

)	PAGE
Preface			•			v
Table of contents						ix

CHAPTER I. EGYPTIAN AND PHOENICIAN MATHEMATICS.

The history of mathematics begins with that of the Ionian Greeks .	1
Greek indebtedness to Egyptians and Phoenicians	2
Knowledge of the science of numbers possessed by the Phoenicians.	2
Knowledge of the science of numbers possessed by the Egyptians	3
Knowledge of the science of geometry possessed by the Egyptians .	5
Note on ignorance of mathematics shewn by the Chinese	9

First Period. Mathematics under Greek Anfluence.

This period begins with the teaching of Thales, circ. 600 B.C., and ends with the capture of Alexandria by the Mohammedans in or about 641 A.D. The characteristic feature of this period is the development of geometry.

CHAPTER II. THE IONIAN AND PYTHAGOREAN SCHOOLS. CIRC. 600 B.C.—400 B.C.

Authorities							10.12			13
The Ionian S	School .									14
THALES, 640-	—550 в.с									14
His	geometr	ical di	iscover	ies						15
His	astrono	mical	teachir	ng.				34		17
Mamercus.	Mandry	atus.	Anaxi	mand	ler, 6	611-6	б45 в.	C.		17
B									Ъ	

		P	AGE
The Pythagorean School			19
Рутнадовая, 569—500 в.с		•	19
The Pythagorean geometry		•	24
The Pythagorean theory of numbers			27
Epicharmus. Hippasus. Philolaus. Archippus. Lysis	•	•	29
Archytas, circ. 400 b.c	•	•	29
His solution of the duplication of a cube			30
Theodorus. Timaeus. Bryso	•		31
Other Greek Mathematical Schools in the fifth century B.C.			31
Œnopides of Chios. Zeno of Elea. Democritus of Abdera		•	32

CHAPTER III. THE SCHOOLS OF ATHENS AND CYZICUS. CIRC. 420-300 B.C.

Authorities	34
Mathematical teachers at Athens prior to 420 B.C.	35
Anaxagoras. Hippias (The quadratrix). Antipho	35
The three problems in which these schools were specially interested	38
HIPPOCRATES of Chios, circ. 420 B.C	39
Letters used to describe geometrical diagrams	39
Introduction in geometry of the method of reduction .	40
The quadrature of certain lunes	40
The Delian problem of the duplication of the cube .	42
Plato, 429-348 B.C.	43
Introduction in geometry of the method of analysis .	. 44
Theorem on the duplication of the cube	45
Eudoxus, 408-355 b.c	. 45
Theorems on the golden section	. 46
Invention of the method of exhaustions	. 46
Pupils of Plato and Eudoxus	. 47
MENAECHMES, circ. 340 B.C.	. 48
Discussion of the conic sections	. 48
His two solutions of the duplication of the cube	. 49
Aristaeus. Theaetetus	. 49
Aristotle, 384-322 B.C	. 49
Questions on mechanics. Letters used to indicate magnitudes	. 50

CHAPTER IV. THE FIRST ALEXANDRIAN SCHOOL. CIRC. 300-30 B.C.

	PAGE
Authorities	51
Foundation of Alexandria	52
The third century before Christ	53
EUCLID, circ. 330-275 B.C	53
Euclid's Elements	54
The Elements as a text-book of geometry	56
The <i>Elements</i> as a text-book of the theory of numbers	59
Euclid's other works	62
Aristarchus, circ. 310—250 B.c	63
Method of determining the distance of the sun	64
Conon. Dositheus. Zeuxippus. Nicoteles	65
Archimedes, 287—212 B.C	65
His works on plane geometry	68
His works on geometry of three dimensions	71
His two papers on arithmetic, and the "cattle problem" .	72
His works on the statics of solids and fluids	74
His astronomy	77
The principles of geometry assumed by Archimedes	77
Apollonius, circ. 260-200 b.c	77
His conic sections	78
His other works	81
His solution of the duplication of the cube	82
Contrast between his geometry and that of Archimedes .	83
Eratosthenes, 275-194 B.C. (The sieve)	83
The second century before Christ	85
Hypsicles (Euclid, bk. xiv). Nicomedes (The conchoid)	85
Diocles (The cissoid). Perseus. Zenodorus	86
HIPPARCHUS, circ. 130 B.C	86
Foundation of scientific astronomy and of trigonometry .	87
HERO of Alexandria, circ. 125 B.C	89
Foundation of scientific engineering and of land-surveying	89
Area of a triangle determined in terms of its sides	90

0

62

					I	PAGE
The first century before Christ .	•					92
Theodosius. Dionysodorus			•	•		92
End of the First Alexandrian School				•	•	93
Egypt constituted a Roman province						93

CHAPTER V. THE SECOND ALEXANDRIAN SCHOOL. 30 B.C.-641 A.D.

Authorities	94
The first century after Christ	95
Serenus. Menelaus.	95
Nicomachus	95
Introduction of the arithmetic current in mediaeval Europe	96
The second century after Christ	96
Theon of Smyrna. Thymaridas	96
Ртоlему, died in 168	97
The Almagest	97
Ptolemy's geometry	99
The third century after Christ	100
Pappus, circ. 280	100
The $\Sigma v \mu a \gamma \omega \gamma \eta$, a synopsis of Greek mathematics .	100
The fourth century after Christ	102
Metrodorus. Elementary problems in algebra	103
0 I 0	104
	105
	106
	106
	111
	111
	112
	112
(112
Proclus, 412–485. Damascius (Euclid, bk, xy). Eutocius	113

	PAGE
Roman Mathematics	114
Kind and extent of the mathematics read at Rome	114
Contrast between the conditions for study at Rome and at Alexandria	115
End of the Second Alexandrian School	116
The capture of Alexandria, and end of the Alexandrian Schools .	116

CHAPTER VI. THE BYZANTINE SCHOOL. 641-1453.

Preservation of works of the great Greek mathematicians			118
Hero of Constantinople. Psellus. Planudes. Barlaam			119
Argyrus, Nicholas Rhabdas of Smyrna. Pachymeres .			120
Moschopulus (Magic squares)			120
Capture of Constantinople, and dispersal of Greek mathem	aticia	ns	122

CHAPTER VII. SYSTEMS OF NUMERATION AND PRIMITIVE

ARITHMETIC.

Use of the abacus or swan-pan for practical calculation 12 Methods of representing numbers in writing 12 The Roman and Attic symbols for numbers 12 The Alexandrian (or later Greek) symbols for numbers 12 Greek arithmetic 12	Authorities	123
Methods of representing numbers in writing 12 The Roman and Attic symbols for numbers 12 The Alexandrian (or later Greek) symbols for numbers 12 Greek arithmetic 14	Methods of counting and indicating numbers among primitive races	123
The Roman and Attic symbols for numbers 12 The Alexandrian (or later Greek) symbols for numbers 12 Greek arithmetic 12	Use of the abacus or swan-pan for practical calculation	125
The Alexandrian (or later Greek) symbols for numbers 12 Greek arithmetic 13	Methods of representing numbers in writing	128
Greek arithmetic	The Roman and Attic symbols for numbers	129
	The Alexandrian (or later Greek) symbols for numbers	129
Adoption of the Arabic system of notation among civilized races . 15	Greek arithmetic	130
	Adoption of the Arabic system of notation among civilized races .	131

Second Period. Mathematics of the Middle Ages and of the Renaissance.

This period begins about the sixth century, and may be said to end with the invention of analytical geometry and of the infinitesimal calculus. The characteristic feature of this period is the creation of modern arithmetic, algebra, and trigonometry.

CHAPTER VIII. THE RISE OF LEARNING IN WESTERN EUROPE. CIRC. 600—1200,

		PAGE
Authorities		. 134
Education in the sixth, seventh, and eighth centuries .		. 134
The Monastic Schools		. 134
Boethius, circ. 475-526		. 135
Mediaeval text-books in geometry and arithmetic		. 136
Cassiodorus, 480-566. Isidorus of Seville, 570-636 .		. 136
The Cathedral and Conventual Schools		. 137
The Schools of Charles the Great		. 137
Alcuin, 735-804		. 137
Education in the ninth and tenth centuries		. 139
Gerbert (Sylvester II.), died in 1003. Bernelinus .		. 140
The Early Mediaeval Universities		. 142
The earliest universities arose during the twelfth century		. 142
The three stages through which the mediaeval universities pa	ssed	. 143
Footnote on the early history of Paris, Oxford, and Cambridg	e	. 144
Outline of the course of studies in a mediaeval university		. 148

CHAPTER IX. THE MATHEMATICS OF THE ARABS.

Authorities							150
Extent of mathematics	s obtained	d from	n Greek	sources			150
The College of Scribe	s .						151

xiv

	PAGE
Extent of mathematics obtained from the (Aryan) Hindoos	152
Акул-Вната, circ. 530	153
The chapters on algebra & trigonometry of his Aryabhathiya	153
Вканмадирта, сігс. 640	154
The chapters on algebra and geometry of his Siddhanta .	154
Внаѕкава, circ. 1140	156
The Lilivati or arithmetic; decimal numeration used .	157
The Bija Ganita or algebra	159
The development of mathematics in Arabia	161
Alkarismi or Al-Khwarizmī, circ. 830	162
His Al-gebr we'l mukabala	163
His solution of a quadratic equation	163
Introduction of Arabic or Indian system of numeration .	164
TABIT IBN KORRA, 836—901; solution of a cubic equation	164
Alkayami; solutions of various cubic equations	165
Alkarki, Development of algebra	166
Albategni. Albuzjani or Abul-Wafa. Development of trigonometry	166
Alhazen. Abd-al-gehl. Development of geometry	167
Characteristics of the Arabian school	168

CHAPTER X. INTRODUCTION OF ARABIAN WORKS INTO EUROPE. CIRC. 1150-1450.

The eleventh century	170
Geber ibn Aphla. Arzachel	170
The twelfth century	170
Adelhard of Bath. Ben-Ezra. Gerard. John Hispalensis .	170
The thirteenth century	172
LEONARDO OF PISA, circ. 1175-1230	172
The Liber Abaci, 1202	173
The introduction of the Arabic numerals into commerce	173
The introduction of the Arabic numerals into science	173
The mathematical tournament	174
Frederick II., 1194—1250	175

XV

								PAGE
JORDANUS, circ. 1220.								176
His geometry an	nd a	lgoris	m.					177
His De Numeris	Da	tis, a	sync	opate	d alg	ebra		177
Holywood		•			. •			179
ROGER BACON, 1214-129								180
Campanus			•					182
The fourteenth century								183
Bradwardine. Oresmus								183
The reform of the univer	sity	curri	cului	n.				184
The fifteenth century.								185
Beldomandi								186

CHAPTER XI. THE DEVELOPMENT OF ARITHMETIC. CIRC, 1300-1637.

Authori	ties			۰.						187
The Boe	thian arithmetic	з								187
Algorism	n or modern arit	hmetic		••	•		•		•	188
The Ara	bic (or Indian)	symbols :	histo	ry of	•		•			189
Introdu	ctión into Europ	e by scier	nce, c	omme	rce, a	and ca	alenda	ars		191
Improve	ements introduce	ed in algo	ristic	arithr	netic	•		۰.		193
(i)	Simplification	of the fun	dame	ntal p	roces	sses				193
(ii)	Introduction of	signs for	addit	ion an	d sul	otract	ion, ci	irc.1	489	200
(iii)	Invention of lo	garithms,	1614						d Ie	200
(iv)	Use of decimal	s. 1619 .								202

CHAPTER XII. THE MATHEMATICS OF THE RENAISSANCE. CIRC. 1450-1637.

Authorities		203
Effect of invention of printing. The renaissance .		203
The development of syncopated algebra and trigonometry	1. N.	205
REGIOMONTANUS, 1436-1476		205
His De Triangulis (not printed till 1496) .		206
Purbach, 1423-1461. Cusa, 1401-1464		209

xvi

		PAGE
Chuquet, circ. 1484		210
Introduction of symbols + and - into German algorism		210
Widman, circ. 1489		210
Pacioli or Lucas di Burgo, circ. 1500		212
His arithmetic and geometry, 1494		213
Leonardo da Vinci, 1452—1519		216
Dürer, 1471—1528. Copernicus, 1473—1543		217
Record, 1510—1588; introduction of symbol for equality .		218
Rudolff, circ. 1525. Riese, 1489-1559		218
Stifel, 1486-1567. His Arithmetica Integra		219
TARTAGLIA, 1500-1559		220
His solution of a cubic equation, 1535		221
V His arithmetic, 1556—60		222
Cardan, 1501—1576		224
His Ars magna (1545), the third work printed on algeb	ca.	226
His solution of a cubic equation		228
Ferrari, 1522-1565; solution of a biquadratic equation .		228
Rheticus, 1514—1576. Maurolycus, 1494—1575		229
Borrel. Xylander. Commandino. Peletier. Romanus. Pitis	scus	230
Ramus, 1515—1572		230
Bombelli, circ. 1570	•	231
The development of symbolic algebra		232
Vieta, 1540—1603		233
Introduction of symbolic algebra, 1591		234
Vieta's other works		236
Girard, 1590-1633. Development of trigonometry and algebra		238
NAPIER, 1550-1617. Introduction of logarithms, 1614 .		239
Briggs, 1556—1631. Calculations of tables of logarithms .		240
HARRIOT, 1560-1621. Development of analysis in algebra .		241
Oughtred, 1574-1660		241
The origin of the more common symbols in algebra		243

CHAPTER XIII. THE CLOSE OF THE RENAISSANCE. CIRC. 1586-1637.

The development of mechanics and experimental methods .		247
Stevinus, 1548—1603		247
Commencement of the modern treatment of statics,	1586	248

			PAGE
	GALILEO, 1564-1642		249
	Commencement of the science of dynamics .		250
	Galileo's astronomy		251 -
	Francis Bacon, 1561-1626		253
	Guldinus, 1577—1643		254
	Wright, 1560-1615. Construction of scientific maps .		255
	Snell, 1591-1626. Discovery of law of refraction in optics		256
	Revival of interest in pure geometry		256
	Kepler, 1571—1630		256
	His Paralipomena, 1604; principle of continuity		258
	His Stereometria, 1615; use of infinitesimals .		258
	Kepler's laws of planetary motion, 1609 and 1619		258 -
7	Desargues, 1593-1662		259
	His Brouillon project; use of projective geometry		259
	Mathematical knowledge at the close of the renaissance .		261

Third Period. Modern Mathematics.

This period begins with the invention of analytical geometry and the infinitesimal calculus. The mathematics is far more complex than that produced in either of the preceding periods: but it may be generally described as characterized by the development of analysis, and its application to the phenomena of nature.

CHAPTER XIV. FEATURES OF MODERN MATHEMATICS.

Invention of analytical geometry and the	met	hod o	of ind	ivisil	oles		265
Invention of the calculus					· .		265
Development of mechanics			•				266
Application of mathematics to physics	•	•					267
Recent development of pure mathematics		•			r = 0	•	268

xviii

CHAPTER XV. HISTORY OF MATHEMATICS FROM DESCARTES TO HUYGENS. CIRC. 1635-1675.

	PAGE
Descartes, 1596-1650	270
His views on philosophy	273
His invention of analytical geometry, 1637	273
His algebra, optics, and theory of vortices	277
Cavalieri, 1598—1647	279
The method of indivisibles	280
PASCAL, 1623-1662	282
His geometrical conics	284
The arithmetical triangle	285
Foundation of the theory of probabilities, 1654	286
His discussion of the cycloid	288
Wallis, 1616-1703	288
The Arithmetica Infinitorum, 1656	289
Law of indices in algebra	290
Use of series in quadratures	290
Earliest rectification of curves, 1657	291
Wallis's analytical conics, algebra, and other works	292
Fermat, 1601-1665	293
His investigations on the theory of numbers	295
His use in geometry of analysis and of infinitesimals .	299
Foundation of the theory of probabilities, 1654	300
Huygens, 1629-1695	302
The Horologium Oscillatorium, 1673	303
The undulatory theory of light	304
Other mathematicians of this time	306
Bachet de Méziriae	306
Mydorge. Mersenne; theorem on primes and perfect numbers .	307
De Beaune. Roberval. Van Schooten	308
Saint-Vincent. Torricelli. Hudde	309
Frénicle. Laloubère. Kinckhuysen. Courcier. Ricci. Mercator	310
Barrow; the tangent to a curve determined by the angular coefficient	311
Brouncker	314
James Gregory; distinction between convergent and divergent series.	315
Sir Christopher Wren	315
Hooke	316
Collins. Fell. Sluze	317
Tschirnhausen. Roemer	318

CHAPTER XVI. THE LIFE AND WORKS OF NEWTON.

			PAGE
Newton's school and undergraduate life	•	•	320
Investigations in 1665-1666 on fluxions, optics, and gravita	tion	•	321
His views on gravitation	•	•	322
Work in 1667—1669	•		323
Elected Lucasian professor, 1669			324
Optical lectures and discoveries, 1669-1671	•		324
Emission theory of light, 1675			326
Letters to Leibnitz, 1676			327
Discoveries on gravitation, 1679			330
Discoveries and lectures on algebra, 1673-1683			331
Discoveries and lectures on gravitation, 1684			333
The Principia, 1685—1686			334
Footnote on the contents of the Principia			336
Publication of the Principia		1	343
Investigations and work from 1686 to 1696			344
Appointment at the mint, and removal to London, 1696.			345
Publication of the Optics, 1704			345
Appendix on classification of cubic curves .			346
Appendix on quadrature by means of infinite series			348
Appendix on method of fluxions			349
The invention of fluxions and the infinitesimal calculus .		-	352
The dispute as to the origin of the differential calculus .			352
Newton's death, 1727			353
List of his works		1	353
Newton's character			354
Newton's discoveries		•	356
	•	•	000

CHAPTER XVII. LEIBNITZ AND THE MATHEMATICIANS

OF THE FIRST HALF OF THE EIGHTEENTH CENTURY.

Leibnitz and the Bernoullis		359
Leibnitz, 1646—1716		359
His system of philosophy, and services to literature		361
The controversy as to the origin of the calculus		362
His memoirs on the infinitesimal calculus .		368
His papers on various mechanical problems .		369
Characteristics of his work		371

XX

	I	PAGE
JAMES BERNOUILLI, 1654-1705		372
JOHN BERNOUILLI, 1667-1748		373
The younger Bernouillis		374
The development of analysis on the continent		375
L'Hospital, 1661—1704		375
Varignon, 1654-1722		376
De Montmort. Nicole. Parent. Saurin. De Gua		377
Cramer, 1704-1752. Riccati, 1676-1754. Fagnano, 1682-1766		378
Viviani, 1622—1703. De la Hire, 1640—1719		379
Rolle, 1652—1719		380
CLAIRAUT, 1713-1765		380
D'Alembert, 1717-1783		382
Solution of a partial differential equation of the second orde	r	383
Daniel Bernoulli, 1700–1782		385
The English mathematicians of the eighteenth century	•	386
David Gregory, 1661-1708. Halley, 1656-1742		387
Ditton, 1675-1715		388
BROOK TAYLOR, 1685—1731	•	388
Taylor's theorem	•	388
Taylor's physical researches	•	389
Cotes, 1682—1716		390
Demoivre, 1667—1754		391
MACLAURIN, 1698—1746		392
His geometrical discoveries		392
The Treatise of fluxions, and propositions on attractions		394
Thomas Simpson, 1710-1761		396

CHAPTER XVIII. LAGRANGE, LAPLACE, AND THEIR CON-TEMPORARIES. CIRC. 1740-1830.

Characteristics of the mathematics of the period .		398
The development of analysis and mechanics		399
Euler, 1707—1783		399
The Introductio in Analysin Infinitorum, 1748		400
The Institutiones Calculi Differentialis, 1755		402
The Institutiones Calculi Integralis, 1768-1770		402
The Anleitung zur Algebra, 1770 .		403
His works on mechanics and astronomy .		404

xxi

	PAGE
Lambert, 1728—1777	406
Bézout, 1730-1783. Trembley, 1749-1811. Arbogast, 1759-1803	407
LAGRANGE, 1736-1813	407
Memoirs on various subjects	408
The Mécanique analytique, 1788	413
The Théorie des fonctions and Calcul des fonctions	416
The Résolution des équations numériques, 1798	416
Characteristics of his work	417
LAPLACE, 1749—1827	418
Use of the potential and spherical harmonics	419
Memoirs on problems in astronomy	420
The Mécanique céleste and Exposition du système du monde	421
The Théorie analytique des probabilités, 1812	423
Laplace's physical researches	424
Character of Laplace	426
LEGENDRE, 1752-1833	427
His memoirs on attractions	427
The Théorie des nombres, 1798	428
The Calcul intégral and the Fonctions elliptiques	430
Pfaff, 1765—1825	430
The creation of modern geometry	431
Monge, 1748—1818	431
Lazare Carnot, 1753—1823	433
Poncelet, 1788—1867	434
The development of mathematical physics	434
Cavendish. Rumford. Young. Wollaston. Dalton	435
FOURIER, 1768-1830	437
Sadi Carnot; foundation of thermodynamics	439
POISSON, 1781—1840	439
Ampère. Fresnel. Biot. Arago	442
The introduction of analysis into England	444
Ivory, 1765—1845	445
The Cambridge Analytical School	445
Woodhouse, 1773—1827	446
Peacock, 1791—1858	447
Babbage, 1792—1871. Sir John Herschel, 1792—1871.	447

xxii

CHAPTER XIX. MATHEMATICS OF RECENT TIMES.

	PAGE
Difficulty in discussing the mathematics of this century	449
Account of contemporary work not intended to be exhaustive	449
Authorities	450
GAUSS, 1777—1855	451
Investigations in astronomy, electricity, &c	452
The Disquisitiones Arithmeticae, 1801	454
His other discoveries	455
Comparison of Lagrange, Laplace, and Gauss	456
Development of the Theory of Numbers	457
Dirichlet, 1805—1859	457
Eisenstein, 1823—1852	457
Henry Smith, 1826-1883	458
Notes on other writers on the Theory of Numbers	461
Development of the Theory of Functions of Multiple Periodicity .	463
ABEL, 1802—1829	463
Јасові, 1804—1851	464
RIEMANN, 1826—1866	465
Memoir on functions of a complex variable, 1850	465
Memoir on hypergeometry, 1854	466
Investigations on functions of multiple periodicity, 1857.	468
Paper on the theory of numbers	468
Notes on other writers on Elliptic and Abelian Functions	468
The Theory of Functions	470
Development of Higher Algebra	471
Салсну, 1759—1857	471
Development of analysis and higher algebra	473
Argand, born 1825; geometrical interpretation of complex numbers	474
SIR WILLIAM HAMILTON, 1805-1865	474
Introduction of quaternions, 1852	475
Hamilton's other researches	475
GRASSMANN, 1809—1877	476
The introduction of non-commutative algebra, 1844	476
DE MORGAN, 1806-1871	476
Notes on other writers on Algebra, Forms, and Equations	477
Notes on modern writers on Analytical Geometry	480

DIAT

				PAGE
Notes on other writers on Analysis		ε.		481
Development of Synthetic Geometry			-	482
Steiner, 1796—1863				482
Von Staudt, 1798-1867				483
Other writers on modern Synthetic Geometry .				484
Development of the Theory of Graphics				484
Clifford, 1845-1879				485
Development of Theoretical Mechanics and Attrac	ctions	ч. <u>-</u> П		486
Green, 1793—1841			١.	486
Notes on other writers on Mechanics				487
Development of Theoretical Astronomy				488
Bessel, 1784—1846				489
Leverrier, 1811—1877				489
Adams, 1819—1892				490
Notes on other writers on Theoretical Astronomy			~ 1	491
Development of Mathematical Physics				493
-				

INDEX . . PRESS NOTICES .

ERRATA.

499

521

Page 22, line 26. For 410 read 409-356.

Page 238, line 18. For Vieta read Snell.

Page 338. Dele lines 6-10 of footnote.

Page 339, line 15 of note. For second and third editions read third edition.

Page 339, line 18 of note. For Cotes read Pemberton.

Page 390, line 11. For should have learnt read might have known.