MA322

Week 7-8

1 Summary

- 1. Vector space ideas.
- 2. Change of basis.
- 3. Matrix of transformation.

2 General Vector Spaces.

- 1. We briefly discuss axioms for general vector spaces. The best way to understand them is to study examples. You should consult a separate file of notes on vector spaces on this web page.
- 2. Never forget the basic example \Re^n . Also, keep in find new examples of P (the space of all polynomials in one variables over a field usually the field is \Re), function spaces with values in a field, space of matrices of a fixed size and so on.
- 3. We no longer presume that vectors are columns of numbers, and we no longer simply look at the rank of some matrix to answer questions, except after a careful analysis and argument.
- 4. We give examples of this next.

3 Reduction to the old case.

1. Consider a real vector space V with a given basis $B = \begin{pmatrix} p & q & r & s \end{pmatrix}$. This means, every vector $v \in V$ has a unique expression

$$v = ap + bq + cr + ds$$
 where $a, b, c, d \in \Re$.

2. We declare an important notation $[v]_B = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$, and say that $[v]_B$ is the coordinate vector of v with respect to

the basis B. Remember that B is an ordered basis! A change of order changes the coordinate vector.

3. This coordinate vector satisfies a fundamental identity (to be understood and memorized):

For every $v \in V$ and a basis B of V, we have: $v = B[v]_B$.

- 4. This defines a linear transformation $L: V \to \Re^4$ defined by $L(v) = [v]_B$.
- 5. Convince yourself from basic definitions that this L is an isomorphism. So, all concepts of linear dependence, independence etc. about subsets of V can be deduced by taking the image under L.
- 6. For example consider the following vectors in our vector space V.

$$v_1 = 2p - q + r, v_2 = p + q - 3r, v_3 = p + q + r$$
$$v_4 = q + s, v_5 = p + q + r + s, v_6 = 3p - 2r.$$

7. Using the basis $B = \begin{pmatrix} p & q & r & s \end{pmatrix}$, we calculate the corresponding coordinate vectors:

$$[v_1]_B = \begin{pmatrix} 2\\ -1\\ 1\\ 0 \end{pmatrix}, [v_2]_B = \begin{pmatrix} 1\\ 1\\ -3\\ 0 \end{pmatrix}, [v_3]_B = \begin{pmatrix} 1\\ 1\\ 1\\ 0 \end{pmatrix}$$
$$[v_4]_B = \begin{pmatrix} 0\\ 1\\ 0\\ 1 \end{pmatrix}, [v_5]_B = \begin{pmatrix} 1\\ 1\\ 1\\ 1 \\ 1 \end{pmatrix}, [v_6]_B = \begin{pmatrix} 3\\ 0\\ -2\\ 0 \end{pmatrix}.$$

3.1 Various questions.

- 1. Now we can ask and answer all questions about these vectors.
- 2. What are the dimensions of $Span\{v_1, v_2, v_3, v_4\}$ and $Span\{v_1, v_2, v_3, v_6\}$?
- 3. Are the vectors v_1, v_2, v_3, v_4 independent? Do they form a basis of V?
- 4. Prove that $C = (v_1 \quad v_2 \quad v_3 \quad v_5)$ is a basis of V.
- 5. Find $[v_4]_C$, $[v_3]_C$, $[v_2 5v_3]_C$.
- 6. Find the dimension and basis for $Span\{v_1, v_2, v_6\}$.
- 7. Find the dimension and basis for $Span\{v_1, v_2, v_4, v_6\}$.
- 8. Find the dimension and basis for $Span\{v_1, v_2, v_3, v_4, v_5, v_6\}$.

4 Change of basis.

1. Given a basis $B = (v_1 \ v_2 \ \cdots \ v_n)$ of an *n*-dimensional space, recall that we always have:

$$v = B[v]_B$$
 for any $v \in V$.

- 2. Given another basis $C = (w_1 \ w_2 \ \cdots \ w_n)$ we see that $w_i = B[w_i]_B$ for all $i = 1, \cdots, n$.
- 3. It follows that

$$C = (w_1 \ w_2 \ \cdots \ w_n) = B ([w_1]_B, [w_2]_B, \cdots, [w_n]_B).$$

Thus we see that

$$v = C[v]_C = B([w_1]_B, [w_2]_B, \cdots, [w_n]_B)[v]_C = BM_B^C[v]_C$$

where $M_B^C = ([w_1]_B, [w_2]_B, \cdots, [w_n]_B)$ is called the change of basis matrix from B to C.

4. Thus, $M_B^C[v]_C = [v]_B$.

4.1 Example.

- 1. Let V have a basis $\begin{pmatrix} u & v & w \end{pmatrix}$ and let $C = \begin{pmatrix} u+v & u+v+w & v+w \end{pmatrix}$. It can be shown that C is also a basis of V.
- 2. The coordinate vectors with respect to B of members of C are

$$\left(\begin{array}{c}1\\1\\0\end{array}\right), \left(\begin{array}{c}1\\1\\1\end{array}\right), \left(\begin{array}{c}0\\1\\1\end{array}\right).$$

3. Verify that

$$M_B^C = \left(\begin{array}{rrr} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right).$$

4. This says that $C = BM_B^C$. Show that $C(M_B^C)^{-1} = B$ or $M_C^B = (M_B^C)^{-1}$.

- 5. Using it or directly to calculate $[u]_C, [v]_C, [w]_C$.
- 6. The inverse comes out to be:

$$M_C^B = \begin{pmatrix} 0 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 0 \end{pmatrix}.$$

7. It follows that for any vector h with $[h]_B = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ we get

$$[h]_C = M_C^B \left(\begin{array}{c} a\\ b\\ c \end{array}\right).$$

8. In particular:

$$[u]_{C} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, [v]_{C} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, [w]_{C} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}.$$

5 Matrix of a Transformation.

- 1. Consider a vectors space V with basis B and vector space W with basis C. Explicitly, assume that $B = (v_1 \ v_2 \ \cdots \ v_n)$ and $C = (w_1 \ w_2 \ \cdots \ w_m)$.
- 2. Let $L: V \to W$ be a linear transformation. We define the matrix of transformation of L with respect to bases B, C to be the matrix $M = ([L(v_1)]_C [L(v_2)]_C \cdots [L(v_1)]_C)$.
- 3. The matrix can also be defined by the property that for all $v \in V$, we have $[L(v)]_C = M[v]_B$.

5.1 Example.

- 1. Let $V = P_3$ with basis $B = \begin{pmatrix} 1 & x & x^2 & x^3 \end{pmatrix}$ and $W = P_2$ with basis $C = \begin{pmatrix} 1 & x & x^2 \end{pmatrix}$. Let $L : P_3 \to P_2$ defined by L(p(x)) = p'(x) - xp''(x).
- 2. Note that $L(1) = 0, L(x) = 1, L(x^2) = 0, L(x^3) = -3x^2$.
- 3. Then the matrix of L with respect to the bases B, C is:

$$M = \left(\begin{array}{rrrr} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 \end{array}\right).$$

- 4. Next we show how to use this matrix to calculate properties of L.
- 5. As above, assume that $L: V \to W$ be a linear transformation and let M be its matrix with suitable bases B, C for V, W respectively.
- 6. We see that L is injective iff Ker(L) = 0 iff Nul(M) = 0.
- 7. We see that L is surjective iff Im(L) = W iff $Col(M) = \Re^m$ where $m = \dim(W) =$ the number of elements in the basis C.
- 8. Given vectors $u_1, u_2, \dots, u_s \in V$, we can test if their images $L(u_1), L(u_2), \dots, L(u_r)$ are linearly independent iff the columns $M[u_1]B, M[u_2]_B, \dots, M[u_r]_B$ are independent.
- 9. Given a vector $w \in W$ we can find a vector $v \in V$ with L(v) = w thus:

Solve the equation $MX = [w]_C$. Then v = BX is the answer. Of course, the number of solutions can be $0, 1, \infty$ by the usual theory of equations.

6 Example of using the matrix.

- 1. Recall the map $L: P_3 \to P_2$ studied earlier. Recall the matrix $M = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix}$. Now we decide its properties.
- 2. Note that rank(M) = 2 and thus its columns are dependent and Col(M) is a 2-dimensional space. Since $\dim(P_3) = 4 > 2 = rank(M) L$ is not injective. Moreover Ker(L) = BNul(M).

Since
$$Nul(M)$$
 has a basis $\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}$,

the Ker(L) has basis $1, x^2$.