MA 330
Notes for 10/12
Group 4
Find m and n such that $1+2+\ldots+m=(m+1)+\ldots+n$
$\frac{m(m+1)}{2}=\frac{n(n+1)}{2}-\frac{m(m+1)}{2}$
$n(n+1)=2 m(m+1)$
$4\left[(n+1 / 2)^{2}-1 / 4=2(m+1 / 2)^{2}-1 / 4\right]$

$(2 n+1)^{2}-1=2\left((2 m+1)^{2}-1\right)$
$(2 n+1)^{2}=2(2 m+1)^{2}-1$
$x^{2}-2 y^{2}=-1$
$(1,1)$ is a solution but not for n, m.
$D=2$
$(1,1,-1)$ is a 3 triple.

$$
\begin{equation*}
x^{2}-2 y^{2}=1 \longleftarrow \tag{3,2}
\end{equation*}
$$

* $(3,2,1)$
$(1,1,-1) *(3,2,1)=(3+2(2), 3+2,-1)=(7,5,-1)$
$2 n+1=7 \quad m=2 m+1$
$\mathrm{n}=3$
$5=2 m+1$
$\mathrm{m}=2$
so, $1+2=3$
$(7,5,-1) *(3,2,1)=(21+2(10), 14+15,-1)=(41,29,-1)$
$2 n+1=41$
$2 m+1=29$
$\mathrm{n}=20$ $m=14$
so, $1+2+3+\ldots+14=15+\ldots+20$
$m+(m+1)+\ldots+(n-1)+n=m n$ $\underline{n(n+1)}-\underline{m(m-1)}=m n$

22
$n(n+1)-m(m-1)=2 m n$

$$
\begin{aligned}
& (n+1 / 2)^{2}-1 / 4-(m-1 / 2)^{2}+1 / 4=2 m n \\
& 4\left[(n+1 / 2)^{2}-(m-1 / 2)^{2}=2 m n\right] \\
& (2 n-1)^{2}-(2 m-1)^{2}=8 m n \\
& 4 n^{2}+4 n+1-8 m n=4 m^{2}-4 m+1 \\
& 4 n^{2}+4 n(1-2 m)+1 \\
& (2 n+1-2 m)^{2}-(1-2 m)^{2}+1=4 m^{2}-4 m+1-1 \\
& (2(n-m)+1)^{2}=2(2 m-1)^{2}-1 \\
& x^{2}-y^{2}=-1
\end{aligned}
$$

same problem/solutions with different m, n combinations
t is an integer
$t-1, t, t+1$ are side lengths of a triangle and the area is an integer

Prove that $3\left(t^{2}-5\right)=h^{2} \quad$ with h being even.
$t^{2} \equiv 1 \bmod 4$
$3\left(4 x^{2}-4\right)=h \quad 2 x=t \quad$ *t must be even
Solve $x^{2}-3 y^{2}=1 \quad$ for some y
Heron's Formula

b

Set

$$
s=\frac{a+b+c}{2} \quad \text { (semi-perimeter) }
$$

Area $=$ sqrt[s(s-a)(s-b)(s-c)]

$$
\begin{aligned}
& s=\frac{t-1+t+t+1}{2}=\frac{3 t}{2} \\
& s-a=\frac{3 t}{2}-t+1=\frac{t}{2}+1 \\
& s-b=\frac{3 t}{2}-t=\frac{t}{2} \\
& s-c=\frac{3 t}{2}-t-1=\frac{t}{2}-1 \\
& \frac{(3 t)}{2}\left(\frac{t}{2}\right)\left(\frac{t}{2}+1\right)\left(\frac{t}{2}-1\right) \\
& \frac{3 t^{2}}{4}\left(\frac{t^{2}}{4}-1\right)=\frac{t^{2}}{4}\left(3\left(t^{2}-4\right)\right) \\
& t=0 \bmod 4 \\
& t=2 p+1 \\
& t^{2}=4 p^{2}+4 p+1
\end{aligned}
$$

