Group 1
Daniel King
Lane Murphy
Jack Gilbert

Lecture Notes for 9/10/18

- Given $\mathrm{ax}+\mathrm{by}=\mathrm{c}$ where $\mathrm{a}, \mathrm{b}, \& \mathrm{c}$ are integers and the solutions are to be integers
o Example: $2 \mathrm{x}=3$
- Form is $a x=c$, and $b=0$
- Solution is $\mathrm{x}=\mathrm{c} / \mathrm{a}$ where a must divide c (notation $\mathrm{a} \mid \mathrm{c}$)
- Euclid's terminology is that "a measures c"
- Or a certain distance a can be measured by an amount of smaller distances c:

with potentially some leftover amount less than c : \qquad
0 If d measures a \& b, then it must measure c
o Problem restated: what is the greatest common measure, or greatest common denominator (gcd) of a \& b?
o Example: given $x=43$ and $y=31$
- To start, if you have a \& b given where a $<\mathrm{b}$, divide b by a
- Either you will have a leftover that is less than a or no leftover, i.e. a measures b
- In this case, 31 goes into 43 once with 12 leftover
- Repeating this process:
- 12 goes into 31 twice with 7 leftover
- 7 goes into 12 once with 5 leftover
- 5 goes into 7 once with 2 leftover
- 2 goes into 5 twice with 1 leftover
- 1 is a special entity, as 1 measures all numbers
- Can be rewritten as:

43	
31	1
12	2
7	1
5	1
2	2
1	-

- Euclid's method leads us to show that there is no common measure because the lowest left hand value is 1
- In modern terminology, 43 \& 31 are coprime

0 If there is a common measure between two numbers that is greater than 1 , it is obtained as the last step of the process above with 0 remainder in the right hand column
o In general terms, $a x+b y=c$ to be all integers is possible only if there is a gcd that divides (or measures) c
o Called Euclid's Division Algorithm

- States that there is a solution, but not how to solve this type of problem
- How to solve?
o Given a \& b with $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\mathrm{d}$, we can write $\mathrm{d}=\mathrm{ax}-$ by for some $\mathrm{x} \& \mathrm{y}$
o Called the Extended Euclidian Algorithm
- Not truly Euclidian because Euclid did not have the language to describe the subtraction required
o Appears in Aryabhata in 476 AD
- Arybhata describes process called "kuttka," or "pounding down" as a process of reducing numbers systematically
o Example: a third column can be added as shown below to the left of the given numbers, with a $0 \& 1$ on the bottom of this newly added row

	43	
	31	1
	12	2
	7	1
	5	1
1	2	2
0	1	-

o The numbers above the 0 \& 1 can be filled in by multiplying the topmost left hand value by the value in the far right column across it and then adding the number below it

- For the above, this would be the number 1 (next to 5), and this would yield $1 \times 2+0=2$
- Repeating for the remaining missing values yields:

18	43	
13	31	1
5	12	2
3	7	1
2	5	1
1	2	2
0	1	-

o Then the four values in the two left columns of the top rows can be set into the original equation using the bottom center value of 1 for d yields

- \quad ax $-\mathrm{by}=\mathrm{d} \rightarrow(18)(31)-(13)(43)=1$
o To find all possible solutions, the coefficients 18 \& 13 can have any multiple of their opposite term's coefficient added to them
- $(18+(\mathrm{t} 43)) 31-(13+(\mathrm{t} 31)) 43)=1$ for any integer t

0 Substituting the t terms yields:

- $(\mathrm{p}+18) 31-(\mathrm{q}+13) 43=-1$

0 Subtracting the original equation yields:

- $(\mathrm{p}+18) 31-(\mathrm{q}+13) 43=-1$
$-\quad(18) 31-\quad(13) 43=-1$
$p(31)-\quad q(43)=0$
o So p must be divided by 43 , or $(\mathrm{t} \times 43)=\mathrm{p}$, and q must be divided by 31 , or $(\mathrm{t} \times 31)=\mathrm{q}$

0 Using negative numbers, or $(-18)(31)-(-13) 43=1$

- Given known answer of (43)(31) - (31)(43) $=0$ and subtracting this from the above yields:
- (43-18) $31-(31-13) 43=1$, or
- $(25) 31-(18) 43=1$
- The Chinese Remainder Theorem is a specific problem cited from around 250 AD: find n such that n divided by 12 leaves a remainder of 2 and the same n divided by 7 leaves a remainder 5
o So $\mathrm{n}=12 \mathrm{x}+2=7 \mathrm{y}+5 \rightarrow 12 \mathrm{x}-7 \mathrm{y}=3$ (in the form as above examples)
0 Using division algorithm:

5	12	
3	7	1
2	5	1
1	2	2
0	1	-

0 Arranging the diagonal product of the top and left values so that a positive number results: (3) 12 - (5) $7=1$
0 Original formula required that it be equal to 3 , so multiplying right hand side and coefficients in parenthesis on left hand side by 3 yields: (9) $12-(15) 7=3$
o Subtracting the opposite coefficients from the parenthetical coefficients yields the final answers for x and y :
(9) $12-(15) 7=3$

- (7) (-12)
(2) 12 - (3) $7=3$
o Answer: $\mathrm{n}=12(2)+2=7(3)+5=26$

