Approximating Square Roots

MA 330
Archimedes

Attempting to calculate the perimeter of an n -sided polygon, P_{n}.

Modern Interpretation

Using a limit would be how this would be done in the modern day.
$\lim _{n \rightarrow \infty} P_{n}=2 \pi r$

Using Geometry

Known Quantities

This forms an equal-lateral triangle.

Using the methods above, the approximate value of π was determined to be 3 , since for a 6 sided polygon exampled above would mean $n=6 \rightarrow 2 \pi=6 \rightarrow \pi=3$.

What about $n=12$?
$n=12 \rightarrow \sin \frac{\pi}{12} \rightarrow \sin \left(\frac{2 \pi}{6}\right)=2 \sin \frac{\pi}{12} \cos \frac{\pi}{12}$
To calculate the above, the double-angle identity must be used for cosine.
$\cos \frac{\pi}{6}=1-2 \sin ^{2} \frac{\pi}{12}$
$=\sqrt{1-\left(\frac{1}{2}\right)^{2}}$
$=\frac{\sqrt{3}}{2}$
This is why there was the need for an efficient way to approximate square roots.

Approximating Square Roots

The idea is to approximate a square root in terms of a rational number $\frac{p}{q}$.
$2^{2}-3\left(1^{2}\right)=1 \rightarrow\left(\frac{2}{1}\right)^{2}-3=\left(\frac{1}{1}\right)^{2}$
Suppose $(2-3 \sqrt{3})(2+3 \sqrt{3})=-2^{2}-3=1$
$(2-\sqrt{3})^{2}=2^{2}-2(2 \sqrt{3})+3=7-4 \sqrt{3}$
$7-4 \sqrt{3} \rightarrow(7-4 \sqrt{3})(7+4 \sqrt{3}) \rightarrow 7^{2}-4^{2} 3=1$
So what does this do?
$\frac{7}{4} \approx \sqrt{3}$ with an error of $\frac{1}{4^{2}}$.
General Form
$\left(p_{1}+q_{1} \sqrt{D}\right)=p_{1} p_{2}+p_{1} p_{2}+\left(p_{1} q_{2}+p_{2} q_{1}\right) \sqrt{D}$
This form was used in the 7th century by Brahmaqupta of India, he called it "bhārana".
$\left(p_{1}, q_{1}\right)\left(p_{2}, q_{2}\right) \rightarrow\left(p_{1} p_{2}+q_{1} q_{2}, p_{1} q_{2}+p_{2} q_{1}\right)$

This is similar to complex numbers.
$a+b i, c+d i \rightarrow a c-b d+(a d+b c) 2$
Where $a c-b d=i^{2}$
Each time the formulae gives an answer of 2 numbers (p and q), they can be plugged back in to obtain a more accurate pair of numbers.

This was called Pell's Equation even though Pell didn't do anything with it, originally Euler referred to it in this way and it caught on. In the 17th century Fermat challenged his colleagues to find a value for x and y to solve for $D=61$. His colleagues Lagrange, Brucker, and Wallis all gave long solutions based on continued fractions.

