{ccc}
3 & 4 & 5 \\
1 & 2 & 3
\end{array}\right)
$$

5.1 More Voodoo.

- To perform $R_{2}-2 R_{1}$ multiply by $E_{21}(-2)$.

$$
\left(\begin{array}{rr}
1 & 0 \\
-2 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 4 & 5
\end{array}\right)=\left(\begin{array}{rrr}
1 & 2 & 3 \\
1 & 0 & -1
\end{array}\right)
$$

- To multiply the third row by $\frac{1}{3}$, multiply by $\operatorname{diag}\left(1,1, \frac{1}{3}\right)$.
- To make the sum of all three rows multiply by ($\left.\begin{array}{lll}1 & 1 & 1\end{array}\right)$.
- Column operations. These can be performed by the same idea, except you multiply the prepared matrix on the right.
- Thus $M\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ permutes the two columns of M.

