Group 5 Notes 9/19
MA 330
Andrew Stewart, Rebecca Mickelson, and James Drury
A few Kuttaka Problems
6.) $n \equiv 2 \bmod 3$
$\mathrm{n} \equiv 3 \bmod 5$
$\mathrm{n} \equiv 5 \bmod 7$
Our idea to solve was to find a m such that
$\mathrm{m} \equiv 0 \bmod 3$
$\mathrm{m} \equiv 0 \bmod 5 \quad \mathrm{~m}=15$ works
$\mathrm{m} \equiv 1 \bmod 7$
$\mathrm{m} \equiv 0 \bmod 3$
$\mathrm{m} \equiv 1 \bmod 5 \quad \mathrm{~m}=21$ works
$\mathrm{m} \equiv 0 \bmod 7$
$\mathrm{m} \equiv 1 \bmod 3$
$\mathrm{m} \equiv 0 \bmod 5 \mathrm{~m}=35 \equiv 2 \bmod 3$ so $\mathrm{m}=70$ will work
$\mathrm{m} \equiv 0 \bmod 7$

This provides us with the answer
$2(70)+3(21)+5(15)=278=n$
This works because 70 is congruent to $1 \bmod 3$ but $0 \bmod 3$ and $0 \bmod 5$ and there are similar patterns with 21 and 15 so we are confident that $278=\mathrm{n}$.

To get a general answer we can add any multiple of $3 * 5 * 7$, which is equal to 105 , to 278 and the number will still satisfy all the congruencies so a general answer is $n=278+105 \mathrm{t}$ for any t . Also since $278>105$ we can subtract 105 without changing the congruence.
$278-105=173-105=68 \Rightarrow \mathrm{n}=68+105 \mathrm{t}$ for any t

This trick also works with ideals
\mathbb{Z} is the integers
$\mathbb{Q}(\sqrt{5})=\{a+b \sqrt{5} \mid a, b \in \mathbb{Q}\}$
Special thing about \mathbb{Z} is that it includes prime numbers and a fundamental theorem on integers.
The theorem states that every integer is uniquely a product of primes up to order.

Let $A=\mathbb{Z}(\sqrt{5})$
Can we say that $A=\{a+b \sqrt{5} \mid a, b \in \mathbb{Z}\}$ like we did with the rational numbers?
Consider $(\sqrt{5}+1)(\sqrt{5}-1)=5-1=4$ but $4=2^{2}$
So, the question is how does 2 factor?

In \mathbb{Z} we have " 2 "
So an ideal is $\mathbb{Z} /(2)=\{[0],[1]\}$ where [0] is all even numbers and [1] is all odd numbers.
We can do operations such as $[0]+[1]=[1],[1] *[1]=[1]$, and $[0] *[1]=[0]$

What if we consider $\mathrm{A} /(2)=\{[0],[1],[\sqrt{5}]\}$
Let $\bar{A}=\{\propto \in \mathbb{Q}(\sqrt{5})$ integral over $\mathbb{Z}\}$
Integral mean that $\propto^{n}+a_{1} \propto^{n-1}+\cdots+a_{n}=0$
Is $\mathrm{A}=\bar{A}$?
We have information to assume an equation of the form $\propto^{2}+a_{1} \propto+a_{2}=0$

Something worth trying
$\sqrt{5}+1 \in \mathrm{~A}$ but is $\frac{\sqrt{5}+1}{2} \in \bar{A} ?$

Fermat's Last Theorem

Suppose $n \geq 3$ then $x^{n}+y^{n}=z^{n}$ has a solution $(x, y, z)=(a, b, c)$ iff one of a, b, or c is 0 This was proved by Andrew Wiles in 1994.

If n is odd, then $x^{n}+y^{n}=(x+y)(x+\omega y) \ldots\left(x+\omega^{n-1} y\right)$ with $\omega^{n}=1$
Ex. $x^{3}+y^{3}=(x+y)\left(x^{2}+x y+y^{2}\right)=(x+y)(x+\omega y)\left(x+\omega^{2} y\right)$
To be true $1+\omega+\omega^{2}=0$

Ideals and rings
Let R be a ring. Then $\left(a_{1}, \ldots, a_{n}\right)$ is an ideal generated by a_{1}, \ldots, a_{n} $\left(a_{1}, \ldots, a_{n}\right)=\left\{x_{1} a_{1}+\cdots+x_{n} a_{n} \mid x_{i} \in \mathrm{R}\right.$.

