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PREFACE.

THE subject-matter of this book is a historical sum

mary of the development of mathematics, illustrated by the

lives and discoveries of those to whom the progress of the

science is mainly due.

The first edition was substantially a transcript of some

lectures which I delivered in the year 1888 with the

object of giving a sketch of the subject that should be

intelligible to any one acquainted with the elements of

mathematics. In this edition I have revised the whole

and have made some changes in detail, but the general

character of the work as a popular account of the leading

facts in the history of mathematics remains unaltered.

The scheme of arrangement will be gathered from the

table of contents at the end of this preface. Shortly it is

as follows. The first chapter contains a brief statement

of what is known concerning the mathematics of the

Egyptians and Phoenicians: this is introductory to the

history of mathematics under Greek influence, but as the

Ionian Greeks were considerably indebted to the Egyptians
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and Phoenicians it is convenient to commence with a

concise account of the attainments of the latter. The

subsequent history is divided into three periods: first,

that under Greek influence, chapters II. to VII.; second,

that of the middle ages and renaissance, chapters VIII. to

xiii.; and lastly that of modern times, chapters XIV. to

XIX.

In discussing the mathematics of these periods I have

confined myself to giving the leading events in the history,

and frequently have passed in silence over men or works

whose influence was comparatively unimportant; doubtless

an exaggerated view of the discoveries of those mathe

maticians mentioned may be caused by the non-allusion

to minor writers who preceded and prepared the way for

them, but in all historical sketches this is to some extent

inevitable, and I have done my best to guard against it

by interpolating remarks on the progress of the science at

different times. Perhaps also I should here state that

generally I have omitted all reference to practical astro

nomers unless there was some mathematical interest in

the theories they proposed. In quoting results I have

commonly made use of modern notation
;
the reader must

therefore recollect that, while the matter is the same as

that of any writer to whom allusion is made, his proof
is sometimes translated into a more convenient and

familiar language.

I am of opinion that it is undesirable to overload a

popular account with a mass of detailed references.

Usually therefore I have collected in a single footnote for

each school or mathematician references to the chief
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authorities on which I have based my account or with

which I am acquainted, and I have not given the

authority for every particular fact mentioned unless I

regard it as difficult to verify without a definite reference.

I hope that these footnotes will supply the means of

studying in detail the history of mathematics at any

specified period should the reader desire to do so.

The greater part of my account is a compilation

from existing histories or memoirs, as indeed must be

necessarily the case where the works discussed are so

numerous and cover so much ground ;
when authorities

disagree I have generally stated only that view which

seems to me to be the most probable, but if the question

be one of importance I believe that I have always indi

cated that there is a difference of opinion about it.

I have struck out the long list of standard histories

which I published in the first edition. Most of the facts and

opinions for the first and second periods into which I have

divided the history are quoted or criticized in the closely

printed pages of M. Cantor s elaborate Vorlesungen ilber

die Geschichte der Mathematik, to which the reader who

desires further information on any particular point would

naturally turn. To that work, to H. HankeFs brilliant

but fragmentary Geschichte der Mathematik, Leipzig, 1874;

and in a less degree to F. Hoefer s Histoire des mathe-

matiques, Paris, third edition, 1886, and to M. Marie s

Histoire des sciences mathematiques et physiques, 12

volumes, Paris, 1883 1888, I am usually indebted when

no specific reference is given : I frequently refer to these

works by the names of the authors only. For the last
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two or three centuries the general histories give but little

assistance, and the student must rely mainly on special

monographs.

My thanks are due to; various friends and corre

spondents who have eaUteS my atterition to points in the

first edition. No one who has not been engaged in such

work can realize how difficult it is to settle many a small

detail or how persistently mistakes which have once got

into print are reproduced in every subsequent account.

I shall be grateful for notices of additions or corrections

which may occur to any of my readers.

W. W. ROUSE BALL.

TRINITY COLLEGE, CAMBRIDGE.

April 21, 1893.
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CHAPTEE I.

EGYPTIAN AND PHOENICIAN MATHEMATICS.

THE history of mathematics cannot with certainty be

traced back to any school or period before that of the Ionian

Greeks, but the subsequent history may be divided into three

periods, the distinctions between which are tolerably well

marked. The first period is that of the history of mathematics

under Greek influence, this is discussed in chapters n. to vn. :

the second is that of the mathematics of the middle ages and

the renaissance, this is discussed in chapters VIH. to xiu. : the

third is that of modern mathematics, and this is discussed in

chapters xiv. to xix.

Although the history commences with that of the Ionian

schools, there is no doubt that those Greeks who first paid
attention to mathematics were largely indebted to the previous

investigations of the Egyptians and Phoenicians. This chapter
is accordingly devoted to a statement of what is known con

cerning the mathematical attainments of those races, but our

acquaintance with the subject is so imperfect that the following
notes must be regarded merely as a brief summary of the

conclusions which seem to me most probable. The actual

history of mathematics begins with the next chapter.

On the subject of pre-historic mathematics, we may observe

le first place that, though all early races which have left

B. 1



2 EGYPTIAN AND PHOENICIAN MATHEMATICS.

records behind them knew something of numeration and

mechanics, and though the majority were also acquainted with

the elements of land-surveying, yet the rules which they

possessed were in general founded only on the results of

observation and experiment, and were neither deduced from

nor did they form part of any science. The fact then that

various nations in the vicinity of Greece had reached a high
state of civilization does not justify us in assuming that they
had studied mathematics.

The only races with whom the Greeks of Asia Minor

(amongst whom our history begins) were likely to have come

into frequent contact were those inhabiting the eastern littoral

of the Mediterranean: and Greek tradition uniformly assigned

the special development of geometry to the Egyptians, and that

of the science of numbers either to the Egyptians or to the

Phoenicians. I will consider these subjects separately.

First, as to the science of numbers. So far as the acquire

ments of the Phoenicians on this subject are concerned it is

impossible to speak with any certainty. The magnitude of the

commercial transactions of Tyre and Sidon must have neces

sitated a considerable development of arithmetic, to which

it is probable the name of science might be properly applied*

According to Strabo the Tyrians paid particular attention to

the sciences of numbers, navigation, and astronomy; they had

we know considerable commerce with their neighbours and

kinsmen the Chaldaeans
;
and Bbckh says that they regularly

supplied the weights and measures used in Babylon. Now
the Chaldaeans had certainly paid some attention to arithmetic

and geometry, as is shewn by their astronomical calculations
;

and, whatever was the extent of their attainments in arithmetic,

it is almost certain that the Phoenicians were equally proficient,

while it is likely that the knowledge of the latter, such as it

was, was communicated to the Greeks. On the whole I am
inclined to think that the early Greeks were largely indebted

to the Phoenicians for their knowledge of practical arithmetic

or the art of calculation. It is perhaps worthy of note that
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Pythagoras was a Phoenician
;
and according to Herodotus, but

this is more doubtful, Thales was also of that race.

Next, as to the arithmetic of the Egyptians. Their civili

zation, and in particular their astronomical calculations, have

been generally accepted as implying that they were fairly

proficient in the science of numbers. But about twenty-five

years ago a hieratic papyrus* forming part of the R-hind

collection in the British Museum was deciphered, and this has

thrown considerable light on the mathematical attainments

of the Egyptians. The manuscript was written by a priest

named Ahmes somewhere between the years 1700 B.C. and

1100 B.C., and is believed to be itself a copy, with emenda

tions, of an older treatise of about 3400 B.C. The work is

called &quot;directions for knowing all dark
things,&quot;

and consists

of a collection of problems in arithmetic and geometry ;
the

answers are given, but in general not the processes by which

they are obtained.

The first part deals with the reduction of fractions of the

form 2/(2n+ 1) to a sum of fractions , whose numerators are

each unity : for example, Ahmes states that -^ is the sum of

&quot;* irV* TTT&amp;gt;
and %&$ &amp;gt;

and T is the sum f
5lf&amp;gt; TTTTTJ TT6--

In all the examples n is less than 50. Probably he had no

rule for forming the component fractions, and the answers

given represent the accumulated experiences of many previous
writers : in one solitary case however he has indicated his

method, for, after having asserted that
-|

is the sum of | and i,

he adds that therefore two-thirds of one-fifth is equal to the

sum of a half of a fifth and a sixth of a fifth, that is, to

To + uV
r

^ne next part of the book is devoted to examples in

* See Ein mathematisches Handbuch der alien Aegypter by A. Eisen-

lohr, second edition, Leipzig, 1891 ;
see also Cantor, chap. i.

; and
Gow s History of Greek Mathematics, Cambridge, 1884, arts. 12 14.

Beside- itiese authorities the papyrus has been discussed in memoirs by

lei, A. Favaro, V. Bobynin, and E. Weyr. I may add that there

is in the British Museum another and older roll on a mathematical

subject which has not been yet deciphered.

12



4 EGYPTIAN AND PHOENICIAN MATHEMATICS.

division and subtraction. Ahmes then proceeds to the solution

of some simple numerical equations. For example, he says
&quot;

heap, its seventh, its whole, it makes nineteen,&quot; which means

find a number such that the sum of it and one-seventh of it

shall be together equal to 19; and he gives as the answer

16 + J + |, which is correct. The latter part of the book

contains various geometrical problems to which I allude later.

He concludes the work with some arithmetico-algebraical

questions, two of which deal with arithmetical progressions

and seem to indicate that he knew how to sum such series.

This appears to represent the most advanced arithmetic with

which the Egyptians became acquainted at any rate it is all

that they communicated to the Greeks.

Throughout the work Ahmes rarely explains the process

by which he arrives at a result, but in one numerical example,
where he requires to multiply a certain number, say &, by 13,

he points out the method he has used. In this instance he

first multiplied by 2 and got 2, then he doubled the result

and got 4a, then he again doubled the result and got &a, and

lastly he added together a, 4&, and Sa a process strictly

analogous to what is now called
&quot;practice.&quot;

The arithmetical part of the papyrus indicates that Ahmes
had some idea of algebraic symbols. The unknown quantity
is always represented by the symbol which means a heap ;

addition is represented by a pair of legs walking forwards,

subtraction by a pair of legs walking backwards or by a flight

of arrows
;
and equality by the sign /_. As we shall see in

the next chapters the Greeks shewed no aptitude for algebra,

and it was not until the development of mathematics passed

again into the hands of members of a Semitic race that any
considerable progress was made in the subject.

A large part of Ahmes s arithmetic is devoted to fractions.

It may be noticed in passing that the treatment of fractions

presented great difficulty to all early races. The Egyptians
and Greeks reduced a fraction to the sum of several fractions,

in each of which the numerator was unity, so that they had
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to consider only the various denominators : the sole excep
tions to this rule being the fractions and f . This remained

the Greek practice nmtil the sixth century of our era. The

Romans, on the other hand, generally kept the denominator

constant and equal to twelve, expressing the fraction (approxi

mately) as so many twelfths. The Babylonians did the same

in astronomy, except that they used sixty as the constant

denominator; and from them through the Greeks the modern

division of a degree into sixty equal parts is derived. Thus

in one way or the other the difficulty of having to consider

changes in both numerator and denominator was evaded.

Before leaving the question of early arithmetic I should

mention that for practical purposes the almost universal use

of the abacus or swan-pan rendered it easy to add and

subtract, or even to multiply and divide, without any know

ledge of theoretical arithmetic. These instruments will be

described later in chapter vn.
;

it will be sufficient here to say

that they afford a concrete way of representing a number

in the decimal scale, and enable the results of addition and

subtraction to be obtained by a merely mechanical process.

This, coupled with a means of representing the result in writing,

all that was required in primitive times.

Second, LS to the science of geometry. Geometry is supposed
to have had its origin in land-surveying \

but while it is difficult

to say when the study of numbers and calculation some know

ledge of which is essential in any civilized state became a

;ience, it is comparatively easy to distinguish between the

abstract reasonings of geometry and the practical rules of land-

The principles of land-surveying must have been

understood from very early times, but the universal tradition

of antiquity Asserted that the origin of geometry must be

sought In Egypt. That it was not indigenous to Greece and

that it arose from the necessity of surveying is rendered the

more probable by the derivation of the word from yjj
the earth

and /tcrpcco I measure. Now the Greek geometricians, as far

as WH can judge by their extant works, always dealt with the
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science as an abstract one : they sought for theorems which

should be absolutely true, and would have argued that to

measure quantities in terms of a unit &quot;which might have

been incommensurable with some of the magnitudes considered

would have made their results mere approximations to the

truth. The name does not therefore refer to their practice.

It is not however unlikely that it indicates the use which

was made of geometry among the Egyptians from whom the

Greeks learned it. This also agrees with the Greek traditions,

which in themselves appear probable ;
for Herodotus states

that the periodical inundations of the Nile (which swept away
the land-marks in the valley of the river, and by altering

its bed increased or decreased the taxable value of the adjoin

ing lands) rendered a tolerably accurate system of surveying

ground indispensable, and thus led to a systematic study of

the subject by the priests. The Egyptians certainly studied

geometry. A small piece of evidence which tends to shew that

the Phoenicians and Jews had not paid much attention to it

is to be found in the mistake made in /. Kings ,
ch. 7, v. 23,

and //. Chronicles, ch. 4, v. 2, where it is stated that the

circumference of a circle is three times its diameter : the

Babylonians* also assumed that TT was equal to 3.

Assuming then that a knowledge of geometry was first

derived by the Greeks from Egypt, we must next discuss the

range and nature of Egyptian geometry f . For any accurate

account of this we have to rely on the Rhind papyrus men

tioned above : this, as I have already stated, was probably a

summary of the information which was familiar to the priests,

and was not a book of research. At any rate we have reason

to believe that some time before the year 2000 B.C. (that

is some centuries before it was written) the following method

of obtaining a right angle was used in laying out the ground-

plan of certain buildings. The Egyptians were we know very

* See J. Oppert, Journal Asiatique, August, 1872, and October, 1874.

t See Eisenlohr
; Cantor, chap. n. ; Grow, arts. 75, 76

;
and Die

Geometric der alten Aegypter by E. Weyr, Vienna, 1884.
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particular about the exact orientation of their temples ;
and they

had therefore to obtain with accuracy a north and south line,

and also an east and west line. By observing the points on the

horizon where a star rose and set, and taking a plane midway
between them, they could obtain a north and south line. To

get an east and west line, which had to be drawn at right

angles to this, certain professional
&quot;

rope-fasteners
&quot; were

employed, who stretched a rope round three pegs (the two of

them which were nearest together being fixed along the north

and south line) so that the sides of the triangle formed were

in the ratio of 3 : 4 : 5
;

the angle opposite the longest side

would then be a right angle. A similar method is constantly

used at the present time by practical engineers. This property

can be deduced as a particular case of Euc. i. 48 : and there is

reason to think that the Egyptians were acquainted with the

results of this proposition and of Euc. i. 47 for triangles whose

sides are in the ratio mentioned above. They must also, there

is little doubt, have known that the latter proposition was true

for an isosceles right-angled triangle, as that is obvious if a

floor be paved with tiles of that shape. But though these are

interesting facts in the history of the Egyptian arts we must

not press them too far as shewing that geometry was then

studied as a science.

Our real knowledge of the nature of Egyptian geometry

depends almost entirely on the Rhirid papyrus, and therefore

at the earliest does not go further back than the year 1700 B.C.

Ahmes commences that part of the papyrus which deals with

geometry by giving several numerical instances of the contents

of barns. Unluckily we do not know what was the usual

shape of an Egyptian barn, but where it is defined by three

linear measurements, say a, 6, and c, the answer is always

given as if he had formed the expression a x b x
(c + Jc). He

next proceeds to find the areas of certain rectilineal figures

(in some of which he is certainly wrong) and then to find

the area of a circular 6eld of diameter 12 no unit of length
. mentioned. In the latter case he gives the area as
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(d ^)
2

,
where d is the diameter of the circle : this is equi

valent to taking 3-1604 as the value of ?r, the actual value

being very approximately 3*1416. Lastly Ahmes gives some

problems on pyramids. These long proved incapable of inter

pretation, but Cantor and Eisenlohr have shewn that Ahmes

was attempting to find, by means of data obtained from the

measurement of some of the external dimensions of a building,

the ratio of certain other dimensions which could not be

directly measured : his process is equivalent to determining

the trigonometrical ratios of certain angles. The data and

the results given agree closely with the dimensions of some of

the existing pyramids.
It is noticeable that all the specimens of Egyptian geo

metry which we possess deal only with particular numerical

problems and not with general theorems
;
and even if a result

be stated as universally true, it was probably proved to be

so only by a wide induction. We shall see later that Greek

geometry was from its commencement deductive. There are

reasons for thinking that Egyptian geometry and arithmetic

made little or no progress subsequent to the date of Ahmes s

work: and though for nearly two hundred years after the time

of Thales Egypt was recognized by the Greeks as an important

school of mathematics, it would seem that, almost from the

foundation of the Ionian school, the Greeks outstripped their

former teachers.

It may be added that Ahmes s book gives us much that

idea of Egyptian mathematics which we should have gathered

from statements about it by various Greek and Latin authors,

some of whom lived nearly fifteen centuries later. Previous

to its translation it was commonly thought that these state

ments exaggerated the acquirements of the Egyptians, and its

discovery must increase the weight to be attached to the

testimony of these authorities.

We know nothing of the applied mathematics (if
there

were any) of the Egyptians or Phoenicians. The astronomical

attainments of the Egyptians and Chaldaeans were no doubt
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considerable, though they were chiefly the results of obser

vation : the Phoenicians are said to have confined themselves

to studying what was required for navigation. Astronomy
however lies outside the range of this book.

I do not like to conclude the chapter without a brief

J mention of the Chinese, since at one time it was asserted that

I they were familiar with the sciences of arithmetic, geometry,
*

mechanics, optics, navigation, and astronomy nearly three

thousand years ago, and a few writers were inclined to suspect

(for no evidence was forthcoming) that some knowledge of

this learning had filtered across Asia to the West. It is

indeed almost certain that the Chinese were then acquainted

with several geometrical or rather architectural implements,
such as the rule, square, compasses, and level

;
with a few

mechanical machines, such as the wheel and axle
;
that they

knew of the characteristic property of the magnetic needle
;

and were aware that astronomical events occurred_Jn cycles^-

But the careful investigations of L. A. Sedillot* have shewn

that the Chinese of that time had made no serious attempt to

classify or extend the few rules of arithmetic or geometry
which they knew, or to explain the causes of the phenomena
with which they were acquainted. The idea that the Chinese

had made considerable progress in theoretical mathematics

seems to have been due to a misapprehension of the Jesuit

missionaries who went to China in the sixteenth century. In

the first place they failed to distinguish between the original

science of the Chinese and the views which they found preva
lent on their arrival

;
the latter being founded on the work

and teaching of Arab missionaries who had come to China in

the course of the thirteenth century, and while there introduced

a knowledge of spherical trigonometry. In the second place,

finding that one of the most important government depart
ments was known as the Board of Mathematics, they supposed

* See Boncompagni s Bullettino di bibliografia e di storia delle scienze

matematiche e fisiche for May, 1868, vol. i., pp. 161 166. On Chinese

mathematics, mostly of a later date, see Cantor, chap. xxxi.
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that its function was to promote and superintend mathematical

studies in the empire. Its duties were really confined to the

annual preparation of an almanadk, the dates and predictions
in which regulated many affairs both in public and domestic

life. All extant specimens of this almanadk are extraordinarily

inaccurate arid defective. The only geometrical theorem with

which, as far as I am aware, the ancient Chinese were ac

quainted was that in certain cases (najnely when the ratio of

the sides was 3 : 4 : 5 or 1 : 1 : ^/2) the area of the square
described on the hypotenuse of a right-angled triangle is equal
to the sum of the areas of the squares described on the sicles.

It is barely possible that a few geometrical theorems which can

be demonstrated in the quasi-experimental way of superposi
tion were also known to them. Their arithmetic was decimal

in notation, but their knowledge seems to have been con

fined to the art of calculation by means of the swan-pan,
and the power of expressing the results in writing. Our

acquaintance with the early attainments of the Chinese, slight

though it is, is more complete than in the case of most of

their contemporaries. It is thus specially instructive, and

serves to illustrate the fact that a nation may possess consider

able skill in the applied arts while they are almost entirely

ignorant of the sciences on which those arts are founded.

From the foregoing summary it will be seen that our

knowledge of the mathematical attainments of those whoo

preceded the Greeks is very limited
;
but we may reasonably

infer that from one source or another the early Greeks learned

as much mathematics as is contained or implied in the Rhind

papyrus, and it is probable that they were not acquainted with

much more. In the next six chapters I shall trace the de

velopment of mathematics under Greek influence.
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FIRST PERIOD.

JWatfjemattcs unfcn (5mfe influence.

This period begins with the teaching of Thales, circ. 600 B.C.,

and ends with the capture of Alexandria by the Mohammedans
in or about 641 A.D. The characteristic feature of this period
is the development of geometry.
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It will be remembered that I commenced the last chapter

by saying that the history of mathematics might be divided

into three periods, namely, that of mathematics under Greek

influence, that of the mathematics of the middle ages and of

the renaissance, and lastly that of modern mathematics. The

next four chapters (chapters n., in., iv. and v.) deal with the

history of mathematics under Greek influence : to these it will

be convenient to add one (chapter vi.) on the Byzantine school,

since through it the results of Greek mathematics were trans

mitted to western Europe; and another, (chapter vn.) on the

systems of numeration which were ultimately displaced by
the system introduced by the Arabs. I should add that many
of the dates mentioned in these chapters are not known with

certainty and must be regarded as only approximately correct.
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CHAPTER II.

THE IONIAN AND PYTHAGOKEAN SCHOOLS*.

CIRC. 600 B.C. 400 B.C.

WITH the foundation of the Ionian and Pythagorean
schools we emerge from the region of antiquarian research and

conjecture into the light of history. The materials at our dis

posal for estimating the knowledge of the philosophers of these

schools previous to about the year 430 B.C. are however very

scanty. Not only have all but fragments of the different

mathematical treatises then written been lost, but we possess

no copies of the elaborate histories of mathematics written

about 325 B.C. by Eudemus (who was a pupil of Aristotle)

and Theophrastus respectively. Luckily Proclus, who about

450 A. D. wrote a commentary on Euclid s Elements, was familiar

with the history of Eudemus and gives a summary of that

part of it which dealt with geometry. We have also a frag

ment of the General View of Mathematics written by Geminus

about 50 B.C., in which the methods of proof used by the

early Greek geometricians are compared* with those current

at a later date. In addition to these general statements we

* The history of these schools is discussed by Cantor, chaps, v. vm.
;

by G. J. Allman in his Greek Geometry from Thales to Euclid, Dublin,
1889 ; by C. A. Bretschneider in his Die Geometrie mid die Geometer

vor Eukleides, Leipzig, 1870 ;
and partially by H. Hankel in his post

humous Geschichte der Mathematik, Leipzig, 1874.
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have biographies of a few of the leading mathematicians, and

some scattered notes in various writers in which allusions are

made to the lives and works of others. The original authorities

are criticized and discussed at length in the works mentioned

in the footnote to the heading of the chapter.

The Ionian School.

Thales*. The founder of the earliest Greek school of

mathematics and philosophy was Thales, one of the seven sages

of Greece, who was born about 640 B.C. at Miletus and died in

the same town about 550 B.C. The materials for an account of

his life consist of little more than a few anecdotes which have

been handed down by tradition. During the early part of his

life he was engaged partly in commerce and partly in public

affairs
;
and to judge by two stories that have been preserved,

he was then as distinguished for shrewdness in business and

readiness in resource as he was subsequently celebrated in

science. It is said that, once when transporting some salt

which was loaded on mules, one of the animals slipping in

a stream got its load wet and so caused some of the salt

to be dissolved, finding its burden thus lightened it rolled

over at the next ford to which it came; to break it of

this trick Thales loaded it with rags and sponges which, by

absorbing the water, made the load heavier and soon effectually

cured it of its troublesome habit. At another time, according
to Aristotle, when there was a prospect of an unusually
abundant crop of olives Thales got possession of all the olive-

presses of the district
; and, having thus &quot; cornered

&quot;

them, he

was able to make his own terms for lending them out, and thus

realized a large sum. These tales may be apocryphal but it is

certain that he must have had considerable reputation as a man
of affairs and as a good engineer since he was employed to

construct an embankment so as to divert the river Halys in

such a way as to permit of the construction of a ford.

* See Cantor, chap. v. ; Allman, chap. i.
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It was probably as a merchant that Thales first went to

Egypt, but during his leisure there he studied astronomy and

geometry. He was middle-aged when he returned to Miletus
;

he seems then to have abandoned business and public life,

and to have devoted himself to the study of philosophy and

science subjects which in the Ionian, Pythagorean, and

perhaps also the Athenian schools, were inextricably involved :

he continued to live at Miletus till his death circ. 550 B.C.

His views on philosophy do not here concern us.

We cannot form any exact idea as to how Thales presented

his geometrical teaching : we infer however from Proclus that

it consisted of a number of isolated propositions which were

not arranged in a logical sequence, but that the proofs were

deductive, so that the theorems were not a mere statement

of an induction from a large number of special instances,

as probably was the case with the Egyptian geometricians.

The deductive character which he thus gave to the science

is his chief claim to distinction.

The following comprise all the propositions that we can

now with reasonable probability refer back to him.

(i)
The angles at the base of an isosceles triangle are

equal (Euc. I. 5). Proclus seems to imply that this was

proved by taking another exactly equal isosceles triangle,

turning it over, and then superposing it on the first; a sort

of experimental demonstration.

(ii)
If two straight lines cut one another the vertically

opposite angles are equal (Euc. i. 15). Thales may have

regarded this as obvious, for Proclus adds that Euclid was the

first to give a strict proof of it.

(iii)
A triangle is determined if its base and base angles

be given (cf. Euc. I. 26). Apparently this was applied to find

tl : ;i ship at sea; the base being a tower, and the

base angles beini obtained by observation.

The si i^s of equiangular triangles are proportionals

(1 vi. 4, or perhaps rather Euc. vi. 2). This is said to

ha been used by Thales when in Egypt to find the height of
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a pyramid. In a dialogue given by Plutarch, the speaker

addressing Thales says
&quot;

placing your stick at the end of

the shadow of the pyramid, you made by the sun s rays two

triangles, and so proved that the [height of the] pyramid was
to the [length of the] stick as the shadow of the pyramid to

the shadow of the stick.&quot; The king Amasis, who was present,

is said to have been amazed at this application of abstract

science, and the Egyptians seem to have been previously unac

quainted with the theorem.

(v) A circle is bisected by any diameter. This may have

been enunciated by Thales, but it must have been recognized
as an obvious fact from the earliest times.

(vi) The angle in a semicircle is a right angle (Euc. in.

31). This appears to have been regarded as the most re

markable of the geometrical achievements of Thales, and it is

stated that on inscribing a right-angled triangle in a circle he

sacrificed an ox to the immortal gods. It is supposed that he

proved the proposition by joining the centre of the circle to

the apex of the right angle, thus splitting the triangle into two

isosceles triangles, and then applied the proposition (i) above:

if this be the correct account of his proof, he must have been

aware that the sum of the angles of a right-angled triangle

is equal to two right angles.

It has been ingeniously suggested that the shape of the

tiles used in paving floors may have afforded an experimental
demonstration of the latter result, namely, that the sum of

the angles of a triangle is equal to two right angles. We
know from Eudemus that the first geometers proved the

general property separately for three species of triangles, and

it is not unlikely that they proved it thus. The area about a

point can be filled by the angles of six equilateral triangles or

tiles, hence the proposition is true for an equilateral triangle.

Again a rectangle (the sum of whose angles is four right

angles) can be divided into two equal right-angled triangles,

hence the proposition is true for a right-angled triangle :

and it will be noticed that tiles of such a shape would give an
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ocular demonstration of this case it would appear that this

proof was given at first only in the case of isosceles right-

angled triangles, but probably it was extended later so as

to cover any right-angled triangle. Lastly any triangle can be

split into the sum of two right-angled triangles by drawing
a perpendicular from the biggest angle on the opposite side,

and therefore again the proposition is true. The first of these

proofs is evidently included in the last, but the early Greek

geometers were timid about generalizing their proofs, and

were afraid that any additional condition imposed on the

triangle might vitiate the general result.

Thales wrote an astronomy, and among his contemporaries
was more famous as an astronomer than as a geometrician. It

is said that, one night, when walking out, he was looking so

intently at the stars that he tumbled into a ditch, on which an

old woman exclaimed &quot; How can you tell what is going on

in the sky when you can t see what is lying at your own feet ?&quot;

an anecdote which was often quoted to illustrate the un

practical character of philosophers.

Without going into astronomical details it may be mentioned

that he taught that a year contained 365 days, and not (as

was previously reckoned) twelve months of thirty days each.

According to some recent critics he believed the earth to be a

disc, but it seems to be more probable that he was aware that

it was spherical. He explained the causes of the eclipses both

of the sun and moon, and it is well known that he predicted a

solar eclipse which took place at or about the time he foretold :

the actual date was May 28, 585 B.C. But though this pro

phecy and its fulfilment gave extraordinary prestige to his

teaching, and secured him the name of one of the seven sages
of Greece, it is most likely that he only made use of one of the

Egyptian or Chaldaean registers which stated that solar eclipses

recur at intervals of 18 years and 11 H^.s

Among the pupils of Thale; were Anaximander, Mamercus,
and Mandryatus. Of tho two mentioned last we know next

to nothing. Anax winter is better known; he was born in

B. 2
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611 B.C. and died in 545 B.C., and succeeded Thales as head of

the school at Miletus. According to Suidas he wrote a treatise

on geometry in which tradition says he paid particular attention

to the properties of spheres, and dwelt at length on the philo

sophical ideas involved in the conception of infinity in space
and time. He constructed terrestrial and celestial globes. He
is alleged to have introduced the use of the style or gnomon into

Greece. This, in principle, consisted only of a stick stuck

upright in a horizontal piece of ground. It was originally used

as a sun-dial, in which case it was placed at the centre of three

concentric circles so that every two hours the end of its shadow

passed from one circle to another. Such sun-dials have been

found at Pompeii and Tusculum. It is said that he employed
these styles to determine his meridian (presumably by marking
the lines of shadow cast by the style at sunrise and sunset on

the same day, and taking the plane bisecting the angle so

formed) ;
and thence, by observing the time of year when the

noon-altitude of the sun was greatest and least, he got the

solstices
; thence, by taking half the sum of the noon-altitudes

of the sun at the two solstices, he found the inclination of the

equator to the horizon (which determined the latitude of the

place), and, by taking half their difference, he found the incli

nation of the ecliptic to the equator. There seems good reason

to think that he did actually determine the latitude of Sparta,

but it is more doubtful whether he really made the rest of

these astronomical deductions.

We need not here concern ourselves further with the

successors of Thales. The school he established continued to

flourish till about 400 B.C., but, as time went on, its members

occupied themselves more and more with philosophy and less

with mathematics. We know very little of the mathematicians

comprised in it, but they would seem to have devoted most of

their attention to astrcroray. They exercised but slight in

fluence on the further advance of Greek mathematics, which

was made almost entirely under the influence of the Pythago

reans, who not only immensely developed the science of
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geom ; i v l)ii e of numbers. If Thales was

the in -hi iu uirect general attention to geometry, it was Pytha

goras, says Proclus, quoting from Eudemus, who &quot;changed the

study of geometry into the form of a liberal education, for he

examined its principles to the bottom and investigated its

theorems in an... intellectual manner&quot; : and it is accordingly
to Pythagoras that we must now direct attention.

The Pythagorean School.

Pythagoras*. Pythagoras was born at Samos about

569 B.C., perhaps of Tyrian parents, and died in 500 B.C. He
was thus a contemporary of Thales. The details of his life are

somewhat doubtful, but the following account is I think sub

stantially correct. He studied first under Pherecydes of Syros,

and then under Ariaximander; by the latter he was recom

mended to go to Thebes, and there or at Memphis he spent
some years. After leaving Egypt he travelled in Asia Minor,
and then settled, at Samos, where he gave lectures but without

much success. /*About 529 B.C. he migrated to Sicily with his

mother, and with a single disciple who seems to have been the

sole fruit of his labours at Samos. Thence he went to Tarentum,
but very shortly moved to Croton, a Dorian colony in the south

of Italy. Here the schools that he opened were crowded with

an enthusiastic audience; citizens of all ranks, especially those

of the upper classes, attended, and even the women broke a law

which forbade their going to public meetings and nocked to

hear him. Amongst his most attentive auditors was Theano,
the young and beautiful daughter of his host Milo, whom, in

spite of the disparity of their ages, he married : she wrote a

biography of her husband but unfortunately it is lost.

* See Cantor, chaps, vi., vii.
; Allman, chap. n.

; Hankel, pp. 92 111
;

Hoefer, pp. 87 130
;
and various papers by P. Tannery. For an account

of Pythagoras s life, embodying the Pythagorean traditions, see the bio

graphy by lamblichus, of which there are two or three English trans

lations.

2 .3
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Pythagoras was really a philosopher and moralist, but his

philosophy and ethics, as we shall shortly see, rested on a

mathematical basis. He divided those who attended his lectures

into two classes, the listeners or TrvOayoptioi and the mathe

maticians or TrvOayopt/cot. In general, a &quot;

listener&quot; after passing
three years as such could be initiated into the second class,

to whom alone were confided the chief discoveries of the

school. Following the modern usage I confine the use of the

word Pythagoreans to the latter class.

The Pythagoreans formed a brotherhood with all things in

common, holding the same philosophical beliefs, engaged in the

same pursuits, and bound by oath not to reveal the teaching or

secrets of the school. Their food was simple ;
their discipline

severe
;
and their mode of life arranged to encourage self-

command, temperance, purity, and obedience. They rose

before the sun, and began by recalling the events of the pre

ceding day, next they made a plan for the day then com

mencing, and finally on retiring to rest they were expected to

compare their performances with this plan.

One of the symbols which they used for purposes of re-

cognftion was the pentagram, sometimes also called the triple-

triangle TO rpLirXovv r/otywi/ov.
The pentagram is merely a

regular re-entrant pentagon; it was considered symbolical of

health, and the angles were denoted by the letters of the word
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(see below p. 39), the diphthong ct being replaced by a 0]

it will be noticed that it consists of a single broken line*, a

feature to which a certain mystical importance was attached,

lamblichus, to whom we owe the disclosure of this symbol,

tells us how a certain Pythagorean, when travelling, fell ill at

a roadside inn where he had put up for the night; he was poor

and sick, but the landlord who was a kindhearted fellow

nursed him carefully and spared no trouble or expense to

relieve his pains. However, in spite of all efforts, the student

got worse; feeling that he was dying and unable to make the

landlord any pecuniary recompense, he asked for a board on

which he inscribed the pentagram-star; this he gave to his host,

begging him to hang it up outside so that all the passers-by

might see it, and assuring him that he would not then regret

his kindness as the symbol on it would ultimately shew. The

scholar died and was honourably buriedj and the board was

duly exposed. After a considerable time had elapsed a traveller

one day riding by saw the sacred symbol; dismounting, he

entered the inn, and after hearing the story, handsomely re

munerated the landlord, Such is the anecdote, which if not

true is at least ben trovato.

t-

f ^
The majority of those who attended the lectures of Pytha-

s

goras were only &quot;listeners&quot;; but his philosophy was intended to

colour the whole life, political and social, of all his followers.

In advocating self-control, government by the best men in the

state, strict obedience to legally constituted authorities, and an

appeal to eternal principles of right and wrong, he represented a

view of society totally opposed to that of the democratic party of

that time, and thus naturally most of the brotherhood were aris

tocrats. It had affiliated members in many of the neighbouring

cities, and its method of organization and strict discipline gave
it great political power; but like all secret societies it was an

object of suspicion to those who did not belong to it. For a

short time the Pythagoreans triumphed, but a popular revolt

* On the theory of such figures, see my Mathematical Recreations

and Prnhlfims T.nnHon, 1892, chap. vi.



22 THE IONIAN AND PYTHAGOREAN SCHOOLS.

in 501 B.C. overturned the civil government, and in the riots

that accompanied the insurrection the mob burnt the house

of Milo (where the students lived) and killed many of the

most prominent members of the school. Pythagoras himself

escaped to Tarentum, and thence fled to Metapontum, where

he was murdered in another popular outbreak in 500 B.C.

Though the Pythagoreans as a political society were thus

rudely broken up and deprived of their head, they seem to

have re-established themselves at once as a philosophical and

mathematical society, having Tarentum as their head-quarters.

They continued to flourish for a hundred or a hundred and

fifty years after the death of their founder, but they remained

to the end a secret society, and we are therefore ignorant of

the details of their history.

Pythagoras himself did not allow the use of text-books, and

the assumption of his school . was not only that all their

knowledge was held in common and secret from the outside

world, but that the glory of any fresh discovery must be

referred back to their founder: thus Hippasus (circ. 470 B.C.)

is said to have been drowned for violating his oath by publicly

boasting that he had added the dodecahedron to the number of

regular solids enumerated by Pythagoras. Gradually, as the

society became more scattered, it was found convenient to alter

this rule, and treatises containing the substance of their teach

ing and doctrines were written. The first book of the kind

was composed by Philolaus (circ. 410 B.C.), and we are told

that Plato contrived to buy a copy of it. We may say that

during the early part of the fifth century before Christ the

Pythagoreans were considerably in advance of their contem

poraries, but by the end of that time their more prominent
discoveries and doctrines had become known to the outside

world, and the centre of intellectual activity was transferred to

Athens.

Though it is impossible to separate precisely the discoveries

of Pythagoras himself from those of his school of a later date,

we know from Proclus that it was Pythagoras who gave
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geometry that rigorous character of deduction which it still

bears, and made it the foundation of a liberal education; and

there is good reason to believe that he was the first to arrange

the leading propositions of the subject in a logical order. It

was also, according to Aristoxenus, the glory of his school that

they raised arithmetic above the needs of merchants. It was

their boast that they sought knowledge and not wealth, or in

the language of one of their maxims, &quot;a figure and a step

forwards, not a figure to gain three oboli.&quot;

Pythagoras was primarily a moral reformer and practical

philosopher, but his system of morality and philosophy was

built on a mathematical foundation. In geometry he himself

probably knew and taught the substance of what is contained

in the first two books of Euclid, and was acquainted with a

few other isolated theorems including some elementary pro

positions on irratiooal magnitudes (while his successors added

several of the propositions in the sixth and eleventh books of

Euclid); but it is thought that many of his proofs were not

rigorous, and in particular that the converse of a theorem was

frequently assumed without a proof. What philosophical
doctrines were based on these geometrical results is now only a

matter of conjecture. In the theory of numbers he was con

cerned with four different kinds of problems which dealt re

spectively with polygonal numbers, ratio and proportion, the

factors of numbers, and numbers in series; but many of his

arithmetical inquiries, and in particular the questions on poly

gonal numbers and proportion, were treated by geometrical
methods. Knowing that measurement was essential to the

accurate definition of form Pythagoras thought that it was also

to some extent the cause of form, and he therefore taught that

the foundation of the theory of the universe was to be found in

the science of numbers. He was confirmed in this opinion by
discovering that the note sounded by a vibrating string de

pended (other things being the same) only on the length of the

string, and in particular that the lengths which gave a note,
its fifth, and its octave were in the ratio 1 : : J. This may
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have been the reason why music occupied so prominent a

position in the exercises of his school. He also believed that

the distances of the heavenly bodies from the earth formed a

musical progression: hence the phrase &quot;the harmony of the

spheres.&quot; Taking the science of numbers as the foundation of

his philosophy he went on to attribute properties to numbers

and geometrical figures : for example the cause of colour was

the number five; the origin of fire was to be found in the

pyramid; a solid body was analogous to the tetrad, which

represented matter as composed of the four primary elements,

fire, air, earth, and water; and so on. The tetrad like the

pentagram was a sacred symbol, and the initiate s oath ran

vat //.a
TOV dfjiTpa i/^x TrapaSovra TtTpaKrvv

Trayav devvaov &amp;lt;i;crea&amp;gt;s

The philosophical views of Pythagoras do not further con

cern us, arid I now proceed to discuss his work on mathematics

in rather greater detail. The Pythagoreans began by dividing

the subjects with which they dealt into four divisions: numbers

absolute or arithmetic, numbers applied or music, magnitudes
at rest or geometry, and magnitudes in motion or astronomy.

This &quot;

quadrivium
&quot; was long considered as constituting the

necessary and sufficient course of study for a liberal education.

Here I confine myself to describing the Pythagorean treatment

of geometry and arithmetic.

First, as to their geometry. We are of course unable to

reproduce the whole body of Pythagorean teaching on this

subject, but we gather from the notes of Proclus on Euclid and

from a few stray remarks in other writers that it included the

following propositions, most of which are on the geometry of

areas.

(i)
It commenced with a number of definitions, which

probably were rather statements connecting mathematical ideas

with philosophy than explanations of the terms used. One

has been preserved in the definition of a point as unity having

position.
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(ii)
The sum of the angles of a triangle was shewn to

be equal to two right angles (Euc. I. 32); and in the proof,

which has been preserved, the results of the propositions Euc.

I. 13 and the first part of Euc. I. 29 are quoted. The demon

stration is substantially the same as that in Euclid, and it

is most likely that the proofs there given of the two propo

sitions last mentioned are also due to Pythagoras himself.

(iii) Pythagoras certainly proved the properties of right-

angled triangles which are given in Euc. I. 47 and i. 48. We
know that the proofs of these propositions which are found

in Euclid were of Euclid s own invention
;
and a good deal of

curiosity has been excited to discover what was the demon

stration which was originally offered by Pythagoras of the first

of these theorems*. It would seem most likely to have been

one of the two following.

(a) Any square ABCD can be split up as in Euc. u. 4

into two squares BK and DK and two equal rectangles AK
and CK : that is, it is equal to the square on FK, the square

on JEK, and four times the triangle AEF. But, if points be

taken, G on BC, H on CD, and E on DA, so that BG, CH,

* A collection of over thirty proofs of Euc. i. 47 was published in Der

Pythagorische Lehrsatz by Joh. Jos. Ign. Hoffmann, second edition,

Mainz, 1821.
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and DE are each equal to AF, it can be easily shewn

that EFGH is a square, and that the triangles AEF, BFG,
CGH. and DUE are equal : thus the square ABCD is also

equal to the square on EF and four times the triangle AEF.
Hence the square on EF is equal to the sum of the squares on

FK and EK.

(/3)
Let ABC be a right-angled triangle, A being the right

angle. Draw AD perpendicular to BC. The triangles ABC

and DBA are similar,

.-. BC :AB=AB: BD.

Similarly BC : AC = AC : DC.

Hence AB2 + AC2 = BC (BD + DC) - BC2
.

This proof requires a knowledge of the results of Euc. 11. 2,

vi. 4, and vi. 17, with all of which Pythagoras was acquainted.

(iv) Pythagoras is also credited with the discovery of the

theorems Euc. i. 44 and i. 45, and with giving a solution of

the problem Euc. u. 14. It is said that on the discovery of

the necessary construction for the problem last mentioned he

sacrificed an ox, but as his school had all things in common
the liberality was less striking than it seems at first. The

Pythagoreans of a later date were aware of the extension

given in Euc. vi. 25, and Dr Allman thinks that Pythagoras
himself was acquainted with it, but this must be regarded as

doubtful. It will be noticed that Euc. n. 14 is a geometrical

solution of the equation x2 = ab.

(v) Pythagoras shewed that the plane about a point could

be completely filled by equilateral triangles, by squares, or by

regular hexagons results that must have been familiar where-

ever tiles of these shapes were in common use.
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(vi) The Pythagoreans were said to have solved the quad
rature of the circle : they stated that the circle was the most

beautiful of all plane figures. -^V\XA/^

(vii) They knew that there were five regular solids inscri-

bable in a sphere, which was itself, they said, the most beautiful

of all solids.

(viii)
From their phraseology in the science of numbers

and from other occasional remarks it would seem that they

were acquainted with the methods used in the second and

fifth books of Euclid, and knew something of irrational

magnitudes. In particular, there is reason to believe that

Pythagoras proved that the side and the diagonal of a square,

were incommensurable; and that it was this discovery which led;

the Greeks to banish the conceptions of number and measure

ment from their geometry. A proof of this proposition which

is not unlikely to be that due to Pythagoras is given below

(see p. 61).

Next, as to their theory of numbers*. I have already re

marked that in this the Pythagoreans were chiefly concerned

&amp;gt;vith (i) polygonal numbers, (ii)
the factors of numbers,

iii)
numbers which form a proportion, and (iv) numbers in

&amp;gt; series.

Pythagoras commenced his theory of arithmetic by dividing
11 numbers into even or odd : the odd numbers being termed

nomons. An odd number such as 2n + 1 was regarded as the

inference of two square numbers (n+ I)
2 and n2

,
and the sum

the gnomons from 1 to 2n + 1 was stated to be a square

lumber, viz. (n + I)
2

,
its square root was termed a side. Pro-

lucts of two numbers were called plane, and, if a product had no

&amp;gt;xact square root, it was termed an oblong. A product of three

lumbers was called a solid number, and, if the three numbers
vvere equal, a cube. All this has obvious reference to geometry,
ind the opinion is confirmed by Aristotle s remark that when
i gnomon is put round a square the figure remains a square

* See the appendix Sur Varithmetique pythagoriennt to Tannery s La
n,iencc r r

. &quot;iris. 1887.
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though it is increased in dimensions. Thus, in the annexed

figure in which n is taken equal to 5, the gnomon AKC (con

taining 11 small squares) when put round the square AC
(containing 5

2
small squares) makes a square HL (containing

6
2
small squares). The numbers (2n

2 42/1 + 1), (2n
2 + 2n), and

H K

(2n +1) possessed special importance as representing the hypo
tenuse and two sides of a right-angled triangle : Cantor thinks

that Pythagoras knew this fact before discovering the geo
metrical proposition Euc. I. 47. A more general expression

for such numbers is (m
2 + n*\ 2mn, and (m

2 n2

)
: it will be

noticed that the result obtained by Pythagoras can be deduced

from these expressions by assuming m = n + 1
;
at a later time

Archytas and Plato gave rules which are equivalent to

taking n 1
; Diophantus knew the general rule.

After this preliminary discussion the Pythagoreans pro

ceeded to the four special problems already alluded to. Pytha

goras was himself acquainted with triangular numbers, but

probably not with any other polygonal numbers : the latter

were discussed by later members of the school. A triangular

number represents the sum of a number of counters laid in

rows on a plane ;
the bottom row containing n

y
and each

succeeding row one less
;

it is therefore equal to the sum of

the series

n + (n- 1)+ (r&-2) + ... + 2 + 1,
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that is, to %n(n+l). Thus the triangular number corre

sponding to 4 is 10. This is the explanation of the language

of Pythagoras in the well-known passage in Lucian where the

merchant asks Pythagoras what he can teach him. Pythagoras

replies, &quot;I will teach you how to count.&quot; Merchant, &quot;I know

that already.&quot; Pythagoras,
&quot; How do you count ]

&quot;

Merchant,

&quot;One, two, three, four
&quot;

Pythagoras, &quot;Stop!
what you take

to be four is ten, a perfect triangle, and our symbol.&quot;

As to the work of the Pythagoreans on the factors of

numbers we know very little : they classified numbers by com

paring them with the sum of their integral factors, calling

a number excessive, perfect, or defective according as it was

greater than, equal to, or less than the sum of these factors.

These investigations led to no useful result.

--The third class of problems which they considered dealt

with numbers which formed a proportion ; presumably these

were discussed with the aid of geometry as is done in the fifth

book of Euclid.

Lastly the Pythagoreans were concerned with series of

numbers in arithmetical, geometrical, harmonica!, and musical

progressions. The three progressions first-mentioned are well

known
;
four integers are said to be in musical progression

when they are iu the ratio a : 2ab/ (a + b) : J (a + 6) : b, for

example, 6, 8, 9, and 12 are in musical progression.

After the death of Pythagoras, his teaching seems to have

been carried on by Epicharmus, and Hippasus; and sub

sequently by Philolaus, Archippus, and Lysis. About a century
after the murder of Pythagoras we find Archytas recognized
as the head of the school.

Archytas*. Archytas, circ. 400 B.C., was one of the most

* See Allman, chap. iv. A catalogue of the works of Archytas is

given by Fabricius in his Bibliotlieca Graeca, vol. i., p. 833: most of

the fragments on philosophy were published by Thomas Gale in his

Opuscula Mythologia, Cambridge, 1670 ;
and by Thomas Taylor as an

appendix to his translation of lambiichus s Life of Pythagoras, London,
1818. See also the references given by Cantor, vol. i., p. 203.
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influential citizens of Tarentum, and was made governor of

the city no less than seven times. His influence among his

contemporaries was very great, and he used it with Dionysius
on one occasion to save the life of Plato. He was noted

for the attention he paid to the comfort and education of his

slaves and of children in the city. He was drowned in a

shipwreck near Tarentum, and his body washed on shore: a

fit punishment, in the eyes of the more rigid Pythagoreans,
for his having departed from the lines of study laid down by
their founder. Several of the leaders of the Athenian school

were among his pupils and friends, and it is believed that

much of their work was due to his inspiration.

The Pythagoreans at first made no attempt to apply their

knowledge to mechanics, but Archytas is said to have treated

it with the aid of geometry : he is alleged to have invented

and worked out the theory of the pulley, and is credited with

the construction of a flying bird and some other ingenious

mechanical toys. He introduced various mechanical devices

for constructing curves and solving problems : these were

objected to by Plato, who thought that they destroyed the

value of geometry as an intellectual exercise, and later Greek

geometricians confined themselves to the use of two species

of instruments, namely, rulers and compasses. Archytas was

also interested in astronomy ;
he taught that the earth was

a sphere rotating round its axis in 24 hours, and round which

the heavenly bodies moved.

Archytas was one of the first to give a solution of the

problem to duplicate a cube, that is, to find the side of a cube

whose volume is double that of a given cube. This was

one of the most famous problems of antiquity (see below,

pp. 38, 42). The construction given by Archytas is equivalent

to the following. On the diameter OA of the base of a right

circular cylinder describe a semicircle whose plane is perpen
dicular to the base of the cylinder. Let the plane containing

this semicircle rotate round the generator through 0, then the

surface traced out by the semicircle will cut the cylinder in a
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tortuous curve. This curve will be cut by a right cone whose

axis is OA and semi- vertical angle is (say) 60 in a point ^such
that the projection of OP on the base of the cylinder will be to

the radius of the cylinder in the ratio of the side of the required

cube to that of the given cube. The proof given by Archytas
is of course geometrical*; it will be enough here to remark

that in the course of it he shews himself acquainted with the

results of the propositions Euc. in. 18, in. 35, and xi. 19.

To shew analytically that the construction is correct, take OA
as the axis of a?,

and the generator through as axis of 2, then,

with the usual notation in polar coordinates, and if a be the

radius of the cylinder, we have for the equation of the surface

described by the semicircle, r = 2a sin
\
for that of the cylinder,

r sin = 2a cos &amp;lt;

;
and for that of the cone, sin 6 cos $ =

J.

These three surfaces cut in a point such that sin
3 =

|,
and

therefore, if p be the projection of OP on the base of the

cylinder, then p
3 =

(r sin O)
3 = 2a3

. Hence the volume of the

cube whose side is p is twice that of a cube whose side is a.

I mention the problem and give the construction used by Ar

chytas to illustrate how considerable was the knowledge of the

Pythagorean school at that time.

Theodoras. Another Pythagorean of about the same date

as Archytas was Tkeodorus of ^Gyrene who is said to have

proved geometrically that the numbers represented by ^/3, ^/5,

x/6, /T, V8
&amp;gt; V10, v/n &amp;gt; x/12, V13, V14, V15 and

^17
are

incommensurable with unity. Theaetetus was one of his pupils.

Perhaps Timaeus of Locri and Bryso of Heraclea should be

mentioned as other distinguished Pvthagoreans of this time.

Other Greek Mathematical Schools in the fifth century B.C.

Id be a mistake to suppose that Miletus and Tarentum

were the only places where, in the fifth century, Greeks were

i laying a scientific foundation for the study of

*
It is printed by Allman, pp. Ill 113.
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mathematics. These towns represented the centres of chief

activity, but there were few cities or colonies of any importance
where lectures on philosophy and geometry were not given.

Among these smaller schools I may mention those at Chios,

Elea, and Thrace.

The best known philosopher of the School of Chios was

(Enopides, who was born about 500 B.C. and died about 430 B.C.

He devoted, himself chiefly to astronomy, but he had studied

geometry in Egypt, and is credited with the solution of the

two problems, namely, (i)
to draw a straight line from a given

external point perpendicular to a given straight line (Euc. i. 12),

and
(ii)

at a given point to construct an angle equal to a given

angle (Euc. i. 23).

Another important centre was at Elea in Italy. This

was founded in Sicily by Xenophanes. He was followed by

Parmenides, Zeno, and Melissus. The members of the Eleatic

School were famous for the difficulties they raised in con

nection with questions that required the use of infinite series,

such for example as the well-known paradox of Achilles and

the tortoise, enunciated by Zeno, one of their most prominent

members, who was born in 495 B.C., and was executed at Elea

in 435 B.C. in consequence of some conspiracy against tfte

state. He was a pupil of Parmenides, with whom he visited

Athens, circ. 455 450 BC.

Zeno argued that if Achilles ran ten times as fast as a

tortoise, yet if the tortoise had (say) 1000 yards start it could

never be overtaken : for, when Achilles had gone the 1000

yards, the tortoise would still be 100 yards in front of him;

by the time he had covered these 100 yards, it would still be

10 yards in front of him
;
and so on for ever : thus Achilles

would get nearer and nearer to the tortoise but never overtake

it. The fallacy is usually explained by the argument that the

time required to overtake the tortoise can be divided into

an infinite number of parts, as stated in the question, but

these get smaller and smaller in geometrical progression, and

the sum of them all is a finite time : after the lapse of that
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time Achilles would be in front of the tortoise. Probably

Zeno would have replied that this argument rests on the

assumption that space is infinitely divisible, which is the

question under discussion
;
he himself asserted that magnitudes

were not infinitely divisible.

These paradoxes made the Greeks look with suspicion on

the use of infinite series, and ultimately led to the invention

of the method of exhaustions.

The Atomistic School, having its head-quarters in Thrace,

was another important centre. This was founded by Leucippus,
who was a pupil of Zeno. He was succeeded by Democritus

and Epicurus. Its most famous mathematician was Democritus,
born at Abdera in 460 B.C. and said to have died in 370 B.C.,

who besides his philosophical works wrote on plane and solid

geometry, incommensurable lines, perspective, and numbers.

These works are all lost.

But though several distinguished individual philosophers

may be mentioned who during the fifth century lectured at

different cities, they mostly seem to have drawn their inspi

ration from Tarentum, and towards the end of the century to

have looked to Athens as the intellectual capital of the Greek

world : and it is to the Athenian schools that we owe the next

great advance in mathematics.

B.



CHAPTER III.

THE SCHOOLS OF ATHENS AND CYZICUS*.

CIRC. 420 B.C. 300 B.C.

IT was towards the close of the fifth century before Christ

that Athens first became the chief centre of mathematical

studies. Several causes conspired to bring this about. During
that century she had become, partly by commerce, partly by

appropriating for her own purposes the contributions of her

allies, the most wealthy city in Greece; and the genius of her

statesmen had made her the centre on which the politics of the

peninsula turned. Moreover whatever states disputed her

claim to political supremacy her intellectual pre-eminence was

admitted by all. There was no school of thought which had

not at some time in that century been represented at Athens

by one or more of its leading thinkers
;
and the ideas of the

new science, which was being so eagerly studied in Asia Minor

and Graecia Magna, had been brought before the Athenians

on various occasions.

* The history of these schools is discussed at length in G. J. Allman s

Greek Geometry from Thales to Euclid, Dublin, 1889 ;
it is also

treated by Cantor, chaps, ix., x., and xi. ; by Hankel, pp. Ill 156;
and by C. A. Bretschneider in his Die Geometrie und die Geometer

vor Eukleides, Leipzig, 1870; a critical account of the original autho

rities is given by P. Tannery in his Geometrie Grecque, Paris, 1887, and

other papers.
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Anaxagoras. Amongst the most important of the philo

sophers who resided at Athens and prepared the way for the

Athenian school I may mention Anaxagoras of Clazomenae,

who was almost the last philosopher of the Ionian school. He
was born in 500 B.C. and died in 428 B.C. He seems to have

settled at Athens about 440 B.C., and there taught the results

of the Ionian philosophy. Like all members of that school

he was much interested in astronomy. He asserted that the

sun was larger than the Peloponnesus: this opinion, together

with some attempts he had made to explain various physical (

phenomena which had been previously supposed to be due to

the direct action of the gods led to a prosecution for impiety,

and he was convicted. While in prison he is said to have

written a treatise on the quadrature of the circle. ,/ ^
The Sophists. The sophists can hardly be considered as

belonging to the Athenian school, any more than Anaxagoras

can; but like him they immediately preceded and prepared the

way for it, so that it is desirable to devote a few words to

them. One condition for success in public life at Athens was

the power of speaking well, and as the wealth and power of

the city increased a considerable number of
&quot;sophists&quot; settled

there who undertook amongst other things to teach the art of

oratory. Many of them also directed the general education of
]

their pupils, of which geometry usually formed a part. We
are told that two of those who are usually termed sophists

made a special study of geometry these were Hippias of Elis

and Antipho and one made a special study of astronomy
this was Meton, after whom the metonic cycle is named.

Hippias. The first of these geometricians, Hippias of Elis

(circ. 420 B.C.), is described as an expert arithmetician; but he

is best known to us through his invention of a curve called the

quadratrix, by means of which an angle could be trisected, or

indeed divided in any given ratio. If the radius of a circle

rotate uniformly round the centre from the position OA
through a right angle to OB, and in the same time a straight
line drawn perpendicular to OB move uniformly parallel to

32
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itself from the position OA to BC, the locus of their inter

section will be the quadratrix.

Let OR and MQ be the positions of these lines at any

time; and let them cut in P, a point on the curve. Then

angle AOP : angle AOB=OM : OB.

Similarly, if OR be another position of the radius,

angle AOP : angle AOB = OM : OB.

:. angle AOP : angle AOP^OM : M
;

. . angle AOP : angle POP = OM : M M.

Hence, if the angle AOP be given, and it be required to

divide it in any given ratio, it is sufficient to divide OM
in that ratio at M

,
and draw the line MP

\ then OP will

divide AOP in the required ratio.

If OA be taken as the initial line, OP=r, the angle AOP=0,
and OA = a, we have 6 : \tr

= r sin : a, and the equation of

the curve is 7rr = 2aO cosec 0.

Hippias devised an instrument to construct the curve

mechanically; but constructions which involved the use of any
mathematical instruments except a ruler and a pair of com

passes were objected to by Plato, and rejected by most

geometricians of a subsequent date.
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Antipho. The second sophist whom I mentioned was

Antipho (circ. 420 B.C.). He is one of the very few writers

among the ancients who attempted to find the area of a circle

by considering it as the limit of an inscribed regular polygon
with an infinite number of sides. He began by inscribing an

equilateral triangle; on each side in the smaller segment he

inscribed an isosceles triangle, and so on ad infinitum.

Bryso. Another mathematician, probably of about the

same time, who attacked the quadrature problem in a similar

way to that used by Antipho was Bryso of Heraclea, who
seems to have been a Pythagorean (see above, p. 31). It is

said that he began by inscribing and circumscribing squares,

and finally obtained polygons between whose areas the area of

the circle lay. It is possible but not probable that for some

time he taught at Athens.

No doubt there were other cities in Greece where similar

and equally meritorious work was being done, though the

record of it has now been lost; I have mentioned the investi

gations of these three writers, partly in order to give an idea

of the kind of work which was then going on all over Greece,

but chiefly because they were the immediate predecessors of

those who created the Athenian school.

The history of the Athenian school begins with the teaching \

of Hippocrates about 420 B.C.
;
the school was established on

a permanent basis by the labours of Plato and Eudoxus; and,

together with the neighbouring school of Oyzicus, continued

to extend on the lines laid down by these three geometricians
until the foundation (about 300 B.C.) of the new university

at Alexandria drew most of the talent of Greece thither.
,

Eudoxus, who was among the most distinguished of the

Athenian mathematicians, is also reckoned as the founder of

the school at Cyzicus. The connection between this school

and that of Athens was very close, and it is now impossible
to disentangle their histories. It is said that Hippocrates,

Plato, and Theaetetus belonged to the Athenian school
;
while

Eudoxus, Menaechmus, and Aristaeus belonged to that of
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Cyzicus. There was always a constant intercourse between

the two schools, the earliest members of both had been under

the influence either of Archytas or of his pupil Theodorus of

Gyrene, and there was no difference in their treatment of the

subject, so that they may be conveniently treated together.
Before discussing the work of the geometricians of these

schools in detail I may note that they were especially interested

in three problems*: namely, (i) the duplication of a cube,
that is, the determination of the side of a cube whose volume
is double that of a given cube; (ii)

the trisection of an angle;
and

(iii) the squaring of a circle, that is, the determination

of a square whose area is equal to that of a given circle.

Now the first two of these problems (considered analytically)

require the solution of a cubic equation : and, since a con

struction by means of circles (whose equations are of the form

^2 + 2/

2 + ax + by + c = 0) and straight lines (whose equations are

of the form ax + /3y+y = Q) cannot be equivalent to the

solution of a cubic equation, the problems are insoluble if in

our constructions we restrict ourselves to the use of circles and

straight lines, i.e. to Euclidean geometry. If the use of the

conic sections be permitted, both of these questions can be

solved in many ways. The third problem is equivalent to

finding a rectangle whose sides are equal respectively to the

radius and to the semiperimeter of the circle. These lines

have been long known to be incommensurable, but it is only

recently that it has been shewn by Lindemann that their ratio

cannot be the root of a rational algebraical equation. Hence

this problem also is insoluble by Euclidean geometry. The

Athenians and Cyzicians were thus destined to fail in all three

problems, but the attempts to solve them led to the discovery

of many new theorems and processes. Besides attacking these

problems the later Platonic school collected all the geometrical

theorems then known and arranged them systematically. These

* On these problems, solutions of them, and the authorities for their

history, see my Mathematical Recreations and Problems, London, 1892,

chap. vin.
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collections comprised the bulk of the propositions in Euclid s

Elements, books I. ix., XL, and xn., together with some of

the more elementary theorems in conic sections.

Hippocrates. Hippocrates of Chios (who must be carefully

distinguished from his contemporary, Hippocrates of Cos, the

celebrated physician) was one of the greatest of the Greek

geometricians. He was born about 470 B.C. at Chios, and

began life as a merchant. The accounts differ as to whether

he was swindled by the Athenian custom-house officials who
were stationed at the Chersonese, or whether one of his

vessels was captured by an Athenian pirate near Byzantium ;

but at any rate somewhere about 430 B.C. he came to Athens

to try to recover his property in the law courts. A foreigner
was not likely to succeed in such a case, and the Athenians

seem only to have laughed at him for his simplicity, first in

allowing himself to be cheated, and then in hoping to recover

his money. While prosecuting his cause he attended the

lectures of various philosophers, and finally (in all probability
to earn a livelihood) opened a school of geometry himself. He
seems to have been well acquainted with the Pythagorean

philosophy, though there is no sufficient authority for the

statement that he was ever initiated as a Pythagorean.
He wrote the first elementary text-book of geometry, a

text-book on which Euclid s Elements was probably founded;
and therefore he may be said to have sketched out the lines

on which geometry is still taught in English schools. It is

supposed that the use of letters in diagrams to describe a

figure was made by him or introduced about his time, as he i

employs expressions such as &quot;the point on which the letter

A stands&quot; and &quot;the line on which AB is marked.&quot; Cantor

however thinks that the Pythagoreans had previously been

accustomed to represent the five vertices of the pentagram-
star by the letters v y i a (see above, p. 21); and though this

was a single instance, they may perhaps have used the method

generally. The Indian geometers never employed letters to aid

them in the description of their figures. Hippocrates also
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denoted the square on a line by the word SiW/u?, and thus

gave the technical meaning to the word power which it still

retains in algebra: there is reason to think that this use of the

word was derived from the Pythagoreans, who are said to have

enunciated the result of the proposition as Euc. i. 47, in the

form that &quot;the total power of the sides of a right-angled

triangle is the same as that of the hypothenuse.&quot;

In this text-book Hippocrates introduced the method of

&quot;reducing&quot;
one theorem to another, which being proved, the

thing proposed necessarily follows; of which plan the reductio

ad absurdum is a particular case. No doubt the principle had

been used occasionally before, but he drew attention to it as

a legitimate mode of proof which was capable of numerous

applications. He may be said to- have introduced the geometry
of the circle. He discovered that similar segments of a circle

contain equal angles; that the angle subtended by the chord of

a circle is greater than, equal to, or less than a right angle

as the segment of the circle containing it is less than, equal

to, or greater than a semicircle (Euc. in. 31); and probably
several other of the propositions in the third book of Euclid.

It is most likely that he also enunciated the propositions that

[similar] circles are to one another as the squares of their

diameters (Euc. xn. 2), and that similar segments are as the

squares of their chords. The proof given in Euclid of the first

of these theorems is believed to be due to Hippocrates, but the

latter mathematician does not seem to have realized that all

circles are similar.

The most celebrated discoveries of Hippocrates were how

ever in connection with the quadrature of the circle and the

duplication of the cube, and it was owing to his influence that

these problems played such a prominent part in the history of

the Athenian school.

The following propositions will sufficiently illustrate the

method by which he attacked the quadrature problem.

(a) He commenced by finding the area of a lune contained

between a semicircle and a quadrantal arc standing on the
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same chord. This he did as follows. Let ABC be an isosceles

right-angled triangle inscribed in the semicircle ABOC whose

B O C

centre is 0. On AB and AC as diameters describe semicircles

as in the figure. Then, since BC2 = AC2 + AB2

(Euc. I. 47),

therefore, by Euc. xn. 2,

area \ on BC = sum of areas of
-| Q s on A C and AB.

Take away the common parts

.-. area A ABC = sum of areas of lunes AECD and AFBG.

Hence the area of the lime AECD is equal to half that of the

triangle ABC.

(/3) He next inscribed half a regular hexagon ABCD in P
}

semicircle whose centre was 0, and on OA, AB, BC, and CD
as diameters described semicircles of which those on OA and
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AB are drawn in the figure. Then AD is double any of the

lines OA, AB, BC and CD,

. -. area ABOD=sum ofareas of s on OA, AB, BC, and CD.

Take away the common parts

. . area trapezium ABCD = 3 lime AEBF + -J-O on OA.

If therefore the area of this latter lune be known, so is that of

the semicircle described on OA as diameter. According to

Simplicius, Hippocrates assumed that the area of this lune was

the same as the area of the lune found in proposition (a); if this
&quot;

be so, he was of course mistaken, as in this case he is dealing
with a lune contained between a semicircle and a sextantal

arc standing on the same chord; but it seems probable that

Simplicius misunderstood Hippocrates.

Hippocrates also enunciated various other theorems con

nected with lunes (which have been collected by Bretsch-

neider and by Allman) of which the theorem last given is a

typical example. I believe that they are the earliest instances

in which areas bounded by curves were determined by geometry.
The other problem to which Hippocrates turned his atten

tion was the duplication of the cube, that is, the determination

of the side of a cube whose volume is double that of a given

cube.

Th - Mem was known in ancient times as the Delian

proble }

-jirn
consequence of a legend that the Delians had

consulteu Jr lato on the subject. In one form of the story,

which is related by Philoponus, it is asserted that the

Athenians in 430 B.C., wnen suffering from the plague of

eruptive typhoid fever, consulted the oracle at Delos as to

how they could stop it. Apollo replied that they must

double the size of his altar which was in the form of a cube.

To the unlearned suppliants nothing seemed more easy, and

a new altar was constructed either having each of its edges
double that of the old one (from which it followed that the
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volume was increased eight-fold) or by placing a similar cubic

altar next to the old one. Whereupon, according to the

legend, the indignant god made the pestilence worse than before,

arid informed a fresh deputation that it was useless to trifle with

him, as his new altar must be a cube and have a volume exactly

double that of his old one. Suspecting a mystery the Athenians /

applied to Plato, who referred them to the geometricians,

and especially to Euclid, who had made a special study of the

problem. The introduction of the names of Plato and Euclid

is an obvious anachronism. Eratosthenes gives a somewhat

similar account of its origin, but with king Minos as the pro-

pounder of the problem.

Hippocrates reduced the problem of duplicating the cube

to that of finding two means between one straight line (a),

and another twice as long (2a). If these means be x and

?/, we have a : x = x : y = y : 2a. from which it follows that

x3 = 2a3
. It is in this form that the problem is always pre

sented now. Formerly any process of solution by finding

these means was called a mesolabum. Hippocrates did not

succeed in finding a construction for these means.

Plato. The next philosopher of the Athenian school who

requires mention here was Plato, who was born at Athens in

429 B.C. He was, as is well known, a pupil for eight yean
of Socrates, and much of the teaching of the latter is inferred

from Plato s dialogues. After the execution of his master in

399 B.C. Plato left Athens, and being possessed of -
&quot;

.&amp;lt; Table

wealth he spent some years in travelling : it was : ^ this

time that he studied mathematics. He visited Egypt with

Eudoxus, and Strabo says that in his time the apartments they

occupied at Heliopolis were still shewn. Thence Plato went

to Gyrene, where he studied under Theodorus. Next he moved

to Italy, where he became intimate with Archytas the then

head of the Pythagorean school, Eurytas of Metapontum, and

Timaeus of Locri. He returned to Athens about the year
380 B.C., and formed a school of students in a suburban gym
nasium called the

&quot;Academy.&quot;
He died in 348 B.C.
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Plato, like Pythagoras, was primarily a philosopher-, and

perhaps his philosophy should be regarded as founded on the

Pythagorean rather than on the Socratic teaching. At any
rate it, like that of the Pythagoreans, was coloured with the

idea that the secret of the universe was to be found in

number and in form
; hence, as Eudemus says,

&quot; he exhibited

on every occasion the remarkable connection between mathe

matics and philosophy.&quot; All the authorities agree that, unlike

many later philosophers, he made a study of geometry or

some exact science an indispensable preliminary to that of

philosophy. The inscription over the entrance to his school

ran &quot; Let none ignorant of geometry enter my door,&quot;
and on

one occasion an applicant who knew no geometry is said to

have been refused admission as a student.

Plato s position as one of the masters of the Athenian

mathematical school rests not so much on his individual dis

coveries and writings as on the extraordinary influence he

exerted on his contemporaries and successors. Thus the ob

jection that he expressed to the use in the construction of

curves of any instruments other than rulers and compasses
was at once accepted as a canon which must be observed in

such problems. It is probably due to Plato that subsequent

geometricians began the subject with a carefully compiled series

of definitions, postulates, and axioms. He also systematized
the methods which could be used in attacking mathematical

questions, and in particular directed attention to the value of

analysis. The analytical method of proof begins by assuming
that the theorem or problem is solved, and thence deducing
some result : if the result be false, the theorem is not true or

the problem is incapable of solution : if the result be known to

be true, and if the steps be reversible, we get (by reversing

them) a synthetic proof; but if the steps be not reversible,

no conclusion can be drawn. Numerous illustrations of the

method will be found in any modern text-book on geometry.
If the classification of the methods of legitimate induction

given by Mill in his work on logic had been universally ac-
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cepted and every new discovery in science had been justified

by a reference to the rules there laid down, he would, I

imagine, have occupied a position in reference to modern

science somewhat analogous to that which Plato occupied in

regard to the mathematics of his time.

Almost the only extant instance of a mathematical theorem

attributable to Plato is the following, which is traditionally

assigned to him. If CAB and DAB be two right-angled

triangles, having one side, AB, common, their other sides,

AD and BC, parallel, and their hypothenuses, AC and BD,
at right angles, then, if these hypothenuses cut in P, we have

PC : PB = PB : PA = PA : PD. This theorem was used in

duplicating the cube, for, if such triangles can be constructed

having PD = 2P(7, the problem will be solved. It is easy to

make an instrument by which the figure can be drawn.

Eudoxus*. Of Eudoxus, the third great mathematician of

the Athenian school and the founder of that at Cyzicus, we
know very little. He was born in Cnidus in 408 B.C. Like

Plato, he went to Tarentum and studied under Archytas the

then head of the Pythagoreans. Subsequently he travelled

with Plato to Egypt, and then settled at Cyzicus where he

founded the school of that name. Finally he and his pupils

moved to Athens. There he seems to have taken some part
in public affairs, and to have practised medicine

;
but the

hostility of Plato and his own unpopularity as a foreigner

made his position uncomfortable, and he returned to Cyzicus
or Cnidus shortly before his death. He died while on a journey
to Egypt in 355 B.C.

His mathematical work seems to have been of a high order

of excellence. He discovered most of what we now know as

the fifth book of Euclid, and proved it in much the same

form as that in which it is there given.

* The discoveries of Eudoxus have been discussed in considerable

detail by H. Kiinssberg of Dinkelsbiibl, in addition to the authors

mentioned above in the footnote on p. 34.
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He discovered some theorems on what was called &quot; the

golden section.&quot; The problem to

cut a line AB in the golden section, A H ./ B
that is, to divide it, say at H, in

extreme and mean ratio
(i.e. so that AB : AH = AH : HE] is

solved in Euc. n. 11, and probably was known to the Pythago
reans at an early date. If we denote AB by I,

AH by a, and

HB by 6, the theorems that Eudoxus proved are equivalent
to the following algebraical identities, (i) (a + ^l)

2 - 5 (J)
2

.

(Euc. xni. 1.) (ii) Conversely, if
(i)

be true, and AH be

taken equal to a, then AB will be divided at H in a golden
section. (Euc. xni. 2.) (iii) (b + %a)

2 = 5 (Ja)
2
. (Euc. xm. 3.)

(iv) l
2 + b

2 = 3a*. (Euc. xni. 4.) (v) .1 + a : 1 = 1 :a, which

gives another golden section. (Euc. xm. 5.) These propo
sitions were subsequently put by Euclid at the commence
ment of his thirteenth book, but they might have been

equally well placed towards the end of the second book. All

of them are obvious algebraically, since l=a + b and a2 = bl.

Eudoxus further established the &quot;method of exhaustions
;

&quot;

which depends on the proposition that &quot;if from the greater
of two unequal magnitudes there be taken more than its half,

and from the remainder more than its half, and so on, there

will at length remain a magnitude less than the least of the

proposed magnitudes.&quot; This proposition was placed by Euclid

as the first proposition of the tenth book of his Elements,
but in most modern school editions it is printed at the

beginning of the twelfth book. By the aid of this theorem

the ancient geometers were able to avoid the use of infini

tesimals : the method is rigorous, but awkward of application.

A good illustration of its use is to be found in the demon
stration of Euc. xn. 2, namely, that the square of the radius

of one circle is to the square of the radius of another circle

as the area of the first circle is to an area which is neither

less nor greater than the area of the second circle, and

which therefore must be exactly equal to it : the proof given

by Euclid (as was usual) is completed by a rediictio ad
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absurdum. Eudoxus applied the principle to shew that the

volume of a pyramid (or a cone) is one-third that of the prism

(or cylinder) on the same base and of the same altitude (Euc.

xn. 7 and 10). Some writers attribute the proposition Euc.

xn. 2 to him, and not to Hippocrates.

Eudoxus also considered certain curves other than the

circle, but there seems to be no authority for the statement,

which is found in some old books, that he studied the

properties of the conic sections. He discussed some of the

plane sections of the anchor ring, that is, of the solid gene
rated by the revolution of a circle round a straight line lying
in its plane ;

but he assumed that the line did not cut the

circle. A section by a plane through this line consists of

two circles
;

if the plane be moved parallel to itself the sec

tions are lemniscates
;
when the plane first touches the surface

the section is a &quot;

figure of
eight,&quot; generally called Bernoulli s

lenmiscate, whose equation is r
2 = a2

cos 20. All this is ex

plained at length in books on solid geometry. Eudoxus

applied these curves to explain the apparent progressive and

retrograde motions of the planets, but we do not know the

method he used.

Eudoxus constructed an orrery, and wrote a treatise on

practical astronomy, in which he adopted a hypothesis pre

viously propounded by Philolaus (409 B.C. 356 B.C.), and

supposed a number of moving spheres to which the sun,

moon, and stars were attached, and which by their rotation

produced the effects observed. Jn all he required twenty-
seven spheres. As observations became more accurate, sub

sequent astronomers who accepted his theory had continually
to introduce fresh spheres to make the theory agree with

the facts. The work of Aratus on astronomy, which was
written about 300 B.C. and is still extant, is founded on that

of Eudoxus.

Plato and Eudoxus were contemporaries. Among Plato s

pupils were the mathematicians Leodamas, Neocleides, Amyclas,
and to their school also belonged Leon, Theudius (both of whom
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wrote text-books on plane geometry), Cyzicenus, Thasus

Hermotimus, Philippus, and Theaetetus. Among the pupils

of Eudoxus are reckoned Menaechmus, his brother Dino-

stratus (who applied the quadratrix to the duplication and

trisection problems), and Aristaeus.

Menaechmus. Of the above-mentioned mathematicians

Menaechmus requires special mention. He was born about

375 B.C. and died about 325 B.C. He was a pupil of Eudoxus,
and probably succeeded him as head of the school at Cyzicus.

Menaechmus acquired great reputation as a teacher of geo-
1

metry, and was for that reason appointed one of the tutors

to Alexander the Great. In answer to Alexander s request
to make his proofs shorter, he made the well-known reply,

&quot; In

the country, sire, there are private and even royal roads, but

in geometry there is only one road for all.&quot;

Menaechmus was the first to discuss the conic sections,

which were long called the Menaechmian triads. He divided

them into three classes, and investigated their properties, not

by taking different plane sections of a fixed cone, but by

keeping his plane fixed and cutting it by different cones. He
shewed that the section of a right cone by a plane perpen
dicular to a generator is an ellipse, if the cone be acute-

angled ;
a parabola, if it be right-angled ;

and a hyperbola, if

it be obtuse-angled ;
and he gave a mechanical construction

for curves of each class. It seems almost certain that he was

acquainted with the fundamental properties of these curves;
but some writers think that he failed to connect them with

the sections of the cone which he had discovered, and there

is no doubt that he regarded the latter not as plane loci but

as curves drawn on the surface of a cone.

He also shewed how these curves could be used in either-

of the two following ways to give a solution of the problem
to duplicate a cube. In the first of these, he pointed out that

two parabolas having a common vertex, axes at right angles,

and such that the latus rectum of the one is double that of

the other will intersect in another point whose abscissa (or
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ordinate) will give a solution : for (using analysis) if the equa
tions of the parabolas be y* = 2ax and x2 =

ay, they intersect in

a point whose abscissa is given by x3 = 2a*. It is probable
that this method was suggested by the form in which Hip

pocrates had cast the problem : namely, to find x and y so

that a : x x : y y : 2a, whence we have y? ay and if 2ax.

The second solution given by Menaechmus was as follows.

Describe a parabola of latus rectum I. Next describe a rect

angular hyperbola, the length of whose real axis is 4, and

having for its asymptotes the tangent at the vertex of the

parabola and the axis of the parabola. Then the ordinate and

the abscissa of the point of intersection of these curves are

the mean proportionals between I and 21. This is at once

obvious by analysis. The curves are x2 =
ly and xy 2l

2
.

These cut in a point determined by xs = 2F and ?/

3 = 4
3

.

Hence I : x x : y = y : 21.

Aristaeus and Theaetetus. Of the other members of

these schools the only mathematicians of first-rate power were

Aristaeus and Theaetetus, whose works are entirely lost. We
know however that Aristaeus wrote on the five regular solids

and on conic sections, and that Theaetetus developed the

theory of incommensurable magnitudes. The only theorem

we can now definitely ascribe to the latter is that given by
Euclid in the ninth proposition of the tenth book of the

Elements, namely, that the squares on two commensurable

right lines have one to the other a ratio which a square
number has to a square number (and conversely); but the

squares on two incommensurable right lines have one to the

j

other a ratio which cannot be expressed as that of a square
! number to a square number (and conversely). This theorem

includes the results given by Theodorus (see above, p. 31).

The contemporaries or successors of these mathematicians

wrote some fresh text-books on the elements of geometry and

ithe conic sections, introduced problems concerned with finding

lloci, and efficiently carried out the work commenced by Plato

of systematizing the knowledge already acquired.

Aristotle. An account of the Athenian school would be

B.
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incomplete if there were no mention of Aristotle, who was born

at Stagira in Macedonia in 384 B.C. and died at Chalcis in

Euboea in 322 B.C. Aristotle however, deeply interested

though he was in natural philosophy, was chiefly concerned

with mathematics and mathematical physics as supplying illus

trations of correct reasoning. A small book containing a few

questions on mechanics which is sometimes attributed to him

is of doubtful authority; but, though in all probability it is due

to another writer, it is interesting, partly as shewing that the

principles of mechanics were beginning to excite attention, and

partly as containing the earliest known employment of letters

to indicate magnitudes.
The most instructive parts of the book are the dynamical

proof of the parallelogram of forces for the direction of the

resultant, and the statement that &quot;if a be a force, ft the mass to

which it is applied, y the distance through which it is moved,
and 8 the time of the motion, then a will move ^/3 through

2y in the time 8, or through y in the time
J8&quot;:

but the author

goes on to say that &quot;it does not follow that ^a will move /3

through |y in the time 8, because Ja may not be able to move

/3 at all; for 100 men may drag a ship 100 yards, but it does not

follow that one man can drag it one
yard.&quot;

The first part of

this statement is correct and is equivalent to the statement

that an impulse is proportional to the momentum produced,
but the second part is wrong.

The author also states the fact that what is gained in

power is lost in speed, and therefore that two weights which

keep a [weightless] lever in equilibrium are inversely pro

portional to the arms of the lever
; this, he says, is the

explanation why it is easier to extract teeth with a pair of

pincers than with the fingers.

Among other questions raised, but not answered, are why
a projectile should ever stop, and why carriages with large

wheels are easier to move than those with small. I ought to

add that the book contains some gross blunders, and as a whole

is not as able or suggestive as might be inferred from the

above extracts.
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CHAPTER IV.

THE FIRST ALEXANDRIAN SCHOOL*.

CIRC. 300 B.C. 30 B.C.

THE earliest attempt to found a university, as we understand

the word, was made at Alexandria. Hichly endowed, supplied

with lecture rooms, libraries, museums, laboratories, gardens,

and all the plant and machinery that ingenuity could suggest,

it became at once the intellectual metropolis of the Greek race,

and remained so for a thousand years. It was particularly

fortunate in producing within the first century of its existence

three of the greatest mathematicians of antiquity Euclid,

Archimedes, and Apollonius. They laid down the lines on

which mathematics were subsequently studied; and, largely

owing to their influence, the history of mathematics centres

more or less round that of Alexandria until the destruction

of the city by the Arabs in 641 A.D.

* The history of the Alexandrian schools is discussed by Cantor,

chaps, xii. xxin.
;
and by J. Gow in his interesting History of Greek

Mathematics, Cambridge, 1884. The subject of Greek algebra is treated

by E. H. F. Nesselmann in his Die Algebra der Griechen, Berlin, 1842;
see also L. Matthiessen, Grundziige der antiken und modernen Algebra
der litteralen Gleichungen, Leipzig, 1878. The Greek treatment of the

conic sections forms the subject of a recent work by H-G. Zeuthen

entitled Die Lehre von den Kegelschnitten in Altertum, Copenhagen,
1886. The materials for the history of these schools have been subjected

to a searching criticism by P. Tannery, and most of his papers are

collected in his Geometrie Grecque, Paris, 1887.

42
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The city and university of Alexandria were created under

the following circumstances. Alexander the Great had as

cended the throne of Macedonia in 336 B.C. at the early age of

20, and by 332 B.C. he had conquered or subdued Greece, Asia

Minor, and Egypt. Following the plan he adopted whenever

a commanding site had been left unoccupied, he founded a new

city on the Mediterranean near one mouth of the Nile
;

and he himself sketched out the ground-plan, and arranged
for drafts of Greeks, Egyptians, and Jews to be sent to occupy
it. The city was intended to be the most magnificent in the

world, and, the better to secure this, its erection was left in the

hands of Dinocrates, the architect of the temple of Diana at

Ephesus.
After Alexander s death in 323 B.C. his empire was divided,

and Egypt fell to the lot of Ptolemy, who chose Alexandria

as the capital of his kingdom. A short period of confusion

followed, but as soon as Ptolemy was settled on the throne, say
about 306 B.C., he determined to attract, as far as he was able,

learned men of all sorts to his new city; and he at once began
the erection of the university buildings on a piece of ground

immediately adjoining his palace. The university was ready to

be opened somewhere about 300 B.C., and Ptolemy, who wished

to secure for its staff the most eminent philosophers of the time,

naturally turned to Athens to find them. The great library

which was the central feature of the scheme was placed under

Demetrius Phalereus, a distinguished Athenian ;
and so rapidly

did it grow that within 40 years it (together with the Egyptian

annexe) possessed about 600,000 rolls. The mathematical de

partment was placed under Euclid, who was thus the first, as

he was one of the most famous, of the mathematicians of the

Alexandrian school.

It happens that contemporaneously with the foundation of

this school the information on which our history is based be

comes more ample and certain. Many of the works of the

Alexandrian mathematicians are still extant; and we have

besides an invaluable treatise by Pappus, described below, in
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which their best known treatises are collated, discussed, and

criticized. It curiously turns out that just as we begin to be

able to speak with certainty on the subject-matter which was

taught, we find that our information as to the personality of

the teachers becomes uncertain; and we know very little of

the lives of the mathematicians mentioned in this and the next

chapter, even the dates at which they lived being frequently

uncertain.

The third century before Christ.

Euclid*. This century produced three of the greatest

mathematicians of antiquity, namely Euclid, Archimedes, and

Apollonius. The earliest of these was Euclid. Of his life we
know next to nothing, save that he was of Greek descent,

and was born about 330 B.C.; he died about 275 B.C. It would

appear that he was well acquainted with the Platonic geometry,
but he does not seem to have read Aristotle s works

;
and these

facts are supposed to strengthen the tradition that he was

educated at Athens. Whatever may have been his previous

training and career, he proved a most successful teacher when
settled at Alexandria. He impressed his own individuality on

the teaching of the new university to such an extent that to

his successors and almost to his contemporaries the name Euclid

* Besides Cantor, chaps, xn. xin., and Gow, pp. 72 86, 195 221,

see the article Eucleides by A. De Morgan in Smith s Dictionary of Greek

and Roman Biography, London, 1849 ;
the article on Irrational Quantity

by A. De Morgan in the Penny Cyclopaedia, London, 1839 ;
and Litterar-

geschichtliche Studien fiber Euklid, by J. L. Heiberg, Leipzig, 1882.

The latest complete edition of all Euclid s works is that by J. L. Heiberg
and H. Menge in Teubner s library at Leipzig, 18831887. An English
translation of the thirteen books of the Elements was published by
J. Williamson in 2 volumes, Oxford, 1781, and London, 1788, but the

notes are not always reliable : there is another translation by Isaac

Barrow, London and Cambridge, 16f&amp;gt;0.
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meant (as it does to us) the book or books he wrote, and not

the man himself. Some of the mediaeval writers went so far

as to deny his existence, and with the ingenuity of philologists

they explained that the term was only a corruption of VK\L a

key, and Sis geometry. The former word was presumably
derived from K\LS. I can only explain the meaning assigned

to Sis by the conjecture that as the Pythagoreans said that

the number two symbolized a line possibly a schoolman

may have thought that it could be taken as indicative of

geometry.
From the meagre notices of Euclid which have come down

to us we find that the saying that there is no royal road to

geometry was attributed to Euclid as well as to Menaechmus;
but it is an epigrammatic remark which has had many imi

tators. Euclid is also said to have insisted that knowledge
was worth acquiring for its own sake, and Stobaeus (who is a

somewhat doubtful authority) tells us that when a lad who
had just begun geometry asked &quot;What do I gain by learning

all this stuff?
7 Euclid made his slave give the boy some

coppers,
&quot;

since,&quot;
said he,

&quot; he must make a profit out of what

he learns.&quot;

According to Pappus^ Euclid, in making use of the work

of his predecessors when writing the Elements, dealt most

gently with those who had in any way advanced the science:

and the Arabian writers, who may perhaps convey to us the

traditions of Alexandria, uniformly represent him as a gentle

and kindly old man.

Euclid was the author of several works, but his reputation

has rested mainly on his Elements. This treatise contains a

systematic exposition of the leading propositions of elementary

geometry (exclusive of conic sections) and of the theory of

numbers. It was at once adopted by the Greeks as the

standard text-book for the elements of pure mathematics, and

it is probable that it was written for that purpose and not as a

philosophical attempt to shew that the results of geometry
and arithmetic are necessary truths.
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The modern text* is founded on an edition prepared by

Theon, the father of Hypatia, and is practically a transcript of

Theon s lectures at Alexandria (circ. 380 A.D.). There is at

the Vatican a copy of an older text, and we have besides

quotations from the work and references to it by numerous

writers of various dates. From these sources we gather that

the definitions, axioms, and postulates were re-arranged and

slightly altered by subsequent editors, but that the propositions

themselves are substantially as Euclid wrote them.

As to the matter of the work. The geometrical part is to

a large extent a compilation from the works of previous writers.

Thus the substance of books I. and n. is probably due to

Pythagoras; that of book in. to Hippocrates; that of book v.

to Eudoxus; and the bulk of books iv., vi., XL, and xu. to

the later Pythagorean or Athenian schools. But this material

was re-arranged, obvious deductions were omitted (e.g. the

proposition that the perpendiculars from the angular points of

a triangle on the opposite sides meet in a point was cut out),

and in some cases new proofs substituted. (The part con^
cerned with the theory of numbers would seem to have been

taken from the works of Eudoxus and Pythagoras, except that

portion (book x.) which deals with irrational magnitudes.
This latter may be founded on the lost book of Theaetetus ;

but much of it is probably original, for Proclus says that while

Euclid arranged the propositions of Eudoxus he completed many
of those of Theaetetus.

The way in which the propositions are proved, consisting of

enunciation, statement, construction, proof, and conclusion, is

due to Euclid: so also is the synthetical character of the work,
each proof being written out as a logically correct train of

reasoning but without any clue to the method by which it was

obtained.

* Most of the modern text-books in English are founded on Simson s

edition, issued in 1758. Robert Simson, who was born in 1687 and died

in 1768, was professor of mathematics at the university of Glasgow, and

left several valuable works on ancient geometry.
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The defects of Euclid s Elements as a text-book of geometry
have been often stated

;
the most prominent are these, (i) The

definitions and axioms contain many assumptions which are

not obvious, and in particular the so-called axiom about parallel

lines is not self-evident*, (ii) No explanation is given as

to the reason why the proofs take the form in which they are

presented, that is, the synthetical proof is given but not the

analysis by which it was obtained,
(iii)

There is no attempt
made to generalize the results arrived at, for instance, the idea

of an angle is never extended so as to cover the case where it

is equal to or greater than two right angles : the second half

of the 33rd proposition in the sixth book, as now printed,

appears to be an exception ;
but it is due to Theon and not to

Euclid, (iv) The principle of superposition as a method of

proof might be used more frequently with advantage, (v) The

classification is imperfect. And (vi) the work is unnecessarily

long and verbose.

On the other hand, the propositions in Euclid are arranged
so as to form a chain of geometrical reasoning, proceeding from

certain almost obvious assumptions by easy steps to results of

considerable complexity. The demonstrations are rigorous,

often elegant, and not too difficult for a beginner. Lastly,

nearly, all the elementary metrical (as opposed to the graphical)

properties of space are investigated. The fact that for two

thousand years it has been the recognized text-book on the

subject raises further a strong presumption that it is not

unsuitable for the purpose. During the last few years some

determined efforts have been made to displace it in our schools,

but the majority of teachers still appear to regard it as the

best foundation for geometrical teaching that has been yet pub
lished. The book has been however generally abandoned on

the continent, though apparently with doubtful advantage to the

teaching of geometry. To these arguments in its favour may
*

It would seem from the recent researches of Grassmann, Riemann,
and Lobatschewsky that it is incapable of proof : see passim my Mathe

matical Recreations and Problems, London, 1892, chap. x.
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be added the fact that some of the greatest mathematicians of

modern times, such as Descartes, Pascal, Newton, and Lagrange,

have advocated its retention as a text-book: and Lagrange
said that he who did not study geometry in Euclid would be as

one who should learn Latin and Greek from modern works

written in those tongues. It must be also remembered that

there is an immense advantage in having a single text-book in

universal use in a subject like geometry. The unsatisfactory

condition of the teaching of geometrical conies in schools is a

standard illustration of the evils likely to arise from using
different text-books in such ,a subject. Some of the objections

urged against Euclid do not apply to certain of the recent

school editions of his Elements.

I do not think that all the objections above stated can

fairly be urged against Euclid himself. He published a

collection of problems generally known as the AeSo/xeVa or

Data. This contains 95 illustrations of the kind of deductions

which frequently have to be made in analysis ;
such as that, if

one of the data of the problem under consideration be that one

angle of some triangle in the figure is constant, then it is

legitimate to conclude that the ratio of the area of the rectangle
under the sides containing the angle to the area of the triangle

is known (prop. 66). Pappus says that the work was written for

those &quot; who wish to acquire the power of solving problems.&quot;

It is in fact a graduated series of exercises in analysis ;
and

this seems a sufficient answer to the second objection.

Euclid also wrote a work called Ilept AtaipeVecoi or De

Divisionibus, which is known to us only through an Arabic

translation which may be itself imperfect. This is a collection

of 36 problems on the division of areas into parts which bear

to one another a given ratio. It is not unlikely that this was

only one of several such collections of examples possibly

including the Fallacies and the Porisms but even by itself it

shews that the value of exercises and riders was fully recognized

by Euclid.

I may here add a suggestion thrown out by De Morgan,
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who is perhaps the most acute of all the modern critics of

Euclid. He thinks it likely that the Elements were written

towards the close of Euclid s life, and that their present form

represents the first draft of the proposed work, which, with the

exception of the tenth book, Euclid did not live to revise. If

this opinion be correct, it is probable that Euclid would in

his revision have removed the fifth objection.

The geometrical* parts of the Elements are so well known

that I need do no more than allude to them. The first four

books and book vi. deal with plane geometry; the theory of

proportion (of any magnitudes) is discussed in book v.
;
and

books xi. and XH. treat of solid geometry. On the hypothesis

that the Elements are the first draft of Euclid s proposed

work, it is possible that book xiu. is a sort of appendix

containing some additional propositions which would have

been put ultimately in one or other of the earlier books.

Thus, as mentioned above (see p. 46), the first five propositions

which deal with a line cut in golden section might be added to

the second book. The next seven propositions are concerned

with the relations between certain incommensurable lines in

plane figures (such as the radius of a circle and the sides of an

inscribed regular triangle, pentagon, hexagon, and decagon)

which are treated by the methods of the tenth book and as an

illustration of them. The five regular solids are discussed in

the last six propositions. Bretschneider is inclined to think

that the thirteenth book is a summary of part of the lost work

of Aristaeus : but the illustrations of the methods of the tenth

book are due most probably to Theaetetus.

* Euclid supposed that his readers had the use of a ruler and a pair

of compasses. Lorenzo Mascheroni (who was born at Castagneta on

May 14, 1750, and died at Paris on July 30, 1800) set himself the task to

obtain by means of constructions made only with a pair of compasses
the same results as Euclid had given. Mascheroni s treatise on the

geometry of the compass which was published at Pavia in 1795 is

so curious a tour de force that it is worth chronicling. He was pro

fessor first at Bergamo and afterwards at Pavia, and left numerous minor

works.
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Books vii.
, viii., ix., and x. of the Elements are given up

to the theory of numbers. The mere art of calculation or

AoyioriK^ was taught to boys when quite young, it was stig

matized by Plato as childish, and never received much attention

from Greek mathematicians ;
nor was it regarded as forming

part of a course of mathematics. We do not know how it was

taught, but the abacus certainly played a prominent part in it.

The scientific treatment of numbers was called apitf/x^riK?/,

which I have here generally translated as the science of num
bers. It had special reference to ratio, proportion, and the

theory of numbers. It is with this alone that most of the

extant Greek works deal.

- HJI discussing Euclid s arrangement of the subject, we must

therefore bear in mind that those who attended his lectures

were already familiar with the art of calculation. The system

of numeration adopted by the Greeks is described later (see

below, chap, vii.), but it was so clumsy that it rendered the

scientific treatment of numbers much more difficult than that

of geometry; hence Euclid commenced his mathematical course

with plane geometry. At the same time it must be observed

that the results of the second book though geometrical in form

are capable of expression in algebraical language, and the fact

that numbers could be represented by lines was probably
insisted on at an early stage, and illustrated by concrete

examples. This graphical method of using lines to represent

numbers possesses the obvious advantage of leading to proofs

which are true for all numbers, rational or irrational. It will

be noticed that among other propositions in the second book

we get geometrical proofs of the distributive and commutative

laws, of rules for multiplication, and finally geometrical solu

tions of the equations a (a x)
= x2

,
that is, x2 + ax a2 =

(Euc. II. 11), and x2
ab = Q (Euc. n. 14): the solution of

the first of these equations is given in the form \Ja
2 + (%a)

8 -
\a.

The solutions of the equations ax2 bx + c = and ax*+ bx-c=0
are given later in Euc. vi. 28 and vi. 29; the cases when
a 1 can be deduced from the identities proved in Euc. IT.
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5 and 6, but it is doubtful if Euclid would have detected

this.

The results of the fifth book in which the theory of propor
tion is considered apply to any magnitudes, and therefore are

true of numbers as well as of geometrical magnitudes. In the

opinion of many writers this is the easiest way of treating
the theory of proportion on a scientific basis; and it was used

by Euclid as the foundation on which he built the theory of

numbers. The theory of proportion given in this book is

believed to be due to Eudoxus. The treatment of the same

subject in the seventh book is less elegant, and is supposed
to be a reproduction of the Pythagorean teaching. This

double discussion of proportion is, as far as it goes, in

favour of the conjecture that Euclid did not live to revise

the work.

In books vii., viii., and ix. Euclid discusses the theory of

rational numbers. He commences the seventh book with some

definitions founded on the Pythagorean notation. In propo
sitions 1 to 3 he shews that if, in the usual process for finding

the greatest common, measure of two numbers, the last divisor

be unity, the numbers must be prime; and he thence deduces

the rule for finding their G.C.M. Propositions 4 to 22 include

the theoiy of fractions, which he bases on the theory of pro

portion; among other results he shews that ab = ba (prop. 16).

In propositions 23 to 34 he treats of prime numbers, giving

many of the theorems in modern text-books on algebra. In

propositions 35 to 41 he discusses the least common multiple
of numbers, and some miscellaneous problems.

The eighth book is chiefly devoted to numbers in continued

proportion, i.e. in a geometrical progression ;
and the cases

where one or more is a product, square, or cube are specially

considered.

In the ninth book Euclid continues the discussion of geo
metrical progressions, and in proposition 35 he enunciates the

rule for the summation of a series of n terms, though the

proof is given only for the case where n is equal to 4. He
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also develops the theory of primes, shews that the number of

primes is infinite (prop. 20), and discusses the properties of

odd and even numbers. He concludes by shewing how to

construct a
&quot;perfect&quot;

number (prop. 36).

In the tenth book Euclid treats of irrational magnitudes ;

and, since the Greeks possessed no symbolism for surds, he was

forced to adopt a geometrical representation. Propositions 1

to 21 deal generally with incommensurable magnitudes. The

rest of the book, namely, propositions 22 to 117, is devoted to

the discussion of every possible variety of lines which can be

represented by J( &amp;gt;J.a ^6), where a and b denote commensur

able lines. There are twenty-five species of such lines, and

that Euclid could detect and classify them all is in the opinion
of so competent an authority as Nesselmann the most striking

illustration of his genius. It seems at first almost impossible
that this could have been done without the aid of algebra, but

it is tolerably certain that it was actually effected by abstract

reasoning. No further advance in the theory of incom

mensurable magnitudes was made until the subject was taken

up by Leonardo and Cardan after an interval of more than a

thousand years.

In the last proposition of the tenth book (x. 117) the side

and diagonal of a square are proved to be incommensurable.

The proof is so short and easy that I may quote it. If

possible let the side be to the diagonal in a commensurable

ratio, namely, that of the two integers a and b. Suppose this

ratio reduced to its lowest terms so that a and b have no

common divisor other than unity, that is, they are prime to

one another. Then (by Euc. i. 47) b
2 = 2a2

;
therefore b

2
is an

even number; therefore b is an even number; hence, since a is

prime to 6, a must be an odd number. Again, since it has

been shewn that b is an even number, b may be represented

by 2?i; therefore (2n)
2 = 2a2

j therefore a 2 = 2?i
2

;
therefore a2

is an even number; therefore a is an even number. Thus the

same number a must be both odd and even, which is absurd;
therefore the side and diagonal are incommensurable. Hankel
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believes that this proof was due to Pythagoras, and was
inserted on account of its historical interest. This proposition
is also proved in another way in Euc. x. 9.

In addition to the Elements and the two collections of

riders above mentioned (which are extant) Euclid wrote the

following books on geometry :

(i) an elementary treatise on

conic sections in four books; (ii)
a book on curved surfaces

(probably chiefly the cone and cylinder); (iii)
a collection of

geometrical fallacies, which were to be used as exercises in the

detection of errors; and (iv) a treatise on porisms arranged in

three books. All of these are lost, but the work on porisms was
discussed at such length by Pappus, that some writers have

thought it possible to restore it. In particular Chasles in 1860

published what purports to be a reproduction of it, in which

will be found the conceptions of cross ratios and projection
in fact those ideas of modern geometry which Chasles and other

writers of this century have used so largely. This is brilliant

and ingenious, and of course no one can prove that it is not

exactly what Euclid wrote, but the statements of Pappus con

cerning this book have come to us only in a mutilated form,

and De Morgan frankly says that he found them unintelligible,

an opinion in which most of those who read them will, I think,

concur.

Euclid published two books on optics, namely the Optics

and the Catoptrica. Of these the former is extant. A work

which purports to be the latter exists in the form of an Arabic

translation, but there is some doubt as to whether it repre

sents the original work written by Euclid
;

in any case, the

text is extraordinarily corrupt. The Optics commences with

the assumption that objects are seen by rays emitted from the

eye in straight lines, &quot;for if light proceeded from the object

we should not, as we often do, fail to perceive a needle on the

floor.&quot; It contains 61 propositions founded on 12 assumptions.
The Catoptrica consists of 31 propositions dealing with reflex

ions in plane, convex, and concave mirrors. The geometry of

both books is ingenious.
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Euclid also wrote the Phaenomena, a treatise on geometrical

astronomy. It contains references to the work of Autolycus*

and to some book on spherical geometry by an unknown

writer. Pappus asserts that Euclid also composed a book on

the elements of music : this may refer to the Sectio Canonis

which is by Euclid, and deals with musical intervals.

To these works I may add the following little problem,

which occurs in the Palatine Anthology and is attributed by
tradition to Euclid. &quot;A mule and a donkey were going to

market laden with wheat. The mule said If you gave me
one measure I should carry twice as much as you, but if I

gave you one we should bear equal burdens. Tell me, learned

geometrician, what were their burdens.&quot; It is impossible to

say whether the question is genuine, but it is the kind of

question he might have asked.

It will be noticed that Euclid dealt only with magnitudes,
and did not concern himself with their numerical measures,

but it would seem from the works of Aristarchus and Archi

medes that this was not the case with all the Greek mathe

maticians of that time. As one of the works of the former

is extant it will serve as another illustration of Greek mathe

matics of this period.

Aristarchus. Aristarchus of Samos, born, in 310 B.C. and

died in 250 B.C., was an astronomer rather than a mathema

tician. He asserted, at any rate as a working hypothesis, that

the sun was the centre of the universe, and that the earth

revolved round the sun. This view, in spite of the simple

explanation it afforded of various phenomena, was generally

rejected by his contemporaries. But his propositions t on the

*
Autolycus lived at Pitane in Aeolis and flourished about 330 B.C.

His two works on astronomy, containing 43 propositions, are the oldest

extant Greek mathematical treatises. They exist in manuscript at

Oxford. A Latin translation has been edited by F. Hultsch, Leipzig, 1885.

t Ilept fjieytOw /ecu aTrocrr^/xdra;* HXtou /ecu ZeA?Jj/?7s, edited by E. Nizze,

Stralsund, 1856. Latin translations were issued by F. Commandino in

1572 and by J. Wallis in 1688 ;
and a French translation was published

by F. d Urban in 1810 and 1823.
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measurement of the sizes and distances of the sun and moon
were accurate in principle, and his results were generally ac

cepted (for example, by Archimedes in his ^a/x/xn-^s, see below,

p. 73) as approximately correct. There are 19 theorems,

of which I select the seventh as a typical illustration, because

it shews the way in which the Greeks evaded the difficulty

of finding the numerical value of surds.

Aristarchus observed the angular distance between the

moon, when dichotomized and the sun, and found it to be

twenty-nine thirtieths of a right angle. It is actually about

89 21
,
but of course his instruments were of the roughest

description. He then proceeded to shew that the distance of

the sun is greater than eighteen and less than twenty times

the distance of the moon in the following manner.

Let S be the sun, E the earth, and M the moon. Then

when the moon is dichotomized, that is, when the bright part

which we see is exactly a half-circle, the angle between MS
and ME is a right angle. With E as centre, and radii ES

and EM describe circles, as in the figure above. Draw EA

perpendicular to ES. Draw EF bisecting the angle AES, and
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EG bisecting the angle AEF, as in the figure. Let EM (pro

duced) cut AF in //. The angle AEM is by hypothesis ^th
of a right angle. Hence we have

angle AEG : angle AEH = ^ rt. L\ ^rt. L = 15 : 2,

.-. AG :AH[=t*nAEG:t&nAEII]&amp;gt;l5 : 2 (a)

Again FG* : AG2 = ,B7
72

: EA* (Euc. vi. 3)

= 2:1 (Euc. i. 47),

.*. J^6?
a

:AG*&amp;gt;3 : 25,

.-. 7
T :AG &amp;gt;1 : 5,

.-. AF : AG&amp;gt;12 : 5,

.-. AE :^^&amp;gt;12:5 ().

Compounding the ratios (a) and
(/?),

we have

4A1
: AU&amp;gt; 18 : 1.

But the triangles EMS and ^^17/ are similar,

.-. ES : EM&amp;gt;IS : 1.

I will leave the second half of the proposition to amuse any
reader who may care to prove it: the analysis is straightfor

ward. In a somewhat similar way Aristarchus found the ratio

of the radii of the sun, earth, and moon.

We know very little of Conon and Dositheus, the imme
diate successors of Euclid at Alexandria, or of their contem

poraries Zeuxippus and Nicoteles, who most likely also lectured

there, except that Archimedes, who was a student at Alexandria

probably shortly after Euclid s death, had a high opinion of

their ability and corresponded with the three first mentioned.

Their work and reputation has been overshadowed completely

by that of Archimedes whose marvellous mathematical powers
have been surpassed only by those of Newton.

Archimedes*. Archimedes^ who probably was related to

* Besides Cantor, chaps, xiv. , xv., and Gow, pp. 221 244, see

Quacslhmi t Archimedeae, by J. L. Heibcrg, Copenhagen, 1879 ;
and Marie,

vol. i., pp. 81 134. The latest and best edition of the extant works of

Archimedes is that by J. L. lleiberg, in 3 vols., Leipzig, 18801881.

B. 5
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the royal family at Syracuse, was born there in 287 B.C. and

died in 212 B.C. He went to the university of Alexandria

and attended the lectures of Conon but, as soon as he had

finished his studies, returned to Sicily where he passed the

remainder of his life. He took no part in public affairs, but

his mechanical ingenuity was astonishing, and, on any diffi

culties which could be overcome by material means arising, his

advice was generally asked by the government.

Archimedes, like Plato, held that it, was undesirable for

a philosopher to seek to apply the results of science to any

practical use
; but, whatever might have been his view of what

ought to be the case, he did actually introduce a large number
of new inventions. The stories of the detection of the fraudu

lent goldsmith and of the use of burning glasses to destroy the

ships of the Roman blockading squadron will recur to most

readers.
&quot;

Perhaps it is not as well known that Hiero, who had

built a ship so large that he could not launch it off the

slips, applied to Archimedes. The difficulty was overcome

by means of an apparatus of cogwheels worked by an endless

screw, but we are not told exactly how the machine was used.

It is said that it was on this occasion, in acknowledging the

compliments of Hiero, that Archimedes made the well-known

remark that had he but a fixed fulcrum he could move the

earth. Most mathematicians are aware that the Archimedean

screw was another of his inventions. It consists of a tube,

open at both ends, and bent into the form of a spiral like a

cork-screw. If one end be immersed in water, and the axis of

the instrument (i.e.
the axis of the cylinder on the surface of

which the tube lies) be inclined to the vertical at a sufficiently

big angle, and the instrument turned round it, the water will

flow along the tube and out at the other end. In order that

it may work, the inclination of the axis of the instrument to

the vertical must be greater than the pitch of the screw. It

was used in Egypt to drain the fields after an inundation of

the Nile
;
and was also frequently applied to pump water out

of the hold of a ship. The story that Archimedes set fire to
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the Roman ships by means of burning glasses and concave

mirrors is not mentioned till some centuries after his death,

and is generally rejected : but it is not so incredible as is com

monly supposed. The mirror of Archimedes is said to have

been made of a hexagon surrounded by several polygons, each

of 24 sides; and Buffon* in 1747 contrived, with the aid of

a single composite mirror made on this model with 168 small

mirrors, to set fire to wood at a distance of 150 feet, and to

melt lead at a distance of 140 feet. This was in April and in

Paris, so in a Sicilian summer and with several mirrors the

deed would be possible, and if the ships were anchored near

the town would not be difficult. It is perhaps worth mention

ing that a similar device is said to have been used in the

defence of Constantinople in 514 A.D., and is alluded to by
writers who either were present at the siege or obtained their

information from those who were engaged in it. But what

ever be the truth as to this story, there is no doubt that

Archimedes devised the catapults which kept the Romans,
who were then besieging Syracuse, at bay for a considerable

time. These were constructed so that the range could be made
either short or long at pleasure, and so that they could be

discharged through a small loophole without exposing the

artillerymen to the fire of the enemy. So effective did they

prove that the siege was turned into a blockade, and three

years elapsed before the town was taken (212 B.C.).

Archimedes was killed during the sack of the city which

followed its capture, in spite of the orders, given by the consul

Marcellus who was in command of the Romans, that his house

and life should be spared. It is said that a soldier entered his

study while he was regarding a geometrical diagram drawn in

sand on the floor, which was the usual way of drawing figures

in classical times. Archimedes told him to get off the diagram,
and not spoil it. The soldier, feeling insulted at having orders

given to him and ignorant of who the old man was, killed him.

* See Memoires de Vacaddmie royale des sciences for 1747, Paris,

1752, pp. 82101.

52
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According to another and more probable account, the cupidity

of the troops was excited by seeing his instruments, constructed

of polished brass which they supposed to be made of gold.

The Romans erected a splendid tomb to Archimedes on

which was engraved (in accordance with a wish he had ex

pressed) the figure of a sphere inscribed in a cylinder, in com

memoration of the proof he had given that the volume of a

sphere was equal to two-thirds that of the circumscribing

right cylinder, and its surface to four times the area of a^great

circle. Cicero* gives a charming account of his efforts (which
were successful) to re-discover the tomb in 75 B.C.

It is difficult to explain in a concise form the works or

discoveries of Archimedes, partly because he wrote on nearly

all the mathematical subjects then known, and partly because

his writings are contained in a series of disconnected mono

graphs. Thus, while Euclid aimed at producing systematic

treatises which could be understood by all students who had

attained a certain level of education, Archimedes wrote a

number of brilliant essays addressed chiefly to the most educated

mathematicians of the day. The work for which he is perhaps

now best known is his treatment of the mechanics of solids

and fluids; but he and his contemporaries esteemed his geo

metrical discoveries of the quadrature of a parabolic area and

of a spherical surface, and his rule for finding the volume of a

sphere as more remarkable; while at a somewhat later time his

numerous mechanical inventions excited most attention.

(i)
On plane geometry the extant works of Archimedes are

three in number, namely, (a) the Measure of the Circle, (b)

the Quadrature of the Parabola, and (c) one on Spirals.

(a) The Measure of the Circle contains three propositions.

In the first proposition Archimedes proves that the area is the

same as that of a right-angled triangle whose sides are equal

respectively to the radius a and the circumference of the circle,

i.e., the area is equal to \a (2?ra). In the second proposition

* See his Tusc. Disput., v. 23.
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he shews that ira* : (laf - 11 : 14 very nearly; and next, in

the third proposition, that TT is less than 3| and greater than

3yy. These theorems are of course proved geometrically. To

demonstrate the two latter propositions, he inscribes in and

circumscribes about a circle regular polygons of ninety-six

sides, calculates their perimeters, and then assumes the cir

cumference of the circle to lie between them. It would seem

from the proof that he had some (at present unknown) method

of extracting the square roots of numbers approximately.

(6) The Quadrature of the Parabola contains twenty-four

propositions. Archimedes begins this work, which was sent

to Dositheus, by establishing some properties of conies (props.

1 5).
He then states correctly the area cut off from a para

bola by any chord, and gives a proof which rests on a pre

liminary mechanical experiment of the ratio of areas which

balance when suspended from the arms of a lever (props. 6

17) ;
and lastly he gives a geometrical demonstration of this

result (props. 18 24). The latter is of course based on the

method of exhaustions,- but for brevity I will, in quoting it,

use the method of limits.

Let the area of the parabola (see figure on next page) be

bounded by the chord PQ. Draw VM the diameter to the

chord PQ, then (by a previous proposition), V is more remote

from PQ than any other point in the arc PVQ. Let the area

of the triangle PVQ be denoted by A. In the segments
bounded by VP and VQ inscribe triangles in the same way as

the triangle PVQ was inscribed in the given segment. Each of

these triangles is (by a previous proposition of his) equal to ^A,
and their sum is therefore ^A. Similarly in the four segments
left inscribe triangles ;

their sum will be yV-^- Proceeding in

this way the area of the given segment is shewn to be equal to

the limit of

A A A
+

4
+

16
+ +

4~&quot;

+ -

when n is indefinitely large.

The problem is therefore reduced to finding the sum
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of a geometrical series. This he effects as follows. Let

A, B, (7, ..., Jj K be a series of magnitudes such that each

is one fourth of that which precedes it. Take magnitudes
6, c, ..., k equal respectively to B, i(7, ..., K. Then

... + J);Hence (5+ (7 + ... +JT) + (6 + c + ... + &)
- %(A +

but, by hypothesis, (6 + c + ... +j + k)
= ^(fi+C + .

Hence the sum of these magnitudes exceeds four times the

third of the largest of them by one-third of the smallest of

them.

Returning now to the problem of the quadrature of the

parabola A stands for A, and ultimately K is indefinitely

small
;
therefore the area of the parabolic segment is four-

thirds that of the triangle PVQ, or two-thirds that of a rect

angle whose base is PQ and altitude the distance of V from PQ.
While discussing the question of quadratures it may be
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added that in the fifth and sixth propositions of his work on

conoids and spheroids he determined the area of an ellipse/^

(c)
The work on Spirals contains twenty-eight proposi

tions on the properties of the curve now known as the spiral

of Archimedes. It was sent toDositheus at Alexandria accom

panied by a letter, from which it appears that Archimedes had

previously sent a note of his results to Conon, who had died

before he had been able to prove them. The spiral is defined

by saying that the vectorial angle and radius vector both in

crease uniformly, hence its equation is r = cO. Archimedes

finds most of its properties, and determines the area inclosed

between the curve and two radii vectores. This he does (in

effect) by saying, in the language of the infinitesimal cal

culus, that an element of area is &amp;gt; J r
2dO and &amp;lt; J (r + drf dO :

to effect the sum of the elementary areas he gives two lemmas

in which he sums (geometrically) the series a2 + (2a)
2 + (3a)

2 +

... 4- (no)
2

(prop. 10), and a -f 2a + 3& + ... + na (prop. 11).

(d) In addition to these he wrote a small treatise on

geometrical methods, and works on parallel lines, triangles, the

properties of right-angled triangles, data, the heptagon inscribed

in a circle, and systems of circles touching one another
; possibly

he wrote others too. These are all lost, but it is probable that

fragments of four of the propositions in the last mentioned

work are preserved in a Latin translation from an Arabic

manuscript entitled Lemmas of Archimedes.

(ii)
On geometry of three dimensions the extant works

of Archimedes are two in number, namely, (a) the Sphere and

Cylinder, and (b) Conoids and Spheroids.

(a) The Sphere and Cylinder contains sixty propositions

arranged in two books. Archimedes sent this like so many
j

of his works to Dositheus at Alexandria ; but he seems to

;

have played a practical joke on his friends there, for he pur-
; posely misstated some of his results &quot; to deceive those vain

geometricians who say they have found everything but never

give their proofs, and sometimes claim that they have discovered

|

what is
impossible.&quot; He regarded this work as his master-
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piece. It is too long for me to give an analysis of its contents,

but I remark in passing that in it he finds expressions for the

surface and volume of a pyramid, of a cone, and of a sphere,

as well as of the figures produced by the revolution of polygons
inscribed in a circle about a diameter of the circle. There are

several other propositions on areas and volumes of which perhaps
the most striking is the tenth proposition of the second book,

namely that &quot;of all spherical segments whose surfaces are

equal the hemisphere has the greatest volume.&quot; In the second

proposition of the second book he enunciates the remarkable

theorem that a line of length a can be divided so that

a x : b = 4a2
: 9#2

(where b is a given length), only if b be

less than i; that is to say, the cubic equation x3-ax2+ a*b= Q
can have a real and positive root only if a be greater than 35.

This proposition was required to complete his solution of the

problem to divide a given sphere by a plane so that the volumes

of the segments should be in a given ratio. One very simple
cubic equation occurs in the Arithmetic of Diophantus, but

with that exception no such equation appears again in the

history of European mathematics for more than a thousand

years.

(6) The Conoids and Spheroids contains forty propositions

on quadrics of revolution (sent to Dositheus in Alexandria)

mostly concerned with an investigation of their volumes.

(c) Archimedes also wrote a treatise on the thirteen semi-

regular polyhedrons, that is, solids contained by regular but

dissimilar polygons. This is lost.

(iii) On arithmetic, Archimedes wrote two papers. One
. (addressed to Zeuxippus) was on the principles of numeration

;

this is now lost. The other (addressed to Gelon) was called

^a/x/xt-n/s (the sand-reckoner), and in this he meets an objection

which had been urged against his first paper.
The object of the first paper had been to suggest a con

venient system by which numbers of any magnitude could be

represented ;
and it would seem that some philosophers at Syra

cuse had doubted whether the system was practicable. Archime-
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des says people talk of the sand on the Sicilian shore as some

thing beyond the power of calculation, but he can estimate it, and

further he will illustrate the power of his method by finding a

superior limit to the number of grains of sand which would fill

the whole universe, i.e. a sphere whose centre is the earth, and

radius the distance of the sun. He begins by saying that in

ordinary Greek nomenclature it was only possible to express

numbers from 1 up to 10 8
: these are expressed in what he

says he may call units of the first order. If 10 8 be termed a

unit of the second order, any number from 108
to 10 18 can be

expressed as so many units of the second order plus so many
units of the first order. If 10 16 be a unit of the third order

any number up to 1024 can be then expressed ;
and so on.

Assuming that 10000 grains of sand occupy a sphere whose

radius is not less than -g^th of a finger breadth, and that the

diameter of the universe is not greater than 10 10

stadia, he finds

that the number of grains of sand required to fill the universe

is less than 1063
.

Probably this system of numeration was suggested merely as

a scientific curiosity. The Greek system of numeration with

which we are acquainted had been only recently introduced,

most likely at Alexandria, and was sufficient for all the purposes
for which the Greeks then required numbers

;
and Archimedes

used that system in all his papers. On the other hand it has been

conjectured that Archimedes and Apollonius had some symbolism
based on the decimal system for their own investigations, and it

is possible that it was the one here sketched out. The units

suggested by Archimedes form a geometrical progression,

having 10 8
for the radix. He incidentally adds that it will

be convenient to remember that the product of the mth and ?ith

terms of a geometrical progression, whose first term is unity, is

equal to the (ra + n)fh term of the series, i.e. that rm x rn - rm+n.

To these two arithmetical papers, I may add the following
celebrated problem which he sent to the Alexandrian mathe

maticians. The sun had a herd of bulls and cows, all of

which were either white, grey, dun, or piebald : the number
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of piebald bulls was less than the number of white bulls by

5/6ths of the number of grey bulls, it was less than the

number of grey bulls by 9/20ths of the number of dun bulls,

and it was less than the number of dun bulls by 13/42nds
of the number of white bulls : the number of white cows was

7/12ths of the number of grey cattle (bulls and cows), the

number of grey cows was 9/20ths of the number of dun

cattle, the number of dun cows was ll/30ths of the number

of piebald cattle, and the number of piebald cows was 13/42nds
of the number of white cattle. The problem was to find the

composition of the herd. The problem is indeterminate, but

the solution in lowest integers is

white bulls, ....... 10,366,482; white cows, 7,206,360;

grey bulls, 7,460,514; grey cows, 4,893,246;
dun bulls, 7,358,060; dun cows, 3,515,820;

piebald bulls, 4,149,387; piebald cows, 5,439,213.

In the classical solution, attributed to Archimedes, these num
bers are multiplied by 80.

Nesselmann believes, from internal evidence, that the pro
blem has been falsely attributed to Archimedes. It certainly

is unlike his extant work, but it was attributed to him among
the ancients, and is generally thought to be genuine though

possibly it has come down to us in a modified form. It is

in verse, and a later copyist has added the additional con

ditions that the sum of the white and grey bulls shall be a

square number, and the sum of the piebald and dun bulls a

triangular number.

It is perhaps worthy of note that in the enunciation the

fractions are represented as a sum of fractions whose numera

tors are unity : thus Archimedes wrote 1/7 + 1/6 instead of

13/42, in the same way as Ahmes would have done (see above,

p. 4).

(iv) On mechanics the extant works of Archimedes are

two in number, namely, (a) his Mechanics, and
(c)

his Hydro
statics,
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a) The Mechanics is a work on statics with special refer

ence to the equilibrium of plane laminas and to properties of

their centres of gravity ;
it consists of twenty-five propositions

in two books. In the first part of book I. most of the ele

mentary properties of the centre of gravity are proved (props.

1 8); and in the remainder of book I. (props. 9 15) and in

book II. the centres of gravity of a variety of plane areas, such

as parallelograms, triangles, trapeziums, and parabolic areas,

are determined.

(b) Archimedes also wrote a treatise on levers and perhaps
on all the mechanical machines. The book is lost, but we

know from Pappus that it contained a discussion of how a

given weight could be moved with a given power. It was in

this work probably that Archimedes discussed the theory of

a certain compound pulley consisting of three or more simple

pulleys which he had invented and which was used in some

public works in Syracuse. It is well known that he boasted

that, if he had but a fixed fulcrum, he could move the whole

^arth (see above, p. 66); and a commentator of later date

ays that he added he would do it by using a compound pulley.

(c) His work vn floating bodies contains nineteen proposi-
ions in two books, and was the first attempt to apply mathe

matical reasoning to hydrostatics. The story of the manner in

hich his attention was directed to the subject is told by
Vitruvius. Hiero, the king of Syracuse, had given some gold
o a goldsmith to make into a crown. The crown was delivered,

made up, and of the proper weight, but it was suspected that

he workman had appropriated a considerable proportion of the

*old, replacing it by an equal weight of silver. Archimedes was

hereupon consulted. Shortly afterwards, when in the public

&amp;gt;aths,
he noticed that his body was pressed upwards by a force

which increased the more completely he was immersed in the

water. Recognizing the value of the observation, he rushed

)ut, just as he was, and ran home through the streets, shouting

tvprjKa, &quot;I have found it, I have found it.&quot; There (to

ollow a later account) on making accurate experiments he
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found that when equal weights of gold and silver were weighed
in water they no longer appeared equal : each seemed lighter

than before by the weight of the water it displaced, and as the

silver was more bulky than the gold its weight was more

diminished. Hence, if on a balance hfc weighed the crown

against an equal weight of gold and then immersed the whole

in water, the gold would outweigh the crown if any silver had

been used in its construction. Tradition says that the gold

smith was found to be fraudulent-^/

Archimedes began the work by proving that the surface of

a fluid at rest is spherical, the centre of the sphere being at the

centre of the earth. He then proved that the pressure of the

fluid on a body, wholly or partially immersed, is equal to the

weight of the fluid displaced ;
and thence found the position

of equilibrium of a floating body, which he illustrated by

spherical segments and paraboloids of revolution floating on a

fluid. Some of the latter problems involve geometrical reason

ing of great complexity.

The following is a fair specimen of the questions considered.

A solid in the shape of a paraboloid of revolution of height h

and latus rectum 4a floats in water, with its vertex immersed

and its base wholly above the surface. If equilibrium be

possible when the axis is not vertical, then the density of the

body must be less than (h
-

3a)
2

/ti* (book n. prop. 4). When
it is recollected that Archimedes was unacquainted with

trigonometry or analytical geometry, the fact that he could

discover and prove a proposition such as that just quoted will

serve as an illustration of his powers of analysis.

As an illustration of the influence of Archimedes on the

history of mathematics I may mention that the science of

statics rested on his theory of the lever until 1586 when

Stevinus published his treatise on statics; and no distinct

advance was made in the theory of hydrostatics until Stevinus

in the same work investigated the laws which regulate the

pressure of fluids (see below, p. 248).

(v) We know, both from occasional references in his works
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and from remarks by other writers, that Archimedes was largely

occupied in astronomical observations. He wrote a book, Ilepi

o&quot;&amp;lt;^)tpo7rotta9,
on the construction of a celestial sphere, which is

lost
;
and he constructed a sphere of the stars, and an orrery.

These after the capture of Syracuse were taken by Marcellus

to Rome, and were preserved as curiosities for at least two or

three hundred years.

This mere catalogue of his works will shew how wonderful

were his achievements
;
but no one who has not actually read

some of his writings can form a just appreciation of his extra

ordinary ability. This will be still further increased if we

recollect that the only principles used by Archimedes, in

addition to those contained in Euclid s Elements and Conic

sections, are that of all lines like

AGE, ADB, ... connecting two

points A and B, the straight line

is the shortest, and of the curved

lines, the inner one ALE is A B

shorter than the outer one AGE\ together with two similar

statements for space of three dimensions.

In the old and mediaeval world Archimedes was unanimously
reckoned as the first of mathematicians : and in the modern world

there is no one but Newton who can be compared with him.

Perhaps the best tribute to his fame is the fact that those

writers who have spoken most highly of his work and ability

are those who have been themselves the most distinguished men
of their own generation.

Apollonius
*

. The third great mathematician of this century
was Apollonius of Perga, who is chiefly celebrated for having

produced a systematic treatise on the conic sections which not

* In addition to Zeuthen s work and the other authorities mentioned

in the footnote on p. 51, see Litterargeschichtliche Studien iibcr Euklid,

by J. L. Heiberg, Leipzig, 1882. A collection of the extant works of

Apollonius was issued by E. Halley, Oxford, 1706 and 1710: a new
edition of the conies with a critical commentary is now being issued by
J. L. Heiberg.
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only included all that was previously known about them but

immensely extended the knowledge of these curves. This work
was accepted at once as the standard text-book on the subject,

and completely superseded the previous treatises of Menaech-

mus, Aristaeus, and Euclid which until that time had been in

general use.

We know very little of Apollonius himself. He was born

about 260 B.C. and died about 200 B.C. He studied in

Alexandria for many years, and probably lectured there
;
he

is represented by Pappus as &quot;vain, jealous of the reputation
of others, and ready to seize every opportunity to depreciate
them.&quot; It is curious that while we know next to nothing
of his life, or of that of his contemporary Eratosthenes, yet
their nicknames, which were respectively epsilon and beta,

have come down to us. Dr Gow has ingeniously suggested
that the lecture rooms at Alexandria were numbered, and

that they always used the rooms numbered 5 and 2 respec

tively.

Apollonius spent some years at Pergamum in Pamphylia,
where a university had been recently established and endowed

in imitation of that at Alexandria. There he met Eudemus
and Attains to whom he subsequently sent each book of his

conies as it came out with an explanatory note. He returned

to Alexandria, and lived there till his death, which was nearly

contemporaneous with that of Archimedes.

In his great work on conic sections he so thoroughly

investigated the properties of these curves that he left but

little for his successors to add. But his proofs are long and

involved, and I think most readers will be content to accept

a short analysis of his work, and the assurance that his

demonstrations are valid. Dr Zeuthen believes that many of

the properties enunciated were obtained in the first instance

by the use of coordinate geometry, and that the demonstrations

were translated subsequently into a geometrical form. If this

be so, we must suppose that the classical writers were familiar

with some branches of analytical geometry Dr Zeuthen says
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the use of orthogonal and oblique coordinates, and of transfor

mations depending on abridged notation that this knowledge
was confined to a limited school, and was finally lost. This

is a mere conjecture and is unsupported by any direct evidence,

but it has been accepted by many critics as affording an ex

planation of the extent and arrangement of the work.

The treatise contained about four hundred propositions

and was divided into eight books
;
we have the Greek text of

the first four of these, and we also possess copies of the

commentaries by Pappus and Eutocius on the whole work.

In the ninth century an Arabic translation was made of the

first seven books, which were the only ones then extant;

we have two manuscripts of this version. The eighth book

is lost.

In the letter to Eudemus which accompanied the first book

Apollonius says that he undertook the work at the request of

Naucrates, a geometrician who had been staying with him

t Alexandria, and, though he had given some of his friends a

ough draft of it, he had preferred to revise it carefully before

snding it to Pergamum. In the note which accompanied the

ext book, he asks Eudemus to read it and communicate it to

thers who can understand it, and in particular to Philonides

certain geometrician whom the author had met at Ephesus.
The first four books deal with the elements of the subject,

nd of these the first three are founded on Euclid s previous
pork (which was itself based on the earlier treatises by
^Tenaechmus and Aristaeus). Heracleides asserts that much
f the matter in these books was stolen from an unpublished
rork of Archimedes, but a critical examination by Heiberg
as shewn that this is improbable.

Apollonius begins by defining a cone on a circular base.

le then investigates the different plane sections of it, and

lews that they are divisible into three kinds of curves which

e calls ellipses, parabolas, and hyperbolas. He proves the

reposition that, if A, A be the vertices of a conic and if P be

ny point on it and PM the perpendicular drawn from P on
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AA
,
then (in the usual notation) the ratio MP2

: AM . MA is

constant in an ellipse or hyperbola,
and the ratio MP 2

: AM is constant

in a parabola. These are the charac

teristic properties on which almost

all the rest of the work is based.

He next shews that, if A be the

vertex, I the latus rectum, and if

AM and MP be the abscissa and
ordinate of any point on a conic,

then MP2
is less than, equal to, or

greater than I . AM according as

the conic is an ellipse, parabola, or

hyperbola ;
hence the names which he gave to the curves and

by which they are still known.

^He had no idea of the directrix, and was not aware that

the parabola had a focus, but, with the exception of the propo
sitions which involve these, his first three books contain most

of the propositions which are found in modern text-books.

In the fourth book he develops the theory of lines cut

harmonically, and treats of the points of intersection of systems
of conies. In the fifth book he commences with the theory of

maxima and minima; applies it to find the centre of curva

ture at any point of a conic, and the evolute of the curve;

and discusses the number of normals which can be drawn

from a point to a conic. In the sixth book he treats of

similar conies. The seventh and eighth books were given up

to a discussion of conj ugate diameters, the latter of these was

conjecturally restored by E. Halley in 1710.

The verbose and tedious explanations make the book re

pulsive to most modern readers
;
but the logical arrangement

and reasoning are unexceptionable, and it has been not unfitly

described as the crown of Greek geometry. It is the work on

which the reputation of Apollonius rests, and it earned for him

the name of &quot; the great geometrician.&quot;

Besides this immense treatise he wrote numerous shorter
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works ;
of course the books were written in Greek, but they

are usually referred to by their Latin titles : those about which

we now know anything are enumerated below. He was

the author of a work on the problem
&quot;

given two co-planar

straight lines Aa and Bb, drawn through fixed points A and B;

to draw a line Gab from a given point outside them cutting

them in a and 6, so that Aa shall be to Bb in a given ratio
&quot;

:

he reduced the question to seventy-seven separate cases and

gave an appropriate solution, with the aid of conies, for each

case; this was published by E. Halley (translated from an Arabic

copy) in 1706. He also wrote a treatise De Sectione Spatii

(restored by E. Halley in 1706) on the same problem under

the condition that the rectangle Aa . Bb was given. He
wrote another entitled De Sectione Determinates (restored by
R. Simson, Glasgow, 1749), dealing with problems such as to

find a point P in a given straight line AB so that PA 2
shall

be to PB in a given ratio. He wrote another De Tactionibus

(restored by Yieta in 1600
;
see below, p. 238) on the construc

tion of a circle which shall touch three given circles. Another

work was his De Inclinationibus (restored by M. Ghetaldi,

Venice, 1607) on the problem to draw a line so that the

intercept between two given lines, or the circumferences of two

given circles, shall be of a given length. He was also the

author of a treatise in three books on plane loci, De Locis Planis,

(restored by Fermat in 1637, and by R. Simson in 1746), and

of another on the regular solids. And lastly he wrote a treatise

on unclassed incommensurableSj being a commentary on the

tenth book of Euclid. It is believed that in one or more of

the lost books he used the method of conical projections.

Besides these geometrical works he wrote on the methods of
arithmetical calcidation. All that we know of this is derived

from some remarks of Pappus. Friedlein thinks that it was

merely a sort of ready-reckoner. It would however seem that

Apollonius here suggested a system of numeration similar to

that proposed by Archimedes (see above, p. 73), but proceeding

by tetrads instead of octads, and described a notation for it.

B. 6
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It will be noticed that our modern notation goes by hexads,

a million = 106

,
a billion = 10 12

,
a trillion = 10 18

,
&c. It is not

impossible that Apollonius also pointed out that a decimal

system of notation, involving only nine symbols, would facilitate

numerical multiplications.

Apollonius was interested in astronomy, and wrote a book

on the stations and regressions of the planets of which Ptolemy
made some use in writing the Almagest. He also wrote a

treatise on the use and theory of the screw in statics.

This is a long list, but I should suppose that most of these

works were short tracts on special points.

Like so many of his predecessors he too gave a construction

for finding two mean proportionals between two given lines, and

thereby duplicating the cube. It was as follows. Let OA and

OB be the given lines. Construct a rectangle OADB, of which

they are adjacent sides. Bisect AB in C. Then, if with C as

centre we can describe a circle cutting OA produced in a and

cutting OB produced in 6, so that aDb shall be a straight line,

the problem is effected. For it is easily shewn that

Similarly

Hence

That is,

Ob . Bb + CB* = Cb2
.

Oa . Aa=0b.b.

Oa : Ob = Bb : Aa,
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But, by similar triangles,

BD : Eb = Oa : Ob = Aa : AD.

Therefore OA : Bb = Bb : Aa = Aa : OB,

that is, Bb and Oa are the two mean proportionals between

OA and OB. It is impossible to construct the circle whose

centre is C by Euclidean geometry, but Apollonius gave a

mechanical way of describing it. This construction is quoted

by several Arabic writers.

In one of the most brilliant passages of his Apergu histo-

rique Chasles remarks that, while Archimedes and Apollonius
were the most able geometricians of the old world, their

works are distinguished by a contrast which runs through
the whole subsequent history of geometry. Archimedes, in

attacking the problem of the quadrature of curvilinear areas,

laid the foundation of the geometry which rests on measure

ments; this naturally gave rise to the infinitesimal calculus,

and in fact the method of exhaustions as used by Archi

medes does not differ in principle from the method of limits

as used by Newton. Apollonius, on the other hand, in

investigating the properties of conic sections by means of

transversals involving the ratio of rectilineal distances and of

perspective, laid the foundations of the geometry of form and

position.

Eratosthenes*. Among the contemporaries of Archimedes

and Apollonius I may mention Eratosthenes. Born at Gyrene
in 275 B.C., he was educated at Alexandria perhaps at the

same time as Archimedes of whom he was a personal friend

and Athens, and was at an early age entrusted with the care

of the university library at Alexandria, a post which probably
he occupied till his death. He was the Admirable Crichton

of his age, and distinguished for his athletic achievements not

less than for his literary and scientific attainments: he was

* The works of Eratosthenes exist only in fragments. A collection

of these was published by G. Bernhardy at Berlin in 1822 : some

additional fragments were printed by E. Hiller, Leipzig, 1872.

62
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also something of a poet. He lost his sight by ophthalmia,
then as now a curse of the valley of the Nile, and, refusing
to live when he was no longer able to read, he committed
suicide by starvation in 194 B.C.

In science he was chiefly interested in astronomyand geodesy,
and he constructed various astronomical instruments which
were used for some centuries at the university. He introduced

the calendar (now known as Julian), in which every fourth year
contains 366 days; and he determined the obliquity of the

ecliptic as 23 5 1 20&quot;. He measured the length of a degree on
the earth s surface, making it to be about 79 miles, which is too

long by nearly 10 miles, and thence calculated the circum

ference of the earth to be 252000 stadia, which, if we take the

Olympic stadium of 202 \ yards, is equivalent to saying that

the radius is about 4600 miles. The principle used in the

determination is correct.

Of Eratosthenes s work in mathematics we have two extant

illustrations : one in a description of an instrument to dupli
cate a cube, and the other in the rule he gave for constructing
a table of prime numbers. The former is given in many
books. The latter, called the &quot; sieve of Eratosthenes,&quot; was as

follows: write down all the numbers from 1 upwards; then

every second number from 2 is a multiple of 2 and may be

cancelled; every third number from 3 is a multiple of 3 and

may be cancelled; every fifth number from 5 is a multiple of 5

and may be cancelled; and so on. It has been estimated

that it would involve workiDg for about 300 hours to thus

find the primes in the numbers from 1 to 1,OOQOOO. The

labour of determining whether any particular ryimber is a

prime may be however much shortened by observing that if a

number can be expressed as the product of two factors one

must be less and the other greater than the square root of the

number, unless the number is the square of a prime in which

case the two factors are equal. Hence every composite number

must be divisible by a prime which is not greater than its

square root.
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&amp;gt;C

The second century before Christ.

The third century before Christ, which opens with the

career of Euclid and closes with the death of Apollonius, is the

most brilliant era in the history of Greek mathematics. But

the great mathematicians of that century were geometricians,

and under their influence attention was directed almost solely

to that branch of mathematics. With the methods they used,

and to which their successors were by tradition confined, it

was hardly possible to make any further great advance : to

fill up a few details in a work that was completed in its

essential parts was all that could be effected. It was not till

after the lapse of nearly 1800 years that the genius of Descartes

opened the way to any further progress in geometry, and I

therefore pass over the numerous writers who followed Apollo
nius with but slight mention. Indeed it may be said roughly
that during the next thousand years Pappus was the sole

geometrician of great ability; and during this long period

almost the only other pure mathematicians of exceptional

genius were Hipparchus and Ptolemy who laid the foundations

of trigonometry, and Diopharitus who laid those of algebra.

Early in the second century, circ. 180 B.C., we find the

names of three mathematicians Hypsicles, Nicomedes, and

Diocles who in their own day were famous.

Hypsicles. The first of these was Hypsicles who added a

fourteenth book to Euclid s Elements in which the regular
solids were discussed. In another small work, entitled Risings,

Hypsicles^ developed the theory of arithmetical progressions

which had been so strangely neglected by the earlier mathe

maticians, and here for the first time in Greek mathematics

we find a right angle divided in the Babylonian manner into

90 degrees ; possibly Eratosthenes may have previously esti

mated angles by the number of degrees they contain, but this

is only a matter of conjecture.

Nicomedes. The second was Nicomedes who invented the

curve known as the conchoid or the shell-shaped curve. If
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from a fixed point S a line be drawn cutting .a given fixed

straight line in Q and if P be taken on SQ so that the length

QP is constant (say d), then the locus of P is the conchoid.

Its equation may be put in the form r = a sec =t d. It is easy
with its aid to trisect a given angle or to duplicate a cube

;
and

this no doubt was the cause of its invention.

Diocles. The third of these mathematicians was Diodes

the inventor of the curve known as the cissoid or the ivy-

shaped curve which, like the conchoid, was used to give a

solution of the duplication problem. He defined it thus: let

AOA and BOB be two fixed diameters of a circle at right angles
to one another. Draw two chords QQ and RR parallel to

BOB and equidistant from it. Then the locus of the inter

section of AR and QQ will be the cissoid. Its equation can be

expressed in the form y
2

(2a x) =x
3

. Diocles also solved (by

the aid of conic sections) a problem which had been proposed

by Archimedes, namely, to draw a plane which will divide a

sphere into two parts whose volumes shall bear to one another

a given ratio.

Perseus. Zenodorus. About a quarter of a century later,

say about 150 B.C., Perseus investigated the various plane

sections of the anchor-ring (see above, p. 47), and Zenodorus

wrote a treatise on isoperimetrical figures. Part of the latter

work has been preserved ;
one proposition which will serve to

shew the nature of the problems discussed is that &quot;of segments
of circles, having equal arcs, the semicircle is the

greatest.&quot;

Towards the close of this century we find two mathema

ticians who, by turning their attention to new subjects, gave a

fresh stimulus to the study of mathematics. These were

Hipparchus and Hero.

Hipparchus*. Hipparchus was the most eminent of Greek

astronomers his chief predecessors being Eudoxus, Aristarchus,

Archimedes, and Eratosthenes. Hipparchus is said to have been

born about 160B.C. at Nicaea in Bithynia; it is probable that

* See Delambre, Histoire de Vastronomic ancienne, Paris, 1817, vol. i.

pp. 106189.
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he spent some years at Alexandria, but finally he took up his

abode at Rhodes where he made most of his observations.

Delambre has obtained an ingenious confirmation of the tradi

tion which asserted that Hipparchns lived in the second

century before Christ. Hipparchus in one place says that

the longitude of a certain star
rj

Canis observed by him was

exactly 90, and it should be noted that he was an extremely

careful observer. Now in 1750 it was 116 4
10&quot;, and, as

the first point of Aries regredes at the rate of 50 2&quot; a year,

the observation was made about 120 B.C.

Except for a short commentary on a poem of Aratus

dealing with astronomy all his works are lost, but Ptolemy s

great treatise, the Almagest (see below, pp. 97, 98), was founded

on the observations and writings of Hipparchus, and from

the notes there given we infer that the chief discoveries of

Hipparchus were as follows. He determined the duration of

the year to within six minutes of its true value. He calculated

the inclination of the ecliptic and equator as 23 51
;

it was

actually at that time 23 46 . He estimated the annual pre
cession of the equinoxes as 59&quot;

;
it is 50 -2&quot;. He stated the

lunar parallax as 57
,
which is nearly correct. He worked

out the eccentricity of the solar orbit as 1/24 ;
it is very

approximately 1/30. He determined the perigee and mean
motion of the sun and of the moon, and he calculated the

extent of the shifting of the plane of the moon s motion.

Finally he obtained the synodic periods of the five planets
then known. I leave the details of his observations and

calculations to writers who deal specially with astronomy such

as Delambre
;
but it may be fairly said that this work placed

the subject for the first time on a scientific basis.

To account for the lunar motion Hipparchus supposed the

moon to move with uniform velocity in a circle, the earth

occupying a position near (but not at) the centre of this circle.

This is equivalent to saying that the orbit is an epicycle of the

first order. The longitude of the moon obtained on this

hypothesis is correct to the first order of small quantities for a
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few revolutions. To make it correct for any length of time

Hipparchus further supposed that the apse line moved forward

about 3 a month, thus giving a correction for evection. He

explained the motion of the sun in a similar manner. This

theory accounted for all the facts which could be determined

with the instruments then in use, and in particular enabled him

to calculate the details of eclipses with considerable accuracy.

He commenced a series of planetary observations to enable

his successors to frame a theory to account for their motions
;

and with great perspicacity he predicted that to do this it

would be necessary to introduce epicycles of a higher order,

that is, to introduce three or more circles the centre of each

successive one moving uniformly on the circumference of the

preceding one.

He also formed a list of the fixed stars. It is said that the

sudden appearance in the heavens of a new and brilliant star

called his attention to the need of such a catalogue; and the

appearance of such a star during his lifetime is confirmed

by Chinese records.

No further advance in the theory of astronomy was made
until the time of Copernicus, though the principles laid down

by Hipparchus were extended and worked out in detail by

Ptolemy.

Investigations such as these naturally led to trigono

metry, and Hipparchus must be credited with the invention

of that subject. It is known that in plane trigonometry he

constructed a table of chords of arcs, which is practically the

same as one of natural sines; and that in spherical trigonometry
he had some method of solving triangles : but his works are

lost, and we can give no details. It is believed however that

the elegant theorem, printed as Euc. vi. D and generally
known as Ptolemy s Theorem, is due to Hipparchus arid was

copied from him by Ptolemy. It contains implicitly the

addition formulae for sin (A B) and cos (AB); and Carnot

shewed how the whole of elementary plane trigonometry could

be deduced from it.
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I ought also to add that Hipparchus was the first to in

dicate the position of a place on the earth by means of its

latitude and longitude.

Hero*. The second of these mathematicians was Hero of
Alexandria (circ. 125 B.C.) who placed engineering and land-

surveying on a scientific basis. He was a pupil of Ctesibus

who invented several ingenious machines and is alluded to as

if he were a mathematician of note.

In pure mathematics Hero s principal and most character

istic work consists of
(i) some elementary geometry, with

applications to the determination of the areas of fields of given

shapes; (ii) propositions on finding the volumes of certain

solids, with applications to theatres, baths, banquet-halls, and

so on; (iii)
a rule to find the height of an inaccessible object;

and (iv) tables of weights and measures. He invented a

solution of the duplication problem which is practically the

same as that which Apollonius had already discovered (see

above, p. 82). Some commentators think that he knew how
to solve a quadratic equation even when the coefficients were

not numerical
;
but this is doubtful. He proved the formula

that the area of a triangle is equal to {s(s a) (s b) (s
-

c)}^,

where s is the semiperimeter, and a, 6, c, the lengths of the

sides, and gave as an illustration a triangle whose sides were

13, 14, and 15. He was evidently acquainted with the trigono

metry of Hipparchus, but he nowhere quotes a formula or

expressly uses the value of the sine, and it is probable that

like the later Greeks he regarded trigonometry as forming an

introduction to, and being an integral part of, astronomy.
* See Eecherches sur la vie et les ouvrages d1Heron d Altxandrie by

T. H. Martin in vol. iv. of Memoires presentes . . .a Vacademie d j

inscriptio)is,

Paris, 1854; see also Cantor, chaps, xvui, xix. On the work entitled

Definitions which is attributed to Hero, see Tannery, chaps, xiu, xiv,

and an article by G. Friedlein in Boncompagni s Bullctino di bibliografia,

March, 1871, vol. iv, pp. 93 126. An edition of the extant works of

Hero was published by F. Hultsch, Berlin, 1864. An English translation

of the lIvev/jLariKd was published by B. Woodcroft and J. G. Greenwood

at London in 1851.
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The following is the manner * in which he solved the problem
to find the area of a triangle ABC the lengths of whose sides

are a, 6, c. Let s be the semiperimeter of the triangle. Let

the inscribed circle touch the sides in D, E, F, and let be

its centre. On BC produced takeH so that CH = AF, therefore

Bff=s. Draw OK at right angles to OB, and CK at right

angles to BC ;
let them meet in K. The area ABC or A is equal

to the sum of the areas OBC, OCA, OAB ar + br + cr = sr,

that is, is
% equal to Ell . OD. He then shews that the angle

OAF= angle CBK-, hence the triangles OAF and CBK are

similar
;

.-. BC : CK^AF: OF=Cff: OD,

.-. BC : CH = CK : OD = CL : LD,

.-. BH: Cff=CD : LD.

.-. BH* : CH . BH = CD . ED : LD . BD = CD . BD : OD 2

* In his Dioptra, Hultsch, pp. 235237.
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Hence

A - nil . OD = {CH . EH . CD . ED$ =
{(*

-
a) * (*

-
c) (s

-
6)}*.

In applied mathematics Hero discussed the centre of gravity,

the live simple machines, and the problem of moving a given

weight with a given power; and in one place he suggested

a way in which the power of a catapult could be tripled.

He also wrote on the theory of hydraulic machines. He
described a theodolite and cyclometer, and pointed out various

problems in surveying for which they would be useful. But

the most interesting of his smaller works are his nvcv/xart/ca

and AvTo/jLOLTa, containing descriptions of about 100 small

machines and mechanical toys, many of which are very in

genious. In the former there is an account of a small

stationary steam-engine which is of the form now known
as Avery s patent : it was in common use in Scotland at the

beginning of this century, but is not so economical as the form

introduced by Watt. There is also an account of a double

forcing pump to be used as a fire-engine. It is probable that

in the hands of Hero these instruments never got beyond
models. It is only recently that general attention has been

directed to his discoveries, though Arago had alluded to them

. in his eloge on Watt.

All this is very different from the classical geometry and

arithmetic of Euclid, or the mechanics of Archimedes. Hero
did nothing to extend a knowledge of abstract mathematics

;

he learnt all that the text-books of the day could teach him,
but he was interested in science only on account of its prac
tical applications, and so long as his results were true he

cared nothing for the logical accuracy of the process by which

he arrived at them. Thus in finding the area of a triangle

he took the square root of the product of four lines. The
classical Greek geometricians permitted the use of the square
and the cube of a line because these could be represented

geometrically, but a figure of four dimensions is inconceivable,

and certainly they would have rejected a proof which involved

such a conception.
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It is questionable if Hero or his contemporaries were aware

of the existence of the Rhind papyrus, but it would seem that

treatises founded on it and of a similar character were then

current in Egypt, and while I am passing these sheets through
the press the manuscript of a text-book of this kind though
most likely some eight centuries or so later in date has been

discovered and reproduced.* Doubtless it was from some such

source that Hero drew his inspiration. Two or three reasons

have led modern commentators to think that Hero, who was

born in Alexandria, was a native Egyptian. If this be so, it

affords an interesting illustration of the permanence of racial

characteristics and traditions. Hero spoke and wrote Greek,

and it is believed that he was brought up under Greek

influence
; yet the rules he gives, his methods of proof, the

figures he draws, the questions he attacks, and even the

phrases of which he makes use, recall the earlier w*brk of

Ahmes.

The first century before Christ.

The successors of Hipparchus and Hero did not avail them

selves of the opportunity thus opened of investigating new

subjects, but fell back on the well-worn subject of geometry.

Amongst the more eminent of these later geometricians were

Theodosius and Dionysodorus, both of whom flourished about

50 B.C.

Theodosius. Theodosius was the author of a complete
treatise on the geometry of the sphere, which was edited by

Barrow, Cambridge, 1675, and by Nizze, Berlin, 1852. He
also wrote two works on astronomy which were published by

Dasypodius in 1572.

Dionysodorus. Dionysodorus is known to us only by his

solution of the problem to divide a hemisphere by a plane

* The Akhmim papyrus by J. Baillet in the Memoires de la mission

archeologique frangaise au Caire, vol. ix, pp. 1 88, Paris, 1892.
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parallel to its base into two parts, whose volumes shall be in

a given ratio. Like the solution by Diocles of the similar

problem for a sphere above alluded to, it was effected by the

aid of conic sections : it is reproduced in Suter s Geschichte

der mathematischen Wissenschaften (p. 101). Pliny says that

Dionysodorus determined the length of the radius of the earth

approximately as 42000 stadia, which, if we take the Olympic
stadium of 202^ yards, is a little less than 5000 miles

;
we do

not know how it was obtained. This may be compared with the

result given by Eratosthenes (see above, p. 84).

End of the first Alexandrian School.

The administration of Egypt was definitely undertaken

by Rome in 30 B.C. The closing years of the dynasty of the

Ptolemies and the earlier years of the Roman occupation of

the country were marked by much disorder, civil and political.

The studies of the university were naturally interrupted, and

it is customary to take this time as the close of the first

Alexandrian school.



CHAPTER V.

THE SECOND ALEXANDRIAN SCHOOL*.

30 B.C. 641 A.D.

I CONCLUDED the last chapter by stating that the first

school of Alexandria may be said to have come to an end at

about the same time as the country lost its nominal inde

pendence. But, although the schools at Alexandria suffered

from the disturbances which affected the whole Roman world

in the transition, in fact if not in name, from a republic to

the empire, there was no break of continuity; the teaching in

the university was never abandoned
;
and as soon as order

was again established students began once more to flock to

Alexandria. This time of confusion was however contempo
raneous with a change in the prevalent views of philosophy
which thenceforward were mostly neo-platonic or neo-pytha-

gorean, and it therefore fitly marks the commencement of a

new period. These mystical opinions reacted on the mathe

matical school, and this may partially account for the paucity
of good work.

* For authorities, see footnote above on p. 51. All dates given

hereafter are to be taken as anno domini, unless the contrary is expressly

stated.
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Though Greek influence was still predominant and the

Greek language always used, Alexandria now became the in

tellectual centre for most of the Mediterranean nations which

were subject to Rome. It should be added however that

the direct connection with it of many of the mathematicians

of this time is at least doubtful, but their knowledge was

ultimately obtained from the Alexandrian teachers, and they

are usually described as of the second Alexandrian school.

Such mathematics as were taught at Rome were derived from

Greek sources, and we may therefore conveniently consider

their extent in connection with this chapter.

The first century after Christ.

There is no doubt that throughout the first century after

Christ geometry continued to be that subject in science to

which most attention was devoted. But by this time it was

evident that the geometry of Archimedes and Apollonius was

not capable of much further extension; and such geometrical
treatises as were produced consisted mostly of commentaries

on the writings of the great mathematicians of a preceding age.

In this century the only original works of any ability were

two by Serenus and one by Menelaus.

Serenus. Menelaus. Those by Serenus of Antissa, circ. 70,

were on the plane sections of the cone and cylinder ; these were

edited by E. Halley, Oxford, 1710. That by Menelaus of

Alexandria, circ. 98, was on spherical trigonometry, investigated
in the Euclidean method

;
this was translated by E. Halley,

Oxford, 1758. The fundamental theorem on which the sub

ject is based is the relation between the six segments of the

sides of a spherical triangle, formed by the arc of a great circle

which cuts them (book in. prop. 1). Menelaus also wrote on

the calculation of chords, i.e. on plane trigonometry ;
this is

lost,

Nicomachus. Towards the close of this century, circ. 100,
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Nicomachus, a Jew, who was born at Gerasa in 50 and died

circ. 110, published an Arithmetic, which (or rather the Latin

translation, of it) remained for a thousand years a standard

authority on the subject. The work has been edited by
R. Hoche, Leipzig, 1866. Geometrical demonstrations are

here abandoned, and the work is a mere classification of the

results then known, with numerical illustrations : the evidence

for the truth of the propositions enunciated, for I cannot call

them proofs, being in general an induction from numerical

instances. The object of the book is the study of the

properties of numbers, and particularly of their ratios. Nico-

machus commences with the usual distinctions between even,

odd, prime, and perfect numbers; he next discusses fractions

in a somewhat clumsy manner; he then turns to polygonal and

to solid numbers; and finally treats of ratio, proportion, and

the progressions. Arithmetic of this kind is usually termed

Boethian, and the work of Boethius on it was a recognized

text-book in the middle ages.

The second century after Christ.

Theon. Another arithmetic on much the same lines as

that of Nicomachus was produced by Theon of Smyrna ,
circ.

130; but it was even less scientific than that of Nicomachus.

It was edited by J. J. de Gelder, Leyden, 1827; and by E.

Hiller, Leipzig, 1878. Theon also wrote a work on astronomy
which was edited by T. H. Martin, Paris, 1849.

Thymaridas. Another mathematician of about the same

date was Thymaridas, who is worthy of notice from the fact

that he is the earliest known writer who explicitly enunciated

an algebraical theorem. He stated that, if the sum of any
number of quantities be given, and also the sum of every pair

which contains one of them, then this quantity is equal to

one (n
-
2)th part of the difference between the sum of these

pairs and the first given sum. Thus, if

x
l + x2 + . . . + xn = S,
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and if x
l

-\- x,2 =s.2 ,
X

1
+ x3

= s3 ,
. . .

,
arid x1 + xn = sn ,

then x
L
=

(sz + s3 + ...+sn - 8)1(n
-

2).

He does not seem to have used a symbol to denote the unknown

quantity, but he always represented it by the same word, which

is an approximation to symbolism.

Ptolemy*. About the same time as these writers Ptolemy

of Alexandria, who died in 168, produced his great work on

astronomy, which will preserve his name as long as the history

of science endures. This treatise is usually known as the

Almagest: the name is derived from the Arabic title al mid-

scliisti, which is said to be a corruption of peyLO-Tr) [fjLaOrjfjiaTLKrj]

o&quot;vvrais. The work is founded on the writings of Hipparchus,

and, though it did not sensibly advance the theory of the

subject, it presents the views of the older writer with a com

pleteness and elegance which will always make it a standard

treatise. We gather from it that Ptolemy made observations

at Alexandria from the years 125 to 150; he however was

but an indifferent practical astronomer, and the observations

of Hipparchus are generally more accurate than those of his

expounder.
The work is divided into thirteen books. In the first

book Ptolemy discusses various preliminary matters; treats of

trigonometry, plane and spherical ; gives a table of chords, i.e.

of natural sines (which is substantially correct and is probably
taken from the lost work of Hipparchus) ;

and explains the

obliquity of the ecliptic ;
in this book he uses degrees, minutes,

and seconds as measures of angles. The second book is devoted

chiefly to phenomena depending on the spherical form of the

earth: he remarks that the explanations would be much

simplified if the earth were supposed to rotate on its axis once

* See the article Ptolemaeus Claudius by A. De Morgan in Smith s

Dictionary of Greek and Roman Biography, London, 1849 ; and

Delambre, Histoire de Vastronomic ancienne, Paris, 1817, vol. 11. An
edition of all the works of Ptolemy which are now extant was published
at Bale in 1551. The Almagest with various minor works was edited by
M. Halma, 12 vols, Paris, 181328, and this is the standard edition.

B
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a day, but points out that this hypothesis is inconsistent with

known facts. In the third book he explains the motion of the

sun round the earth by means of excentrics and epicycles: and

in the fourth and fifth books he treats the motion of the moon
in a similar way. The sixth book is devoted to the theory of

eclipses; and in it he gives 3 8
30&quot;,

that is 3Ty^-, as the

approximate value of TT, which is equivalent to taking it equal

to 3 14l6. The seventh and eighth books contain a catalogue

of 1022 fixed stars determined by indicating those, three or

more, that are in the same straight line (this was probably

copied from Hipparchus) : and in another work Ptolemy added

a list of annual sidereal phenomena. The remaining books

are given up to the theory of the planets.

This work is a splendid testimony to the ability of its

author. It became at once the standard authority on as

tronomy, and remained so till Copernicus and Kepler shewed

that the sun and not the earth must be regarded as the centre

of the solar system.

The idea of excentrics and epicycles on which the theories

of Hipparchus and Ptolemy are based has been often ridiculed

in modern times. No doubt at a later time, when more accu

rate observations had been made, the necessity of introducing

epicycle on epicycle in order to bring the theory into accord

ance with the facts made it very complicated. But De Morgan
has acutely observed that in so far as the ancient astronomers

supposed that it was necessary to resolve every celestial motion

into a series of uniform circular motions they erred greatly,

but that, if the hypothesis be regarded as a convenient way
of expressing known facts, it is not only legitimate but con

venient. It was as good a theory as with their instruments

and knowledge it was possible to frame, and in fact it exactly

corresponds to the expression of a given function as a sum of

sines or cosines, a method which is of frequent use in modern

analysis.

In spite of the trouble taken by Delambre it is almost

impossible to separate the results due to Hipparchus from
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those due to Ptolemy. But Delambre and De Morgan agree

in thinking that the observations quoted, the fundamental

ideas, and the explanation of the apparent solar motion are

due to Hipparchus; while all the detailed explanations and

calculations of the lunar and planetary motions are wholly

due to Ptolemy.
The Almagest shews that Ptolemy was a geometrician of

the first rank, though it is with the application of geometry to

astronomy that he is chiefly concerned. He was however the

author of numerous other treatises, most of which were on

pure mathematics.

Amongst these treatises is one on pure geometry in which

he proposed to cancel the twelfth axiom of Euclid on parallel

lines and to prove it in the following manner. Let the

straight line EFGH meet the two straight lines AB and CD
so as to make the sum of the angles BFG and FGD equal
to two right angles. It is required to prove that AB and CD
are parallel. If possible let them not be parallel, then they
will meet when produced say at M (or N). But the angle
AFG is the supplement of BFG, and is therefore equal to

FGD: similarly the angle FGC is equal to the angle BFG.
Hence the sum of the angles AFG and FGC is equal to two

H

right angles, and the lines BA and DC will therefore if pro
duced meet at N (or J/). But two straight lines cannot enclose

a space, therefore AB and CD cannot meet when produced,
that is, they are parallel. Conversely, if AB and CD be

parallel, then AF and CG are not less parallel than FB and

72
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GD j and therefore whatever be the sum of the angles AFG
and FGC such also must be the sum of the angles FGD and

BFG. But the sum of the four angles is equal to four right

angles, and therefore the sum of the angles BFG and FGD
must be equal to two right angles.

Ptolemy wrote another work to shew that there could not

be more than three dimensions in space: he also discussed

orthographic and stereographic projections with special reference

to the construction of sun-dials. He wrote on geography, and

stated that the length of one degree of latitude is 500 stadia.

A book on optics and another on sound are sometimes attributed

to him, but their authenticity is doubtful.

The third century after Christ.

, Pappus. Ptolemy had shewn not only that geometry could

be applied to astronomy, but had indicated how new methods

of analysis like trigonometry might be thence developed. He
found however no successors to take up the work he had com

menced so brilliantly, and we must look forward 150 years

before we find another geometrician of any eminence. That !

geometrician was Pappus who lived and taught at Alexandria

about the end of the third century. We know that he had

numerous pupils, and it is probable that he temporarily revived

an interest in the study of geometry.

Pappus wrote several books, but the only one which has

come down to us is his Swaywy^, a collection of mathematical

papers arranged in eight books of which the first and part of

the second have been lost; it has been published by F. Hultsch,

Berlin, 1876 8. This collection was intended to be a syn

opsis of Greek mathematics together with comments and

additional propositions by the editor. A careful comparison of

various extant works with the account given of them in this

book shews that it is trustworthy, and we rely largely on it for

our knowledge of other works now lost. It is not arranged

chronologically, but all the treatises on the same subject
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are grouped together, and it is most likely that it gives

roughly the order in which the classical authors were read at

Alexandria. Probably the first book, which is now lost, was

on arithmetic. The next four books deal with geometry ex

clusive of conic sections : the sixth with astronomy including,

as subsidiary subjects, optics and trigonometry : the seventh

with analysis, conies, and porisms: arid the eighth with

mechanics.

The last two books contain a good deal of original work by

Pappus; at the same time it should be remarked that in two

or three cases he has been detected in appropriating proofs

from earlier authors, and it is possible he may have done this

in other cases.

Subject to this suspicion we may say that he discovered

the focus in the parabola, and the directrix in the conic

sections, but in both cases he investigated only a few isolated

properties: the earliest comprehensive account of the foci was

given by Kepler, and of the directrix by Newton and Boscovich.

In mechanics, he shewed that the centre of mass of a

triangular lamina is the same as that of an inscribed triangular

lamina whose vertices divide each of the sides of the originalo

triangle in the same ratio. He also discovered the two theorems

on the surface and volume of a solid of revolution which are

still quoted in text-books under his name : these are that the

volume generated by the revolution of a curve about an axis is

equal to the product of the area of the curve and the length
of the path described by its centre of mass; and the surface

is equal to the product of the perimeter of the curve and the

length of the path described by its centre of mass.

Pappus s best work is in geometry. As an illustration of

his power I may mention that he solved (book vii., prop. 107)
the problem to inscribe in a given circle a triangle whose sides

produced shall pass through three collinear points. This

question was in the eighteenth century generalised by Cramer

by supposing the three given points to be anywhere; and

was considered a difficult problem. It was sent in 1742 as a
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challenge to Castillon, and in 1776 he published a solution.

Lagrange, Euler, Lhulier, Fuss, and Lexell also gave solutions

in 1 780. A few years later the problem was set to a Nea

politan lad Oltaiano, who was only 16 but who had shewn

marked mathematical ability, and he extended it to the case

of a polygon of n sides which pass through n given points, and

gave a solution both simple and elegant. Poncelet extended

it to conies of any species and subject to other restrictions.

The problem just mentioned is but a sample of many
brilliant but isolated theorems which were enunciated by

Pappus. His work as a whole and his comments shew that he

was a geometrician of great power; but it was his misfortune

to live at a time when but little interest was taken in geometry,
and when the subject, as then treated, had been practically

exhausted.

Possibly a small tract on multiplication and division of

sexagesimal fractions, which would seem to have been written

about this time, is due to Pappus. It was edited by C. Henry,

Halle, 1879, and is valuable as an illustration of practical Greek

arithmetic.

The fourth century after Christ.

Throughout the second and third centuries, that is, from

the time of Nicomachus, interest in geometry had steadily

decreased, and more and more attention had been paid to the

theory of numbers though the results were in no way com

mensurate with the time devoted to the subject. It will

be remembered that Euclid used lines as symbols for any

magnitudes, and investigated a number of theorems about

numbers in a strictly scientific manner, but he confined him

self to cases where a geometrical representation was possible.

There are indications in the works of Archimedes that he was

prepared to carry the subject much further : he introduced

numbers into his geometrical discussions and divided lines by

lines, but he was fully occupied by other researches and had
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no time to devote to arithmetic. Hero abandoned the geo

metrical representation of numbers but he, Nicomachus, and

other later writers on arithmetic did not succeed in creating

any other symbolism for numbers in general, and thus when

they enunciated a theorem they were content to verify it by
a large number of numerical examples. They doubtless knew

how to solve a quadratic equation with numerical coefficients

for, as pointed out above, geometrical solutions of the equa
tions ax2 - bx + c = and ax2 + bx c = Q are given in Euc. vi.

28 and 29 but probably this represented their highest attain

ment.

It would seem then that, in spite of the time given to its

study, arithmetic and algebra had not made any sensible advance

since the time of Archimedes. The problems of this kind

which excited most interest in the third century may be illus

trated from a collection of questions, printed in the Palatine

Anthology, which was made by Metrodorus at the beginning
of the next century, about 310. Some of them are due to

the editor, but some are of an anterior date, and they fairly

illustrate the way in which arithmetic was leading up to

algebraical methods. The following are typical examples.
&quot; Four pipes discharge into a cistern : one fills it in one

day ;
another in two days ;

the third in three days ;
the

fourth in four days : if all run together how soon will they
fill the cistern]&quot; &quot;Demochares has lived a fourth of his life

as a boy; a fifth as a youth ;
a third as a man

;
and has spent

thirteen years in his dotage : how old is he ?
&quot;

&quot; Make a

crown of gold, copper, tin, and iron weighing 60 minae : gold
and copper shall be two-thirds of it

; gold and tin three-

fourths of it
;
and gold and iron three-fifths of it : find the

weights of the gold, copper, tin, and iron which are required.&quot;

The last is a numerical illustration of Thymaridas s theorem

quoted above.

The German commentators have pointed out that though
these problems lead to simple equations, they can be solved

by geometrical methods, the unknown quantity being repre-
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sented by a line. Dean Peacock has also remarked that they
can be solved by the method used in similar cases by the

Arabians and many mediaeval writers. This method, usually

known as the ride offalse assumption, consists in assuming any
number for the unknown quantity, and, if on trial the given
conditions be not satisfied, altering the number by a simple

proportion as in rule of three. For example, in the second

problem, suppose we assume that the age of Demochares is 40,

then, by the given conditions, he would have spent 8f (and not

13) years in his dotage, and therefore we have the ratio of

&% to 13 equal to the ratio of 40 to his actual age, hence hiso -I O &quot;

actual age is 60.

But the most recent writers on the subject think that the

problems were solved by rhetorical algebra, that is, by a process

of algebraical reasoning expressed in words and without the

use of any symbols. This, according to Nesselmann, is the first

stage in the development of algebra, and we find it used both

by Ahmes and by the earliest Arabian, Persian, and Italian

algebraists : examples of its use in the solution of a geometrical

problem and in the rule for the solution of a quadratic equation
are given later (see below, pp. 207, 214). On this view then

a rhetorical algebra had been gradually evolved by the Greeks,

or was then in process of evolution. Its development was

however very imperfect.^ Hankel, who is no unfriendly critic,

says that the results attained as the net outcome of the work of

600 years onTTne theory of numbers are, whether we look at

the form or the substance, unimportant or even childish and

are not in any way the commencement of a science.

In the midst of this decaying interest in geometry and

these feeble attempts at algebraic arithmetic, a single algebraist

of marked originality suddenly appeared who created what

was practically a new science. This was Diophantus who
introduced a system of abbreviations for those operations and

quantities which constantly recur, though in using them he

observed all the rules of grammatical syntax. The resulting

science is called by Nesselmann syncopated algebra : it is a sort
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of shorthand. Broadly speaking, it may be said that European

algebra did not advance beyond this stage until the close of

the sixteenth century.

Modern algebra has progressed one stage further and is

entirely symbolic ;
that is, it has a language of its own and a

system of notation which has no obvious connection with the

things represented, while the operations are performed accord

ing to certain rules which are distinct from the laws of gram
matical construction.

Diophantus*. All that we know of Diophantus is that he

lived at Alexandria, and that most likely he was not a Greek.

Even the date of his career is uncertain, but probably he

flourished in the early half of the fourth century, that is,

shortly after the death of Pappus. He was 84 when he died.

In the above sketch of the lines on which algebra has

developed I credited Diophantus with the invention of synco

pated algebra. This is a point on which opinions differ, and

some writers believe that he only systematized the knowledge
which was familiar to his contemporaries. In support of this

latter opinion it may be stated that Cantor thinks that there

are traces of the use of algebraic symbolism in Pappus, and

Friedlein mentions a Greek papyrus in which the signs /
and 9

are used for addition and subtraction respectively ;
but no other

direct evidence for the non-originality of Diophantus has been

produced, and no ancient author gives any sanction to this view.

Diophantus wrote a short essay on polygonal numbers
;
a

treatise on algebra which has come down to us in a mutilated

condition
;
and a work on porisms which is lost.

The Polygonal Numbers contains ten propositions, and was

probably his earliest work. In this he abandons the em

pirical method of Nicomachus, and reverts to the old and

classical system by which numbers are represented by lines, a

construction is (if necessary) made, and a strictly deductive

* See Diophantos of Alexandria by T. L. Heath, Cambridge, 1885;
also Die Arithmetic uml die Schrift Hbcr Polygonalznhlfn des Diophantus

by G. Wcrtheim, Leipzig, 1890.
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proof follows : it may be noticed that in it he quotes propo

sitions, such as Euc. II. 3 and n. 8, as referring to numbers and

not to any magnitudes.
His chief work is his Arithmetic. This is really a treatise

on algebra ; algebraic symbols are used, and the problems are

treated analytically. Diophantus tacitly assumes, as is done in

nearly all modern algebra, that the steps are reversible. He
applies this algebra to find solutions (though frequently only

particular ones) of several problems involving numbers. I

propose to consider successively the notation, the methods of

analysis employed, and the subject-matter of this work.

First, as to the notation. Diophantus always employed a

symbol to represent the unknown quantity in his equations,

but as he had only one symbol he could never use more than

one unknown at a time (see, however, below, p. 109). The

unknown quantity is called o dpiOfAos, and is represented by

$* or 5&quot; . It is usually printed as s. In the plural it is

denoted by 95 or ss
l
. This symbol may be a corruption of OP,

or possibly is an old hieratic symbol for the word heap (see

above, p. 4), or it may stand for the final sigma of the word.

The square of the unknown is called Suva/xis, and denoted

by &: the cube KU/:?OS, and denoted by K
\
and so on up to

the sixth power.
The coefficients of the unknown quantity and its powers are

numbers, and a numerical coefficient is written immediately after

the quantity it multiplies : thus s d = x, and ss01 ta = ssia = llx.

An absolute term is regarded as a certain number of units or

/xovaSes which are represented by ju: thus /x
sd - 1, /x

5ta = 11.

There is no sign for addition beyond mere juxtaposition.

Subtraction is represented by &amp;gt;/i,

and this symbol affects all the

symbols that follow it. Equality is represented by i. Thus

represents (x* + Sx)
-

(5x
2 + !)

= #.

Diophantus also introduced a somewhat similar notation
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for fractions involving the unknown quantity, but into the

details of this I need not here enter.

It will be noticed that all these symbols are mere abbre

viations for words, and Diophantus reasons out his proofs,

writing these abbreviations in the middle of his text. In

most manuscripts there is a marginal summary in which the

symbols alone are used and which is really symbolic algebra ;

but probably this is the addition of some scribe of later times.

This introduction of a contraction or a symbol instead of a

word to represent an unknown quantity marks a greater ad

vance than anyone not acquainted with the subject would

imagine, and those who have never had the aid of some such

abbreviated symbolism find it almost impossible to understand

complicated algebraical processes. It is likely enough that it

might have been introduce! earlier, but for the unlucky system
of numeration adopted by the Greeks by which they used all

the letters of the alphabet to denote particular numbers and

thus make it impossible to employ them to represent any
number.

Next, as to the knowledge of algebraic methods shewn in

the book. Diophantus commences with some definitions whichA

include an explanation of his notation, and in giving the)

symbol for minus he states that a subtraction multiplied by/
a subtraction gives an addition

; by this he means that the

product of 6 and d in the expansion of (a b)(c- d) is

+ bd, but in applying the rule he always takes care that the

numbers a, 5, c, d are so chosen that a is greater than b and

c is greater than d.

The whole of the work itself, or at least as much as is now
,

extant, is devoted to solving problems which lead to equa
tions. It contains the rules for solving a simple equation of the

first degree and a binomial quadratic. The rule for solving

any quadratic equation is probably in one of the lost books,

but where the equation is of the form ax2 + bx + c = he

seems to have multiplied by a and then &quot;

completed the

in much the same way as is now done : when the roots
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are negative or irrational* the equation is rejected as &quot; im

possible,&quot;
and even when both roots are positive he never

gives more than one, always taking the positive value of the

square root. Diophantus solves one cubic equation, namely,
x3 + x = 4#2 + 4 (book vi., prob. 19).

The greater part of the work is however given up to in

determinate equations between two or three variables. When
the equation is between two variables, then, if it be of the

first degree, he assumes a suitable value for one variable and

solves the equation for the other. Most of his equations are

of the form y
2 = Ax2 + Bx + C. Whenever A or C is absent,

he is able to solve the equation completely. When this is not

the case, then, if A a2

,
he assumes y ax + m

;
if C = c

2

,
he

assumes y mx + c
;
and lastly, if the equation can be put in

the form y
2

(ax b)
2 + c

2

,
he assumes y = mx : where in each

case m has some particular numerical value suitable to the

problem under consideration. A few particular equations of

a higher order occur, but in these he generally alters the pro
blem so as to enable him to reduce the equation to one of the

above forms.

The simultaneous indeterminate equations involving three

variables, or &quot; double equations
&quot;

as he calls them, which he

considers are of the forms y
2- Ax2+ Bx -f C and z

2= ax2 + bx+c.

If A and a both vanish, he solves them in one of two ways.
It will be enough to give one of his methods which is as

follows : he subtracts and thus gets an equation of the form

y
2

z
2 = mx + n

; hence, if yz = \, then y =p z (mx + n)/\ ;

and solving he finds y and z. His treatment of &quot; double

equations
&quot; of a higher order lacks generality and depends on

the particular numerical conditions of the problem.

Lastly, as to the matter of the book. The problems he

attacks and the analysis he uses are so various that they

cannot be described concisely and I have therefore selected five

typical problems to illustrate his methods. What seems to

strike his critics most is the ingenuity with which he selects

as his unknown some quantity which leads to equations such
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as he can solve, and the artifices by which he finds numerical

solutions of his equations.

I select the following as characteristic examples.

(i)
Findfour numbers, the sum of every arrangement three

at a time being given; say, 22, 24, 27, and 20 (book I., prob. 17).

Let oJ be the sum of all four numbers
j
hence the num

bers are x - 22, x - 24, x - 27, and x - 20.

.-. x = (x
-
22) + (x

-
24) + (x

-
27) + (x- 20).

.-. a; = 31.

.-. the numbers are 9, 7, 4, and 11.

(ii)
Divide a number, suck as 13 which is the sum of two

squares 4 and 9, into two other squares (book n., prob. 10).

He says that since the given squares are 2 2 and 3
2 he will

take (x + 2)
2 and (mx -

3)
2

as the required squares, and will

assume m = 2.

.-. (x + 2)
2 + (2x-3)

2 =l3.

.-. a =
8/5.

.-. the required squares are 324/25 and 1/25.

(iii)
Find two squares such that the sum of the product

and either is a square (book II., prob. 29).

Let x2 and y* be the numbers. Then x~y
2 + y~ and x*y* + x2

are squares. The first will be a square if x2 + I be a square,

which he assumes may be taken equal to (x 2)
2

,
hence

#=3/4. He has now to make 9(?/
2

+l)/16 a square, to do

this he assumes that 9?/
2 + 9 = (3i/ 4)

2

,
hence y = 7/24. There

fore the squares required are 9/16 and 49/576.
It will be recollected that Diophantus had only one symbol

for an unknown quantity : and in this example he begins by

calling the unknowns x2 and 1, but as soon as he has found x

he then replaces the 1 by the symbol for the unknown quan

tity, and finds it in its turn.
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(iv) To find a [rational] right angled triangle such that the

line bisecting an acute angle is rational (book vi., prob. 18).

His solution is as follows. Let ABC be the triangle of

which C is the right- angle. Let the bisector AD = 5x, and

A

B DC
let DC = 3x, hence AC = \x. Next let EG be a multiple of 3,

say 3, .-. JBJ) = 3-3x, hence AB=-kx (by Euc. vi. 3).

Hence (4
-

x)
2 = 32 + (4x)

2

(Euc. i. 47), .-.a = 7/32. Multi

plying by 32 we get for the sides of the triangle 28, 96, and

100
;
and for the bisector 35.

(v) A man buys x measures of ivine, some at 8 drachmae

a measure, the rest at 5. He pays for them a square number of

drachmae, such that, if 60 be added to it, the resulting number

is x2
. Find the number he bought at each price (book v.,

prob. 33).

The price paid was x2

60, hence Sx &amp;gt; x2 - 60 and

5x &amp;lt; x2 - 60. From this it follows that x must be greater

than 11 and less than 12.

Again x2 - 60 is to be a square ; suppose it is equal to

(x m)
2 then x= (m

2 + 60)/2m, we have therefore

.-. 19&amp;lt;ra&amp;lt;21.

Diophantus therefore assumes that m is equal to 20, which

gives him x= 11|- ;
and makes the total cost, i.e. x2

60, equal

to 72^ drachmae.

He has next to divide this cost into two parts which shall

give the cost of the 8 drachmae measures and the 5 drachmae

measures respectively. Let these parts be y and z.
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Then ** + i(72i-z) = ll.

5 x 79 8 x 59
Therefore z = -

9 -, and y = .
^

Therefore the number of 5 drachmae measures was 79/12, and

of 8 drachmae measures was 59/12.

From the enunciation of this problem it would seem

that the wine was of a poor quality, and M. Tannery has

ingeniously suggested that the prices mentioned for such a

wine are higher than were usual until after the end of the

second century. He therefore rejects the view which was

formerly held that Diophantus lived in that century, but he

does not seem to be aware that De Morgan had previously

shewn that this opinion was untenable. M. Tannery inclines

to think that Diophantus lived half a century earlier than

I have supposed.

I mentioned that Diophantus wrote a third work entitled

Porisms. The book is lost, but we have the enunciations of

some of the propositions and though we cannot tell whether

they were rigorously proved by Diophantus they confirm our

opinion of his ability and sagacity. It has been suggested
that some of the theorems which he assumes in his arithmetic

were proved in the porisms. Among the more., striking of

these results are the statements that the difference of two

cubes can be always expressed as the sum of two cubes
;
that

no number of the form 4?z 1 can be expressed as the sum
of two squares ;

and that no number of the form Sn 1 (or

possibly 2in + 7) can be expressed as the sum of three squares :

to these we may perhaps add the proposition that any number
can be expressed as a square or as the sum of two or three or

four squares.

The writings of Diophantus exercised no perceptible influ

ence on Greek mathematics
;
but his Arithnielicj when trans

lated into Arabic in the tenth century, influenced the Arabian

school, and so indirectly affected the progress of European
mathematics. A copy of the work was discovered in 1462;
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it was translated into Latin and published by Xylander in

1575
;

tho translation excited general interest, but by that

time the European algebraists had on the whole advanced

beyond the point at which Diophantus had left off.

The names of two commentators will practically conclude

the long roll of Alexandrian mathematicians.

Theon. The first of these is Tkeon of Alexandria who
flourished about 370. He was not a mathematician of

special
&quot;

note, but we are indebted to him for an edition of

Euclid s Elements and a commentary on the Almagest] the

latter gives a great deal of miscellaneous information about

the numerical methods used by the Greeks, it was translated

with comments by M. Halma and published at Paris in 1821.

Hypatia. The other was Hypatia the daughter of Theon.

She .was more distinguished than her father, and was the last

Alexandrian mathematician of any general reputation : she

wrote a commentary on the Conies of Apollonius and possibly

some other works, but nothing of hers is now extant. She was

murdered at the instigation of the Christians in 415.

Tho fate of Hypatia may serve to remind us that the

Christians, as soon as they became the dominant party in

the state, shewed themselves bitterly hostile to all forms of

learning. That very singleness of purpose which had at first

so materially aided their progress developed into a one-

sidediiess which refused to see any good outside their own

body; those who did not actively assist them were persecuted,

and the manner in which they carried on their war against

the old schools of learning is pictured in the pages of Kingsley s

novel. The final establishment of Christianity in the East

marks the end of the Greek scientific schools, though nominally

they continued to exist for two hundred years more.

The Athenian school (in the fifth century).

The hostility of the Eastern church to Greek science is fur

ther illustrated by the fall of the later Athenian school. This
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school occupies but a small space in our history. Ever since

Plato s time a certain number of professional mathematicians

had lived at Athens
;
and about the year 420 this school again

ai-ij uired considerable reputation, largely in consequence of the

numerous students who after the murder of Hypatia migrated
tli ere from Alexandria. Its most celebrated members were

Proclus, Damascius, and Eutocius.

Proclus*. Proclus was born at Constantinople in February
1 1 1 and died at Athens on April 17, 485. He wrote a com

mentary on Euclid s Elements, of which that part which deals

with the first book is extant and contains a great deal of valu

able information on the history of Greek mathematics : he is

verbose and dull but luckily he has preserved for us quotations
from other and better authorities. His commentary has been

edited by G. Friedlein, Leipzig, 1873. Proclus was succeeded

as head of the school by Marinus, and Marinus by Isidorus.

Damascius. Eutocius. Two pupils of Isidorus, who in

their turn subsequently lectured at Athens, may be mentioned

in passing. Damascius of Damascus, circ. 490, added to Euclid s

Eli inmds a fifteenth book on the inscription of one regular
solid in another. Eutocius^ circ. 510, wrote commentaries on

the first four books of the Conies of Apollonius and on

various works of Archimedes
;
he also published some examples

of practical Greek arithmetic. His works have never been

edited though they would seem to deserve it.

This later Athenian school was carried on under great

difficulties owing to the opposition of the Christians. Proclus,

for example, was repeatedly threatened with death because he

was &quot;a
philosopher.&quot;

His remark &quot;after all, my body does

not matter, it is the spirit that I shall take with me when
I

die,&quot;
which he made to some students who had offered to

def.-nd him, has been often quoted. The Christians, after seve

ral ineffectual attempts, at last got a decree from Justinian in

J!) that &quot; heathen learning
&quot; should no longer be studied at

*
Srt&amp;gt; rntsrxiH Inuiiii n nlt-r die ncu tinfiirj nmlcnt n Hrhulicn (It

1*

by J. H. Knoche, Herford, 1865.

U.
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Athens. That date therefore marks the end of the Athenian
school.

The church at Alexandria was less influential, and the

city was more remote from the centre of civil power. The
schools there were thus suffered to continue, though their

existence was of a precarious character. Under these con

ditions mathematics continued to be read there for another

hundred years but all interest in the study had gone.

Roman Mathematics*.

I ought not to conclude this part of the history without

any mention of Roman mathematics, for it was through Rome
that mathematics first passed into the curriculum of mediaeval

Europe, and in Rome all modern history has its origin. There

is however very little to say on the subject. The chief study of

the place was in fact the art of government, whether by law,

by persuasion, or by those material means on which all govern
ment ultimately rests. There were no doubt professors who
could teach the results of Greek science but there was no

demand for a school of mathematics. Italians who wished to

learn more than the elements of the science went to Alex
andria or to places which drew their inspiration from Alex

andria.

The subject as taught in the mathematical schools at Rome
seems to have been confined in arithmetic to the art of calcula

tion (no doubt by the aid of the abacus) and perhaps some of

the easier parts of the work of Nicomachus
;
and in geometry

to a few practical rules
; though some of the arts founded on a

knowledge of mathematics (especially that of surveying) were

carried to a high pitch of excellence. It would seem also that

special attention was paid to the representation of numbers by

* The subject is discussed by Cantor, chaps, xxv., xxvi., and xxvu.;

also by Hankel, pp. 294304,
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signs. The manner of indicating numbers up to ten by the

use of fingers must have been in practice from quite early

times, but about the first century it had been developed by
the Romans into a finger-symbolism by which numbers up to

10000 or perhaps more could be represented : this would seem

to have been taught in the Roman schools. The system would

hardly be worth notice but that its use has still survived in

the Persian bazaars.

I am not aware of any Latin work on the principles of

mechanics, but there were numerous books on the practical

side of the subject which dealt elaborately with architectural

and engineering problems. We may judge what they were like

by the Matkematici Veteres, which is a collection of various

short treatises on catapults, engines of war, &c. (an edition

was published in Paris, in 1693): and by the Keo-rot, written

by Sextus Julius Africanus about the end of the second century,

which contains, amongst other things, rules for finding the

breadth of a river when the opposite bank is occupied by an

enemy, how to signal with a semaphore, &c.

In the sixth century Boethius published a geometry con

taining a few propositions from Euclid and an arithmetic

founded on that of Nicomachus
;
and about the same time

Cassiodorus discussed the foundation of a liberal education

which, after the preliminary trivium of grammar, logic, and

rhetoric, meant the quadrivium of arithmetic, geometry, music,

and astronomy. These works were written at Rome in the

closing years of the Athenian and Alexandrian schools and

I therefore mention them here, but as their only value lies in

the fact that they became recognized text-books in mediaeval

education I postpone their consideration to chapter vin.

Theoretical mathematics was in fact an exotic study at

Rome
;
not only was the genius of the people essentially prac

tical, but, alike during the building of their empire, while it

lasted, and under the Goths, all the conditions were unfavour

able to abstract science.

On the other hand, Alexandria was exceptionally well

82
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placed to be a centre of science. From the foundation of the

city to its capture by the Mohammedans it was disturbed

neither by foreign nor by civil war, save only for a few years
when the rule of the Ptolemies gave way to that of Rome : it

was wealthy, and its rulers took a pride in endowing the uni

versity : and lastly, just as in commerce it became the meeting-

place of the east and the west, so it had the good fortune to be

the dwelling-place alike of Greeks and of various Semitic people;

the one race shewed a peculiar aptitude for geometry, the other

for all sciences which rest on measurement. Here too, how

ever, as time went on the conditions gradually became more

unfavourable, the endless discussions by the Christians on

theological dogmas and the increasing insecurity of the empire

tending to divert men s thoughts into other channels.

End of the second Alexandrian School.

The precarious existence and unfruitful history of the last

two centuries of the second Alexandrian School need no record.

In 632 Mohammed died, and within ten years his successors

had subdued Syria, Palestine, Mesopotamia, Persia, and Egypt.

The precise date on which Alexandria fell is doubtful but

the most reliable Arab historians give Dec. 10, 641 a date

which at any rate is correct within eighteen months.

With the fall of Alexandria the long history of Greek

mathematics came to a conclusion. It seems probable that the

greater part of the famous university library and museum had

been destroyed by the Christians a hundred or two hundred

years previously, and what remained was unvalued and neg
lected. Some two or three years after the first capture of

Alexandria a serious revolt occurred in Egypt, which was

ultimately put down with great severity. I see no reason to

doubt the truth of the account that after the capture of the

city the Mohammedans destroyed such university buildings and
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collections as were still left. It is said that, when the Arab

commander ordered the library to be burnt, the Greeks made

such energetic protests that he consented to refer the matter to

the caliph Omar. The caliph returned the answer,
&quot; as to the

books you have mentioned, if they contain what is agreeable

with the book of God, the book of God is sufficient without

them
; and, if they contain what is contrary to the book of God,

there is no need for them; so give orders for their destruction.&quot;

The account goes on to say that they were burnt in the public
baths of the city, and that it took six months to consume

them all.
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CHAPTER VI.

THE BYZANTINE SCHOOL.

6411453.

IT will be convenient to consider the Byzantine school in.

connection with the history of Greek mathematics. After the

capture of Alexandria by the Mahommedans the majority of

the philosophers, who previously had been teaching there,

migrated to Constantinople which then became the centre of

Greek learning in the East arid remained so for 800 years.

But though the history of the Byzantine school stretches over

so many years a period about as long as that from the

Norman Conquest to the present day it is utterly barren of

any scientific interest
;
and its chief merit is that it preserved

for us the works of the different Greek schools. The revelation

of these works to the West in the fifteenth century was one

of the most important sources of the stream of modern European

thought, and the history of the Byzantine school may be

summed up by saying that it played the part of a conduit-pipe

in conveying to us the results of an earlier and brighter age.

The time was one of constant war, and men s minds during

the short intervals of peace were mainly occupied with theo

logical subtleties and pedantic scholarship. I should not have

mentioned any of the following writers had they lived in the
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Alexandrian period, but in. default of any others they may be

noticed as illustrating the character of the school. I ought
also perhaps to call the attention of the reader explicitly to

the fact that I am here departing from chronological order,

and that the mathematicians mentioned in this chapter were

contemporaries of those discussed in the chapters devoted to

the mathematics of the middle ages. The Byzantine school

was so isolated that I deem this the best arrangement of the

subject.

Hero. One of the earliest members of the Byzantine
school was Hero of Constantinople, circ. 900, sometimes called

the younger to distinguish him from Hero of Alexandria.

There is some difficulty in separating the works of these two

writers. Hero would seem to have written on geodesy and

mechanics as applied to engines of war.

During the tenth century two emperors Leo VI. and Con-

stantine VII. shewed considerable interest in astronomy and

mathematics, but the stimulus thus given to the study of these

subjects was only temporary.
Psellus. In the eleventh century Michael Psellus, born

in 1020, wrote a pamphlet on the quadrivium. It is now in

the National Library at Paris; it was printed at Bale in 1556.

He also wrote a Compendium Mathematicum which was printed
at Leyden in 1647.

In the fourteenth century we find the names of three

monks who paid attention to mathematics.

Planudes. The first of the three was Maximus Planudes
;

he wrote a commentary on the first two books of the Arithmetic

of Diophantus; this was published by Xylander, Bale, 1575:

a work on Hindoo arithmetic in which he introduced the

use of the Arabic numerals into the eastern empire ;
this was

published by C. J. Gerhardt, Halle, 1865 : and another on

proportions which is now in the National Library at Paris.

Barlaam. The next was a Calabrian monk named Barlaam,
who was born in 1290 and died in 1348. He was the author

of a work on the Greek methods of calculation from which we
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derive a good deal of our information as to the way in which

the Greeks practically treated fractions : this was published in

Paris in 1606. Barlaam seems to have been a man of great

intelligence. He was sent as an ambassador to the pope at

Avignon, and acquitted himself creditably of a difficult mission;

while there he taught Greek to Petrarch. He was famous at

Constantinople for the ridicule he threw on the preposterous

pretensions of the monks at Mount Athosxwho taught that

those who joined them could, by standing naked resting their

beards on their breasts and steadily regarding their stomachs,

see a mystic light which was the essence of .God; Barlaam

advised them to substitute the light of reason for that of their

stomachs a piece of advice which nearly cost him his life.

Argyrus. The last of these monks was Isaac Argyrus,
who died in 1372. He wrote three astronomical tracts, the

manuscripts of which are in the libraries at the Vatican,

Leyden, and Vienna: one on geodesy, the manuscript of which

is at the Escurial : one on geometry, the manuscript of which is

in the National Library at Paris : one on the arithmetic of

Nicomachus, the manuscript of which is in the National Library
at Paris : and one on trigonometry, the manuscript of which

is in the Bodleian at Oxford.

Nicholas Rhabdas. In the fourteenth or perhaps the

fifteenth century Nicholas Rhabdas of Smyrna wrote two

papers on arithmetic which are now in the National Library
at Paris and have been edited by P. Tannery, Paris, 1886.

He gave an account of the finger-symbolism (see above, p. 115)

which the Romans had introduced into the East and was then

current there; this is described by Bede and therefore would

seem to have been known as far west as Britain
;
Jerome

also alludes to it.

Pachymeres. Early in the fifteenth century Pachymeres
wrote tracts on arithmetic, geometry, and four mechanical

machines.

Moschopulus. A few years later Emmanuel Moschopulus,

who died in Italy circ. 1460, wrote a treatise on magic squares.
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A magic square* consists of a number of integers arranged

in the form of a square so that the sum of the numbers in

every row, in every column, and in each diagonal is the same.

If the integers be the consecutive numbers from 1 to n2
,
the

square is said to be of the nth order, and it is easily seen

that in this case the sum of the numbers in any row, column,

or diagonal is equal to \n (n
2

+1). Thus the first 16 integers,

arranged in either of the forms given below, form a magic

square of the fourth order, the sum of the numbers in every

row, every column, and each diagonal being 34.

In the mystical philosophy then current certain metaphy
sical ideas were often associated with particular numbers, and

thus it was natural that such arrangements of numbers should

attract attention and be deemed to possess magical properties.

The theory of the formation of magic squares is elegant and

several distinguished mathematicians have written on it,

but I need hardly say it is not useful : it is largely due to

De la Hire who gave rules for the construction of a magic

square of any order higher than the second. Moschopulus
seems to have been the earliest European writer who attempted
to deal with the mathematical theory, but his rules apply only
to odd squares. The astrologers of the fifteenth and sixteenth

centuries were much impressed by such arrangements. In

particular the famous Cornelius Agrippa (1486 1535) con

structed magic squares of the orders 3, 4, 5, 6, 7, 8, 9 which

* On the formation and history of magic squares, see my Mathematical

Recreations and Problems, London, 1892, chap. v. On the work of Mos

chopulus, see chap. iv. of S. Giinther s Geschichte der mathcmutischen

Wissenschaften, Leipzig, 1876.
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were associated respectively with the seven astrological

&quot;planets:&quot; namely, Saturn, Jupiter, Mars, the Sun, Venus,

Mercury, and the Moon. He taught that a square of one

cell, in which unity was inserted, represented the unity and

eternity of God
;
while the fact that a square of the second

order could not be constructed illustrated the imperfection of

the four elements, air, earth, fire, and water
;
and later writers

added that it was symbolic of original sin. A magic square

engraved on a silver plate was often prescribed as a charm

against the plague, and one (namely, that in the first diagram
on the last page) is drawn in the picture of melancholy painted
about the year 1500 by Albrecht Diirer. Such charms are

worn still in the East.

Constantinople was captured by the Turks in 1453, and the

last semblance of a Greek school of mathematics then disap

peared. Numerous Greeks took refuge in Italy. In the West
the memory of Greek science had vanished and even the names

of all but a few Greek writers were unknown
;
thus the books

brought by these refugees came as a revelation to Europe, and

as we shall see later gave an immense stimulus to the study of

science.
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CHAPTER VII.

SYSTEMS OF NUMERATION AND PRIMITIVE ARITHMETIC*.

I HAVE in many places alluded to the Greek method of

expressing numbers in writing, and I have thought it best to

defer to this chapter the whole of what I wanted to say on the

various systems of numerical notation which were displaced

by the system introduced by the Arabs.

First, as to symbolism and language. The plan of indi

cating numbers by the digits of one or both hands is so natural

that we find it in universal use among early races, and the

members of all tribes now extant are able to indicate by signs

numbers at least as high as ten : it is stated that in some

languages the names for the first ten numbers are derived from

the fingers used to denote them. For larger numbers we soon

however reach a limit beyond which primitive man is unable

to count, while as far as language goes it is well known that

many tribes have no word for any number higher than ten, and

some have no word for any number beyond four, all higher
numbers being expressed by the words plenty or heap : in

connection with this it is worth remarking that the Egyptians

* The subject of this chapter is discussed by Cantor and by Hankel.

See also the Philosophy of Arithmetic by John Leslie, second edition,

Edinburgh, 1820. Besides these authorities the article on Arithmetic

by George Peacock in the Encyclopaedia Metropolitana, Pure Sciences,

London, 1845; E. B. Tylor s Primitive Culture, London, 1873; Lea

signes numeraux et Varithmetique chez les peuples de Vantiquite...\)y

T. H. Martin, Rome, 1864; and Die Zahlzeichen...by G. Friedlein,

Erlangen, 1869, should be consulted.
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used the symbol for the word heap to denote an unknown

quantity in algebra (see above, p. 4).

The number five is generally represented by the open hand,

and it is said that in almost all languages the words five and

hand are derived from the same root. It is possible that in

early times men did not readily count beyond five, and things if

more numerous were counted by multiples of it. Thus the

Roman symbol X for ten probably represents two
&quot;V&quot;s,

placed apex to apex and seems to point to a time when things

were counted by fives*. ID connection with this it is worth

noticing that both in Java and also among the Aztecs a week

consisted of five days*
The members of nearly all races of which we have now

any knowledge seem however to have used the digits of both

hands to represent numbers. They could thus count up to and

including ten, and therefore were led to take ten as their radix

of notation. In the English language for example all the

words for numbers higher than ten are expressed on the decimal

system: those for 11 and 12, which at first sight seem to be

exceptions, being derived from Anglo-Saxon words for one and

ten and two and ten respectively.

Some tribes seem to have gone further and by making use

of their toes were accustomed to count by multiples of twenty.
The Aztecs, for example, are said to have done so. It may be

noticed that we still count some things (e.g. sheep) by scores,

the word score signifying a notch or scratch made on the

completion of the twenty ;
while the French also talk of

quatre-vingt, as though at one time they counted things by

multiples of twenty. I am not, however, sure whether the

latter argument is worth anything, for I have an impression
that I have seen the word octante in old French books

;
and

there is no question t that septante and nonante were at one

* See also the Odyssey, iv. 413 415 in which apparently reference is

made to a similar custom.

t See for example, V. M. de Kempten s Practique . . .a ciffrer, Antwerp,
1556.
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time common words for seventy and ninety, and indeed they

are still retained in^^me dialects.

The only tribes of whom I have read who did not count in

terms either of five or of some multiple of five are the Bolans

of West Africa who are said to have counted by multiples of

seven, and the Maories who are said to have counted by

multiples of eleven.

Up to ten it is comparatively easy to count, but primitive

people found and still find great difficulty in counting higher

numbers; apparently at first this dilficulty was only overcome

by the method (still in use in South Africa) of getting two men,
one to count the units up to ten on his fingers, and the other

to count the number of groups of ten so formed. To us it is

obvious that it is equally effectual to make a mark of some

kind on the completion of each group of ten, but it is alleged

that the members of many tribes never succeeded in counting
numbers higher than ten unless by the aid of two men.

Most races who shewed any aptitude for civilization pro
ceeded further and invented a way of representing numbers by

\ means of pebbles or counters arranged in sets of ten
;
and this

1 in its turn developed into the abacus or swan-pan. This in

strument was in use among nations so widely separated as the

Etruscans, Greeks, Egyptians, Hindoos, Chinese, and Mexicans;
,

and was, it is believed, invented independently at several

different centres. It is still in common use in Russia, China,
and Japan.

In its simplest form
(fig. i) the abacus consists of a wooden

board with a number of grooves cut in it, or of a table covered

with sand in which grooves are made with the fingers. To re

present a number, as many counters or pebbles (calculi) are put
on the first groove as there are units, as many on the second

as there are tens, and so on. When * by its aid a^ number of

objects are counted, for each object a pebble is put on the first

groove; and, as soon as there are ten pebbles there, they are

taken off and one pebble put on the second groove ;
and so on.

It was sometimes, as in the Aztec quipus, made with a number
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Fig. i.

Q

Fig. iii.

munm
i
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of parallel wires or strings stuck in a piece of wood on which

beads could be threaded; and in that form is called a swan-pan.
In the number represented in each of the instruments drawn

on the opposite page there^ are seven thousands, three hun

dreds, no tens, and five units, that is, the number is, 7305.

Some races counted from left to right, others from right to left,

but this is a mere matter of convention.

The Roman abaci seem to have been rather more elaborate.

They contained two marginal grooves or wires, one with four

beads to facilitate the addition of fractions whose denominators

were four, and one with twelve beads for fractions whose de

nominators were twelve: but otherwise they do not differ in

principle from those described above. They were generally

made to represent numbers up to 100,000000. There are no

Greek abaci now in existence but there is no doubt that they
were similar to the Roman ones. The Greeks and Romans
used their abaci as boards on which they played a game
something like backgammon.

In the Russian tschotii (fig. ii)
the instrument is improved

by having the wires set in a rectangular frame, and ten (or nine)

beads are permanently threaded on each of the wires, the wires

being considerably longer than is necessary to hold them. If

the frame be held horizontal, and all the beads be towards one

side, say the lower side of the frame, it is possible to represent

any number by pushing towards the other or upper side as

many beads on the first wire as there are units in the number,
as many beads on the second wire as there are tens in the

number, and so on. Calculations can be made somewhat more

rapidly if the five beads on each wire next to the upper side

be coloured differently to those next to the lower side, and they
can be still further facilitated if the first, second, ..., ninth

counters in each column be respectively marked with symbols
for the numbers 1, 2,..., 9. Gerbert is said to have introduced

the use of such marks, called apices, towards the close of the

tenth century (see below, p. 141).

Figure iii represents the form of swan-pan in common use in
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China and Japan. There the development is carried one step

further, and five beads on each wire are replaced by a single

bead of a different form or on a different division, but apices

are not used. I am told that an expert Japanese can by the

aid of a swan-pan add numbers as rapidly as they can be read

out to him. It will be noticed that the instrument represented
in figure iii on p. 126 is made so that two numbers can be ex

pressed at the same time on it.

The use of the abacus in addition and subtraction is

evident. It can be used also in multiplication and division
;

rules for these processes, illustrated by examples, are given
in the arithmetic known as The Grounds of Artes* which was

published by Eecord at London in 1540.

The abacus is obviously only a concrete way of representing
a number in the decimal system of notation, that is, by means

of the local value of the digits. Unfortunately the method of

writing numbers developed on different lines, and it was not

until about the thirteenth century of our era when a symbol
zero used in conjunction, with nine other symbols was intro

duced that a corresponding notation in writing was adopted in

Europe.

Next, as to the means of representing numbers in writing. ,

In general we may say that in the earliest times a number

was
(if represented by a sign and not a word) indicated by the

requisite number* of strokes. Thus in an inscription from

Tralles in Caria of the date 398 B.C. the phrase seventh year is

represented by creos
| | | | | | |

. These strokes may have been

mere marks; or perhaps they originally represented fingers,

since in the Egyptian hieroglyphics the symbols for the

numbers 1, 2, 3, are one, two, and three fingers respectively

though in the later hieratic writing these symbols had become

reduced to straight lines. Additional symbols for 10 and 100

were soon introduced : and the oldest extant Egyptian and

Phoenician writings repeat the symbol for unity as many times

(up to 9) as was necessary, and then repeat the symbol for ten as

* Edition of 1610, pp. 225262.
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many times (up to 9) as was necessary, and so on. No speci

mens of Greek numeration of a similar kind are in existence,

but there is every reason to believe the testimony of lamblichus

who asserts that this was the method by which the Greeks first

expressed numbers in writing.

This way of representing numbers remained in current use

throughout Roman history; and for greater brevity they or the

Etruscans added separate signs for 5, 50, &c. The Roman

[symbols are generally merely the initial letters of the names

jof
the numbers; thus c stood for centum or 100, M for mille

I
or 1000. The symbol v for 5 seems to have originally repre-

I sented an open palm with the thumb extended. The symbols
JL for 50 and D for 500 are said to represent the upper

jhalves of the symbols used in early times for c and M. The

Isubtractive forms like iv for mi are probably of a later

origin.

Similarly in Attica five was denoted by II the first letter

of TreVre, or sometimes by F; ten by A the initial letter of

Se/ca; a hundred by H for e/cardv; a thousand by X for ;(i\ioi;

while 50 was represented by a A written inside a II; and so

;0n. These Attic symbols continued to be used for inscriptions

and formal documents until a late date.

This, if a clumsy, is a perfecly intelligible system; but the

iGreeks at some time in the third century before Christ aban

doned it for one which offers no special advantages in denoting
a given number, while it makes all the operations of arithmetic

(exceedingly
difficult. In this, which is known from the place

(where it was introduced as the Alexandrian system, the

numbers from 1 to 9 are represented by the first nine letters

Nof the alphabet; the tens from 10 to 90 by the next nine

(fetters; and the hundreds from 100 to 900 by the next nine

letters. To do this the Greeks wanted 27 letters, and as

hoir alphabet contained only 24, they re-inserted two letters

(the digamma and koppa) which had formerly been in it but

had become obsolete, and introduced at the end another symbol
taken from the Phoenician alphabet. Thus the ten letters

B.
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a to t stood respectively for the numbers from 1 to 10; the

next eight letters for the multiples of 10 from 20 to 90; and

the last nine letters for 100, 200, &c. up to 900. Intermediate

numbers like 11 were represented as the sum of 10 and 1, that

is, by the symbol ta . This afforded a notation for all numbers

up to 999
;
and by a system of suffixes and indices it was

extended so as to represent numbers up to 100,000000.
There is no doubt that these signs were at first only used

as a way of expressing a result attained by some concrete or

experimental method, and the idea of operating with the

symbols themselves in order to obtain the results is of a later

growth, and is one with which the Greeks never became

familiar. The non-progressive character of Greek arithmetic

may be partly due to their unlucky adoption of the Alex

andrian system which caused them for most practical purposes
to rely on the abacus, and to supplement it by a table of multi

plications which was learnt by heart. The results of the mul

tiplication or division of numbers other than those in the

multiplication table might have been obtained by the use of

the abacus, but in fact they were generally got by repeated
additions and subtractions. Thus, as late as 944, a certain

mathematician who in the course of his work wants to multiply ^

400 by 5 finds the result by addition. The same writer, when
he wants to divide 6152 by 15, tries all the multiples of 15

until he gets to 6000, .this gives him 400 and a remainder

152; he then begins again with all the multiples of 15 until

he gets to 150, and this gives him 10 and a remainder 2.

Hence the answer is 410 with a remainder 2.

A few mathematicians however such as Hero of Alex

andria, Theon, and Eutocius multiplied and divided in what

is essentially the same way as we do. Thus to multiply 18 by
13 they proceeded as follows.

7-x ty= (t + y) (c +*) 13 x 18 = (10 + 3) (10 + 8)

=
i(i + ri)

+ y(i, + ri)
= 10 (10 + 8) + 3 (10 + 8)

= p + TT 4- X + KS = 1 00 + 80 + 30 + 24

= crX8 -234,
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I suspect that the last step, in which they had to add four

numbers together, was obtained by the aid of the abacus.

These however were men of exceptional genius, and we
must recollect that for all ordinary purposes the art of calcu

lation was performed only by the use of the abacus and the

multiplication table, while the term arithmetic was confined

to the theories of ratio, proportion, and of numbers (see above,

p. 59).

All the systems here described were more or less clumsy,
and they have been displaced among civilized races by the Arabic

system in which there are ten digits or symbols, namely, nine

for the first nine numbers and another for zero. In this

system an integral number is denoted by a succession of digits,

each digit representing the product of that digit and a power
of ten, and the number being equal to the sum of these pro
ducts. Thus, by means of the local value attached to nine

symbols and a symbol for zero, any number in the decimal

scale of notation can be expressed. The history of the develop
ment of the science of arithmetic with this notation will be

considered in a subsequent chapter (ch. XL).

92
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SECOND PERIOD.

JWatfjemattcs of tfjc JJXtlfole &ges antr of tfte

This period begins about the sixth century, and may be said

to end with the invention of analytical geometry and of the

infinitesimal calcidus. The characteristic feature of this period
is the creation of modern arithmetic, algebra, and trigonometry.
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I commenced this history by dividing it in three periods.

I have discussed the history of mathematics under Greek influ

ence, and I now come to that of the mathematics of the middle

ages and renaissance. The history of this period has not been

investigated with the same fulness as that of earlier or of later

times, and the relative importance of some mathematicians

who lived in this period has been estimated differently by
different writers.

I shall consider first, in chapter vin., the rise of learning

in western Europe, and the mathematics of the middle ages.

Next, in chapter ix., I shall discuss the nature and history of

Arabian mathematics, and in chapter x. their introduction into

Europe. I shall then, in chapter XL, trace the subsequent

progress of arithmetic to the year 1637. Next, in chapter XIL,

I shall treat of the general history of mathematics during the

renaissance, from the invention of printing to the beginning of

the seventeenth century, say, from 1450 to 1637; this contains

an account of the commencement of the scientific treatment of

arithmetic, algebra, and trigonometry. Lastly, in chapter xni.,

I shall consider the revival of interest in mechanics, experi
mental methods, and pure geometry which marks the last few

years of this period, and serves as a connecting link between

the mathematics of the renaissance and the mathematics of

modern times.
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CHAPTER VIII.

THE RISE OF LEARNING IN WESTERN EUROPE.*

CIRC. 6001200.

Education in the sixth, seventh, and eighth centuries.

THE first few centuries of this second period of our history

are singularly barren of interest; and indeed it would be

strange if we found science or mathematics studied by those

who lived in a condition of perpetual war. Broadly speaking
we may say that from the sixth to the eighth centuries the

only places of study in western Europe were the Benedictine

monasteries. We may find there some slight attempts at a

study of literature
;
but the science usually taught was con

fined to the use of the abacus, the method of keeping accounts,

and a knowledge of the rule by which the date of Easter could

be determined. Nor was this unreasonable, for the monk had

renounced the world, and there was no reason why he should

learn more science than was required for the services of the

church and his monastery. The traditions of Greek and Alexan

drian learning gradually died away. Possibly in Rome and

a few favoured places copies of the works of the great Greek

* The mathematics of this period has been discussed by Cantor ;

by M. S. Gtinther, Geschichte des mathematischen Unterrichtes im deut-

schen Mittelalter, Berlin, 1887 ; and by H. Weissenborn, Kenntnix* &amp;lt;/rr

Mathematik des Mittelalter^ Berlin, 1888.
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mathematicians were obtainable, though with difficulty, but

there were no students, the books were unvalued, and in

time became very scarce.

Three authors of the sixth century Boethius, Cassiodorus,

and Isidorus may be named whose writings serve as a con

necting link between the mathematics of classical and of

mediaeval times. As their works remained standard text

books for some six or seven centuries it is necessary to mention

them, but it should be understood that this is the only reason

for doing so and they shew no special mathematical ability.

It will be noticed that these authors were contemporaries of the

later Athenian and Alexandrian schools (see above-, p. 115).

Boethius. Anicius Manlius Severinus Boethius
, or as the

name is sometimes written Boetius, born at Rome about

475 and died in 526, belonged to a family which for the two

preceding centuries had been esteemed one of the most illus

trious in Rome. It was formerly believed that he was educated

at Athens : this is somewhat doubtful, but at any rate he was

exceptionally well read in Greek literature and science. He
%

would seem to have wished to devote his life to literary

pursuits ;
but recognizing

&quot; that the world would be happy

only when kings became philosophers or philosophers kings,&quot;

he yielded to the pressure put on him and took an active

share in politics. He was celebrated for his extensive

charities, and, what in those days was very rare, the care that

he took to see that the recipients were worthy of them. He was
elected consul at an unusually early age, and took advantage of

his position to reform the coinage and to introduce the public
use of sun-dials, water-clocks, &c. He reached the height of

his prosperity in 522 when his two sons were inaugurated as

consuls. His integrity and attempts to protect the provincials
from the plunder of the public officials brought on him the

hatred of the Court. He was sentenced to death while absent

from Rome, seized at Ticinum, and in the baptistery of the

church there tortured by drawing a cord round his head till

the eyes were forced out of the sockets, and finally beaten to
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death with clubs on Oct. 23, 526. Such at least is the account

that has come down to us. At a later time his merits were

recognized, and tombs and statues erected in his honour by
the state.

Boethius was the last Eoman of any note who studied the

language and literature of Greece, and his works afforded to

mediaeval Europe the means of entering into the intellectual

life of the old world. His importance in the history of litera

ture is thus very great, but it arises merely from the

accident of the time at which he lived. After the introduction

of Aristotle s works in the thirteenth century his fame died

away, and he has now sunk into an obscurity which is as great
as was once his reputation. He is best known by his Conso-

latio, which was translated by Alfred the Great into Anglo-
Saxon. For our purpose it is sufficient to note that the teaching
of early mediaeval mathematics was mainly founded on his

geometry and arithmetic.

His Geometry consists of the enunciations (only) of the first

book of Euclid, and of a few selected propositions in the third

and fourth books, but with numerous practical applications to

finding areas, &amp;lt;fec. He adds an appendix with proofs of the

first three propositions to shew that the enunciations may be

relied on. He also wrote an Arithmetic, founded on that of

Mcomachus. These works have been edited by G. Friedlein,

Leipzig, 1867. A text-book on music by him was in use at

Oxford within the present century.

Cassiodorus. A few years later another Roman, Magnus
Aurelius Cassiodorus, who was born about 480 and died in

566, published two works, De Institutione Divinarum Litte-

rarum and De Artibus ac Disciplinis, in which not only the

preliminary trivium of grammar, logic, and rhetoric were dis

cussed, but also the mathematical quadrivium of arithmetic,

geometry, music, and astronomy. These were considered

standard works during the middle ages : the former was

printed at Venice in 1729.

Isidorus. Isidorus, bishop of Seville, born in 570 and
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died in 636, was the author of an encyclopaedic work in 20

volumes called Origines, of which the third volume is given

up to the quadrivium. It was published at Leipzig in 1833.

The Cathedral and Conventual Schools*.

When, in the latter half of the eighth century, Charles the

Great had established his empire, he determined to promote

learning so far as he was able; and he began by commanding
that schools should be opened in connection with every

cathedral and monastery in his kingdom; an order which was

approved and materially assisted by the popes. It is interest

ing to us to know that this was done at the instance and

under the direction of two Englishmen, Alcuin and Clement,

who had attached themselves to his court; a fact which may
serve to remind us that during the eighth century England
and Ireland were in advance of the rest of Europe as far as

learning went.

Alcuin f. Of these the more prominent was Alcuin who
was born in Yorkshire in 735 and died at Tours in 804. He
was educated at York under archbishop Egbert his &quot;beloved

master&quot; whom he succeeded as director of the school there.

Subsequently he became abbot of Canterbury, and was sent to

Rome by Offa to procure the pallium for archbishop Eanbald.

On his journey back he met Charles at Parma; the emperor
took a great liking to him, and finally induced him to take up
his residence at the imperial court, and there teach rhetoric,

logic, mathematics, and divinity. Alcuin remained for many
years one of the most intimate and influential friends of

Charles who constantly employed him as a confidential ambas-

* See The Schools of Charles the Great and the Restoration of Educa
tion in the ninth century by J. B. Mullinger, London, 1877.

t See the life of Alcuin by F. Lorentz, Halle, 1829, translated by
J. M. Slee, London, 1837; Alcuin nml w/ Jnhrliuntlert by K. Werner,

Paderborn, 1876 ; and Cantor, vol. i. pp. 712721.
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sador: as such he spent the years 791 and 792 in England, and

while there reorganized the studies at his old school at York.

In 801 he begged permission to retire from the court so as to

be able to spend the last years of his life in quiet: with dif

ficulty he obtained leave, and went to the abbey of St. Martin

at Tours, of which he had been made head in 796. He estab

lished a school in connection with the abbey which became

very celebrated, and he remained and taught there till his

death on May 19, 804.

Most of the extant writings of Alcuin deal with theology
or history, but they include a collection of arithmetical proposi

tions suitable for the instruction of the young. The majority
of the propositions are easy problems, either determinate or

indeterminate, and are, I presume, founded on works with

which he had become acquainted when at Rome. The follow

ing is one of the most difficult, and will give an idea of the

character of the work. If one hundred bushels of corn be

distributed among one hundred people in such a manner

that each man receives three bushels, each woman two, and

each child half a bushel: how many men, women and chil

dren were there? The general solution is (20 3^) men, 6n

women, and (80
-
2n) children, ^where n may have any of

the values 1, 2, 3, 4, 5, 6. Alcuin only states the solution for

which n = 3
;
that is, he gives as the answer 1 1 men, 1 5 women,

and 74 children.

This collection however was the work of a man of excep

tional genius, and probably we shall be correct in saying that

mathematics, if taught at all in a school, was generally con

fined to the geometry of Boethius, the use of the abacus and mul

tiplication table, and possibly the arithmetic of Boethius ;
while

except in one of these schools or in a Benedictine cloister it

was hardly possible to get either instruction or opportunities

for study. It was of course natural that the works used should

come from Roman sources, for Britain and all the countries

included in the empire of Charles had at one time formed part

of the western half of the Roman empire, and their inhabitants
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continued for a long time to regard Rome as the centre of

civilization, while the higher clergy kept up a tolerably constant

intercourse witji Rome.

After the death of Charles many of the schools confined

themselves to teaching Latin, music, and theology, that is,

those subjects some knowledge of which was essential to the

worldly success of the higher clBrgy. Hardly any science or

mathematics was taught, but the continued existence of the
|

schools gave an opportunity to any teacher whose learning or

zeal exceeded the narrow limits fixed by tradition
;
and though

there were but few who availed themselves of the oppor

tunity, yet the number of those desiring instruction was so

large that it would seem as if any one who could teach was

certain to attract a considerable audience. A few schools at

which this was the case became large and acquired a certain

degree of permanence, but even in them the teaching was still

usually confined to the trivium and quadrivium. The former

comprised the three arts of grammar, logic, and rhetoric,

but practically meant the art of reading and writing Latin ;

nominally the latter included arithmetic and geometry with

their applications, especially to music and astronomy, but in

fact it rarely meant more than arithmetic sufficient to enable

one to keep accovints, music for the church services, geometry
for the purpose of land surveying, and astronomy sufficient to

enable one to calculate the feasts and fasts of the church.

The seven liberal arts are enumerated in the line, Lingua,

tropuSj ratio; numerus, tonus, angulus, astra. Any student

who got beyond the trivium was looked on as a man of great

erudition, Qui tria, qui septein. qui totum scibile novit, as

a verse of the eleventh century runs. The special questions

which then and long afterwards attracted the best thinkers

were logic and certain portions of transcendental theology and

philosophy. We may sum the matter up by saying that during
the ninth and tenth centuries the mathematics taught was

still usually confined to that comprised in the two works of

Boethiua together with the practical use of the abacus and
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the multiplication table, though during the latter part of the

time a wider range of reading was undoubtedly accessible.

Gerbert*. In the tenth century a man appeared who would

in any age have been remarkable and who gave a great stimulus

to learning. This was Gerbert, an Aquitanian by birth,

who died in 1003 at about the age of fifty. His abilities

attracted attention to him even when a boy, and procured his

removal from the abbey school at Aurillac to the Spanish
inarch where he received a good education. He was in Rome
in 971, and his proficiency in music and astronomy excited

considerable interest : at that time he was not much more than

twenty, but he had already mastered all the branches of the

trivium and -

quadriviuin, as then taught, except logic ;
and to

learn this he moved to Rheims which archbishop Adalbero

had made the most famous school in Europe. Here he was at

once invited to teach, and so great was his fame that to him

Hugh Capet entrusted the education of his son Robert who was

afterwards king of France. Gerbert was especially famous for

his construction of abaci and of terrestrial and celestial globes ;

he was accustomed to use the latter to illustrate his lectures.

These globes excited great admiration which he utilized by

offering to exchange them for copies of classical Latin works,

which seem already to have become very scarce
;
and the

better to effect this he appointed agents in the chief towns

of Europe. To his efforts it is believed we owe the preserva

tion of several Latin works, but he made a rule to reject the

Christian fathers and Greek authors from his library. In 982

he received the abbey of Bobbio, and the rest of his life was

taken up with political intrigues; he became archbishop of

Rheims in 991, and of Ravenna in 998
;
in 999 he was elected

pope, when he took the title of Sylvester II.
;
as head of the

Church, he at once commenced an appeal to Christendom to

*
Weissenborn, in the work already mentioned, treats Gerbert very

fully ; see also La vie et les oeuvres de Gerbert, by A. Olleris, Clermont,

1867
;
and Gerbert von Aurillac, by K. Werner, 2nd Edition, Vienna,

1881.
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arm and defend the Holy Land, thus forestalling Peter the

Hermit by a century, but he died on May 12, 1003 before he

had time to elaborate his plans. His library is I believe pre

served in the Vatican.

So remarkable a personality left a deep impress on his

generation, and all sorts of fables soon began to collect around

his memory. It seems certain that he made a clock which was

long preserved at Magdeburg, and an organ worked by steam

which was still at Rheims two centuries after his death. All

this only tended to confirm the suspicions of his contemporaries
that he had sold himself to the devil

;
and the details of his

interviews with that gentleman, the powers he purchased, and

his effort to escape from his bargain when he was dying, may
be read in the pages of William of Malrnesbury, Orderic

Vitalis, and Platina. To these anecdotes the first named
writer adds the story of the statue inscribed with the words
&quot;

strike here,&quot; which having amused our ancestors in the Gesta

Romanorum has been recently told again in the Earthly
Paradise.

Extensive though his influence was, it must not be supposed
that Gerbert s writings shew any great originality. His mathe

matical works comprise a treatise on the use of the abacus, one

on arithmetic entitled De Numerorum Divisione, and one on

geometry. An improvement in the abacus, attributed by some

writers to Boethius but which is more probably due to Gerbert,

is the introduction in every column of beads marked by different

characters, called apices, for each of the numbers from 1 to 9

instead of nine exactly similar counters or beads. These apices

were probably of Indian or Arabic origin, and lead to a repre
sentation of numbers essentially the same as the Gobar numerals

reproduced below (see p. 190), there was however no symbol for

zero
;
the step from this concrete system of denoting numbers

by a decimal system on an abacus to the system of denoting
them by similar symbols in writing seems to us to be a small

one, but it would appear that Gerbert did not make it. His

work on geometry is of unequal ability; it includes a few
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applications to land-surveying and the determination of the

heights of inaccessible objects, but much of it seems to be

copied from some pythagorean text-book. In the course of it

he however solves one problem which was of remarkable diffi

culty for that time. The question is to find the sides of a

right-angled triangle whose hypothenuse and area are given.

He says, in effect, that if these latter be denoted respectively

by c and 7*
2
,
then the lengths of the two sides will be

h* + Jc
2
-4;k

2

}
and 1

{^/TTlA* - Jc
2

~^W}.

Bernelinus. One of Gerbert s pupils Bernelinus published
a work on the abacus (reprinted in Olleris s edition of Gerbert s

works, pp. 311 326) which is, there is very little doubt, a

reproduction of the teaching of Gerberfc. It is valuable as

indicating that the Arabic system of writing numbers was still

unknown in Europe.

The rise of the early mediaeval universities*.

At the end of the eleventh century or the beginning of the

twelfth a great revival of learning took place at several of these

cathedral or monastic schools; or perhaps we should rather

say that in some cases teachers who were not members of

the school settled in its vicinity and with the sanction of the

authorities gave lectures which were in fact always on theo

logy, logic, or civil law. As the students at these centres

grew in numbers, it became possible and desirable to act to

gether whenever any interest common to all was concerned.

The association thus formed was a sort of guild or trades union,

or in the language of the time a universitas magistrorum et

scholarium. This was the first stage in the development of

*
Nearly all the known facts 011 the subject of the mediaeval uni

versities are collected in Die Universitaten des Mittelalters Ms 1400 by

P. H. Denifle, Berlin, 1885; see also vol. i. of the University oj

Cambridge by J. B. Mullinger, Cambridge, 1873.
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every early mediaeval university. I In some cases, as at Paris,

the governing body of the university was formed by the teachers

alone, in others, as at Bologna, by both teachers and students
;

but in all cases precise rules for the conduct of business and

the regulation of the internal economy of the guild were

formulated at an early stage in its history. 1 The municipalities

and numerous societies which existed in Italy supplied plenty

of models for the construction of such rules. We are, almost

inevitably, unable to fix the exact date of the commencement

of these voluntary associations, but they existed at Paris,

Bologna, Salerno, Oxford, and Cambridge before the end

of the twelfth century. Whether such a loosely associated

and self-constituted guild of students can be correctly de

scribed as a university is a doubtful point. |
These societies

seem to have arisen in connection with schools established by
some church or monastery, and I believe that nearly all the

mediaeval universities grew up under the protection of some

bishop or abbot. They were not however ecclesiastical organi

zations, and, though the bulk of their members were ordained,

their connection with the church arose chiefly from the fact

that clerks were then the only class of the community who
were left free by the state to pursue their studies. The guild
was thus at first in some undefined manner subject to the

special authority of the bishop or his chancellor, from the latter

of whom the head of the university subsequently took his

title. The schools from which the universities sprang con

tinued for a long time to exist under the direct control of the

cathedral or monastic authorities, by the side of the guilds

formed by the teachers on the more advanced subjects.

The next stage in the development of the university was
iti recognition by the sovereign of the kingdom in which it

was situated. |A universitas scholarium, if successful in at

tracting students and acquiring permanency, always sought

special legal privileges, such as the right of fixing the price of

provisions and the power of trying legal actions in which its

members were concerned. These privileges generally led to a
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recognition, explicit or implicit, of the guild by the crown as

a studium generate, that is, a body with power to grant degrees
which conferred a right of teaching anywhere within the

kingdonffr The university was frequently incorporated at or

about the same time.l I believe no university was thus ac

knowledged before the end of the twelfth century. Paris

received its charter in 1200, and probably was the earliest

university in Europe thus recognized. A medical school

existed at Salerno as early as the ninth century, and a legal

school at Bologna as early as 1138, but at these the education

was technical rather than general ;
I therefore consider that the

universities to which these schools respectively gave rise should

be referred to a later date.

\ The last step in the evolution of a mediaeval university

was the acknowledgment of its corporate existence by the

pope (or emperor), and the recognition of its degrees as a title

to teach throughout Christendom : thenceforward it became

a recognized member of a body of closely connected corpora

tions. Paris was thus recognized in 1283.

A mediaeval university therefore passed through three

stages : first, it was a self-constituted guild of students
; second,

legal privileges were conferred on it by the state, and usually

it was incorporated; third, it was recognized by the pope
and its degrees declared current throughout the whole of

Christendom. In later times the title of university was con

fined to degree-granting bodies, and any other place of higher

education was termed a studium generale. I add in a foot

note a few additional particulars connected with the early

history of Paris, Oxford, and Cambridge*.

* Paris is probably the oldest European university, and as not only is

it usually taken as the typical mediaeval university, but as it also served

as the model on which Oxford and Cambridge were subsequently con

stituted, its history possesses special interest for English readers. The

first of these stages in its history perhaps may be dated as far back as

1109 when William of Champeaux began to teach logic, and certainly

may be said to have commenced when his pupil Abelard was lecturing



MEDIAEVAL UNIVERSITIES. 145

The standard of education in mathematics has been largely

fixed by the universities, and most of the mathematicians of

on logic and divinity. The faculty of arts and (probably) its form of

self-government existed in 11G9, for Henry II. proposed to refer his

quarrel with Thomas a Becket to it and two other bodies: it is also

alluded to in two decretals of the pope in 1180. By an ordinance of the

king of France in 1200 the university entered on the second of these

stages, and its members were granted exemption from all ordinary tri

bunals : in 1206 it was incorporated and thus put on a permanent basis,

which its mere recognition by the state did not effect. The first definite

body of statutes seems to have been formed in 1208. In 1215 the

cardinal legate Robert de Couron laid down a curriculum, and from

that time European universities have imposed a definite course of study
combined with certain periodical tests of proficiency on their junior mem
bers

;
the modern system of university education dates from this order.

In 12G7 theology, and in 1281 law and medicine, were created separate

faculties. About the same time the pope Nicholas IV. decreed that

doctors of the university should enjoy the privileges and rank of doctors

throughout Christendom.

The collegiate system also originated in Paris. The religious orders

established hostels for their own students about the middle of the twelfth

century, but these are now considered to have been independent of the

university. It is possible that St Thomas s College and the Danish

College in the Rue de la Montagne were founded about 1200; but if we

reject these, the dates of their foundation being uncertain, the first

regular college was that founded by Robert de Sorbonne in 1250. The

college of Navarre which far surpassed all others in wealth and numbers

was founded in 1305. Two hundred years later there were 18 colleges

and 82 hostels, the latter being really mere boarding houses and gene

rally unendowed : by that time all the colleges had specialized their

higher teaching on some one subject, and all but one had thrown their

lectures open to the university, while the masters and tutors of the hostels

had abandoned teaching except in the case of Latin grammar. The want

of discipline among the non-collegiate students led to their suppression
at an early date.

It would take me beyond my limits if I were to trace the history of the

university of Paris further. Its decay is generally dated from the year
1719. Until that time a teacher or regent received from his college

board, lodging, and sufficient money to enable him to live, but he de

pended for his luxuries on the fees of those who attended his lectures ;

hence there was every encouragement to make the lectures efficient. The

stipends of the professors also depended to a large extent on their

B. 10
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subsequent times have been closely connected with one or i

more of them; and therefore I may be pardoned for adding/

efficiency. This was altered in 1719, and professors whose lectures

were gratuitous were subsequently appointed for life at a fixed stipend.

Perhaps the eighteenth century was an unfavourable time for the ex

periment, but the result was disastrous
; those graduates of the colleges,

who continued to charge fees, soon found their lecture-rooms deserted ;

within forty years the number of hostels was reduced to less than 40,

and that of the colleges to 10, most of which were heavily in debt ; in

1764 the hostels were shut up ; finally, on Sept. 15, 1793, the Convention

suppressed the university and colleges, and appropriated their revenues.

The present centralized university of France is a creation of Napoleon I.

The first reliable mention of Oxford as a place of education refers to

the year 1133 when Robert Pullen came from Paris and lectured on

theology. A little later, in 1149, Vacarius came from Bologna and taught
civil law. It is not unlikely that the Benedictine monastery of St

Frideswyde was ruled by French monks, and that the lectures were given
under their influence and in their monastery : but the references seem

to imply that there was then no university there. In 1180 there is an

allusion to a scholar in the Acta Sanctorum (p. 579), and in 1184

Giraldus Cambrensis lectured to the masters and scholars. (Gir. Camb.

vol. i. p. 23.) Hence it is almost certain that the university had its

origin between 1150 and 1180. Mr Rashdall believes that it developed
out of a migration from Paris in 1167, but the available data do not

seem to justify a definite statement about it. In 1214 the university was

given legal jurisdiction whenever one party was a scholar or the servant

of a scholar. In 1244 it was incorporated by Henry III. The collegiate

system commenced with the foundation of Merton College in 1264:

though money for building University College was given in 1249, and for

building Balliol College in 1263. The university was recognized by
Innocent IV. in 1252, but it was not till 1296 that the masters received

from Boniface VIH. permission to teach anywhere in Christendom.

I wish I could be equally explicit about Cambridge, but unfortunately
its early records and charters were burnt. All the mediaeval universities

were divided into &quot;nations&quot; according to the place of birth of their

students. There was a constant feud at Cambridge between those born

north of the Trent and those born to the south of it. In 1261 a

desperate fight, lasting some days, took place between the two factions

in the course of which the university records were burnt. A similar

disturbance took place in 1322. Again in 1381, under cover of the

popular disturbances then prevalent throughout the kingdom, a mob of

townsmen broke into St Mary s Church, seized the university chest,
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a few words on the general course of studies in a university

in mediaeval times, referring the reader who wishes for fuller

and burnt the charters and documents therein contained. The original

charters having been destroyed, we are compelled in their absence to rely

on allusions to them in trustworthy authorities. Now it was the custom

at both universities to solicit a renewal of their privileges at the be

ginning of each reign (an opportunity of which they often took advantage

to get them extended) and it is possible that the dates here given may be

those of the renewals of original charters which are now lost. At any
rate it would seem certain that the university existed in its first stage,

i.e. as a self-constituted and self-governing community, before 1209, since

several students from Oxford migrated in that year to the university of

Cambridge ;
and it is clear it did not exist in 1112 when the canons of

St Giles s opened schools at their new priory at Barnwell. It was at

some time then between these two dates that the university entered on

its first stage of existence. In 1225 there is an allusion in some legal

proceedings (Record office, Coram Hege Bolls Hen. III. Nos. 20 and 21)
to the chancellor of the university. In 1229, after some disturbances in

Paris, Heury III. invited French students to come and settle at Oxford

or Cambridge, and some hundreds came to Cambridge. In 1231 Henry
III. gave the university jurisdiction over certain classes of townsmen,
in 1251 he extended it so as to give exclusive legal jurisdiction in all

matters concerning scholars, and finally confirmed all its rights in 1260.

[These privileges were given by letters and enactments, and the first

charter of which we now know anything was that given by Edward I. in

1291.] The collegiate system commenced with the foundation of what

was afterwards known as Peterhouse in or before 1280. The university

was recognized by letters from the pope in 1233, but in 1318 John XXII.

gave it all the rights which were or could be enjoyed by any university in

Christendom. Under these sweeping terms it obtained exemption from

the jurisdiction both of the bishop of Ely and the archbishop of Canter

bury (as settled in the Barnwell process, 1430). I may add that just as

the old monastic schools continued to exist by the side of the university of

Paris, so the grammar schools, which had originally attracted students to

Cambridge and from which therefore the university may be said to have

sprung, continued to exist until the middle of the sixteenth century.

We can express these results in a tabular form thus :

7
J m Oxford (

&amp;lt;nnf&amp;gt;ri&amp;lt;l&amp;lt;n:

In existence before the year 1169 li84 1209

Legal privileges conferred by the state 1200 1214 1231

Foundation of first college 1250 1264 1280

Degrees current throughout Christendom ...1283 1296 1318

102



148 THE RISE OF LEARNING IN WESTERN EUROPE.

details as to their organization of studies, their system of

instruction, and their constitution to my History of the Study

of Mathematics at Cambridge, 1889.

The students entered when quite young, sometimes not

being more than 11 or 12 years old when first coming into

residence. It is misleading to describe them as undergraduates,

for their age, their studies, the discipline to which they were

subjected, and their position in the university shew that

they should be regarded as schoolboys. The first four years

of their residence were supposed to be spent in the study

of the trivium, i.e. Latin grammar, logic, and rhetoric. The

majority of students in quite early times did not progress beyond
the study of Latin grammar they formed an inferior faculty

and were eligible only for the degree of master of grammar
but the more advanced students (and in later times all students)

spent these years in the study of the trivium.

The title of bachelor of arts was conferred at the end of

sthis course, and
x signified that the student was no longer a

schoolboy and therefore in pupilage. The average age of a

commencing bachelor may be taken as having been about 1 7 or

I 18. Thus at Cambridge in the presentation for a degree the

technical term still used for an undergraduate is juvenis, while

that for a bachelor is vir. A bachelor could not take pupils,

could teach only under special restrictions, and probably occupied

a position closely analogous to that of an undergraduate now-a-

days. y Some few bachelors proceeded to the study of civil or

canon law, but it was assumed in theory that they next studied

the quadrivium, the course for which took three years, and

which included about as much science as was to be found in

the pages of Boethius and Isidorus.

The degree of master of arts was given at the end of this

course.^
In the twelfth and thirteenth centuries it was merely

a license to teach : no one sought it who did not intend to use

it for that purpose and to reside, and only those who had a

natural aptitude for such work were likely to enter so ill paid

a profession as that of a teacher. I The degree was obtainable by
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any student who had gone through the recognized course of

study and shewn that he was of good moral character. Out

siders were also admitted, but not as a matter of course. I

may here add that towards the end of the fourteenth century
students began to find that a degree had a pecuniary value,

and most universities subsequently conferred it only on con

dition that the new master should reside and teach for at least

a year. V A few years later the universities took a further step

and began to refuse degrees to those who were not intellectually

qualified. This power was assumed on the precedent of a case

which arose in Paris in 1426 when the university declined to

confer a degree on a student a Slavonian, one Paul Nicholas,

who thus has the distinction of being the first student ever
&quot;

plucked
&quot; who had performed the necessary exercises in a

very indifferent manner : he took legal proceedings to compel
the university to grant the degree, but their right to withhold

it was established.

Although science and mathematics were recognized as the

standard subjects of study for a bachelor, it is probable that

until the renaissance the majority of the students devoted most

of their time to logic, philosophy, and theology. The subtleties

of the scholastic theology and logic, which were the favourite

intellectual pursuit of these centuries, may seem to us dreary
and barren, but it is only just to say that they afforded an

intellectual exercise which fitted men at a later time to de-

velope science, and certainly were in advance of what had been

previously taught.

We have now arrived at a time when the results of Arab
and Greek science became known in Europe. The history of

Greek mathematics has been already discussed
;

I must now

temporarily leave the subject of mediaeval mathematics, and

trace the development of the Arabian schools to the same date
;

and I must then explain how the schoolmen became acquainted
with the Arab and Greek text-books, and how their introduc

tion affected the progress of European mathematics.
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CHAPTER IX.

THE MATHEMATICS OF THE ARABS*.

THE story of Arabian mathematics is known to us in its

general outlines, but we are as yet unable to speak with cer

tainty on many of its details. It is however quite clear that

while part of the early knowledge of the Arabs was derived

from Greek sources, part was obtained from Hindoo works;
and that it was on those foundations that Arab science was

built. I will begin by considering in turn the extent of mathe

matical knowledge derived from these sources.

Extent of mathematics obtained from Greek sources.

According to their traditions, in themselves very probable,

the scientific knowledge of the Arabs was at first derived from

* The subject is discussed atjlength by Cantor, chaps, xxxn. xxxv.
;

by Hankel, pp. 172 293 ; and by A. von Kremer in Kulturgescliiclite ties

Orientes unter den Chalifen, Vienna, 1877. See also Materiaux pour servir

a Vhistoire compares des sciences mathematiques chez les Grecs et les

Orientaux, by L. A. Sedillot, Paris, 18459 : and the following five

articles by Fr. Woepcke, Sur Vemploi des chiffres Indiens par les Arabes ;

Sur Vhistoire des sciences mathematiques chez les Orientaux (2 articles),

Paris, 1855 ; Sur Vintroduction de Varithmetique Indienne en Occident,

Eome, 1859 ; and Memoire sur la propagation des chiffres Indiens, Paris,

1863.
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the Greek doctors who attended the caliphs at Bagdad. It is

said that when the Arabian conquerors settled in towns they

became subject to diseases which had been unknown to them

in their life in the desert. The study of medicine was then

confined almost entirely to Greeks, and many of these, en

couraged by the caliphs, settled at Bagdad, Damascus, and

other cities
;

their knowledge of all branches of learning was

far more extensive and accurate than that of the Arabs, and

the teaching of the young, as has often happened in similar

cases, soon fell into their hands. The introduction of European
science was rendered the more easy as various small Greek

schools existed in the countries subject to the Arabs : there

had for many years been one at Edessa among the Nestorian

Christians, and there were others at Antioch, Emesa, and

even at Damascus which had preserved the traditions and

some of the results of Greek learning.

The Arabs soon remarked that the Greeks rested their

medical science on the works of Hippocrates, Aristotle, and

Galen
;
and these books were translated into Arabic by order

of the caliph Haroun Al Raschid about the year 800. The

translations excited so much interest that his successor Al

Mamuii (813 833) sent a commission to Constantinople to

obtain copies of as many scientific works as was possible, while

an embassy for a similar purpose was also sent to India. At
the same time a large staff of Syrian clerks was engaged, whose

duty it was t* translate the works so obtained into Arabic and

Syriac. To disarm fanaticism these clerks were at first termed

the caliph s doctors, but in 851 they were formed into a college,

and their most celebrated member Honein ibn Ishak was

made its first president by the caliph Mutawakkil (847 861).

Hoiiein and his son Ishak ibn Honein revised the transla

tions before they were finally issued. Neither of them knew
much mathematics, and several blunders were made in the

works issued on that subject, but another member of the

college, Tabit ibn Korra, shortly published fresh editions which

thereafter became the standard texts.
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In this way before the end of the ninth century the Arabs

obtained translations of the works of Euclid, Archimedes,

Apollonius, Ptolemy, and others
;
and in some cases these

editions are the only copies of the books now extant. It is

curious as indicating how completely Diophantus had dropped
out of notice that as far as we know the Arabs got no manu

script of his great work till 150 years later, by which time

they were already acquainted with the idea of algebraic notation

and processes.

Extent of mathematics obtained from Hindoo sources.

The Arabs had considerable commerce with India, and a

knowledge of one or both of the two great original Hindoo
works on algebra had been thus obtained in the caliphate of

Al Mansur (754 775), though it was not until fifty or sixty

years later that they attracted much attention. The algebra
and arithmetic of the Arabs were largely founded on these

treatises, and I therefore devote this section to the considera

tion of Hindoo mathematics.

The Hindoos, like the Chinese, have pretended that they
are the most ancient people on the face of the earth, and

that to them all sciences owe their creation. But it would

appear from all recent investigations that these pretensions

have no foundation; and in fact no science or useful art

(except a rather fantastic architecture and sculpture) can be

traced back to the inhabitants of the Indian peninsula prior

to the Aryan invasion. This invasion seems to have taken place

at some time in the latter half of the fifth century or in the

sixth century after Christ, when a tribe of the Aryans entered

India by the north-west frontier and established themselves as

rulers over a large part of the country. Their descendants,

wherever they have kept their blood pure, may be still recog

nized by their superiority over the races they originally con

quered \
but as is the case with the modern Europeans they
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found the climate trying, and gradually degenerated. For

the first two or three centuries they however retained their

intellectual vigour, and produced one or two writers of great

ability.

Arya-Bhata. The first of these is Arya-Bhata, who was

born at Patna in the year 476. He is frequently quoted by

Brahmagupta, and in the opinion of many commentators he

created algebraic analysis though it has been suggested that

he may have seen Diophantus s Arithmetic. The chief work of

Arya-Bhata with which we are acquainted is his Aryabhathiya
which consists of the enunciations of various rules and pro

positions written in verse. There are no proofs, and the

language is so obscure and concise that it long defied all efforts

to translate it*.

The book is divided into four parts : of these three are

devoted to astronomy and the elements of spherical trigono

metry ;
the remaining part contains the enunciations of thirty-

three rules in arithmetic, algebra, and plane trigonometry. It

is probable that Arya-Bhata, like Brahmagupta and Bhaskara

who are mentioned next, regarded himself as an astronomer,

and studied mathematics only so far as it was useful to him in

his astronomy.
In algebra Arya-Bhata gives the sum of the first, second,

and third powers of the first n natural numbers
;
the general

solution of a quadratic equation ;
and the solution in integers

of certain indeterminate equations of the first degree. His

solutions of numerical equations have been supposed to imply
that he was acquainted with the decimal system of numeration.

In trigonometry he gives a table of natural sines of the

angles in the first quadrant, proceeding by multiples of 3|,

* A Sanskrit text of the Aryabhathiya, edited by H. Kern, was

published at Leyden in 1874 ; there is also an article on it by the same
editor in the Journal of the Asiatic Society, London, 1863, vol. xx.,

pp. 371387 : a French translation by L. Rodet of that part which deals

with algebra and trigonometry is given in the Journal Axiatique, 1879,

Paris, series 7, vol. xui., pp. 393 434.
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defining a sine as the semichord of double the angle. Assuming
that for the angle 3f the sine is equal to the circular measure,
he takes for its value 225, i.e. the number of minutes in the

angle. He then enunciates a rule which is nearly unintelligible

but probably is the equivalent of the statement

sin (n + 1) a sin na = sin na sin (n 1) a sin na cosec a,

where a stands for 3| ;
and working with this formula he

constructs a table of sines, and finally finds the value of sin 90

to be 3438. This result is correct if we take 3 141 6 as the

value of TT, and it is interesting to note that this is the number
which in another place he gives for IT. The correct trigono
metrical formula is

sin (n + 1) a
- sin na = sin na sin (n 1) a 4 sin na sin

2

|a.

Arya-Bhata therefore took 4 sin
2

|a as equal to cosec a, i.e. he

supposed that 2 sin a = 1 + sin 2a : using the approximate
values of sin a and sin 2a given in his table, this reduces to

2 (225) = 1 + 449, and hence to that degree of approximation
his formula is correct. A large proportion of the geometrical

propositions which he gives are wrong.

Brahmagupta. The next Hindoo writer of considerable

note is Brahmagupta, who is said to have been born in 598

and probably was alive about 660. He wrote a work in verse

entitled Brahma-Sphuta-Siddhanta, that is, the Riddhanta or

system of Brahma in astronomy. In this two chapters (chaps,

xii. and XVIH.) are devoted to arithmetic, algebra, and

geometry*.
The arithmetic is entirely rhetorical. Most of the problems

are worked out by the rule of three, and a large proportion of

them are on the subject of interest.

In his algebra, which is also rhetorical, he works out the

fundamental propositions connected with an arithmetical pro

gression, and solves a quadratic equation (but gives only the

* These two chapters (chaps, xii. and xvm.) were translated by H. T.

Colebrooke, and published at London in 1817.
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positive value to the radical). As an illustration of the pro

blems given I may quote the following, which was reproduced

in slightly different forms by various subsequent writers, but

I replace the numbers by letters. &quot;Two apes lived at the

top of a cliff of height h, whose base was distant mh from a

neighbouring village. One descended the cliff and walked to

the village, the other flew up a height x and then flew in a

straight line to the village. The distance traversed by each

was the same. Find x.&quot; Brahmagupta gave the correct

answer, namely x = mh/(m + 2). In the question as enun

ciated originally li 100, m = 2.

Brahmagupta finds solutions in integers of several in

determinate equations of the first degree, using the same

method as that now practised. He states one indeterminate

equation of the second degree, namely, nx2 + 1 = y
2

,
and gives

as its solution x = 2t/(t
2 -

n) and y =
(t

2 + n)/(t
2 -

n). To obtain

this general form he proved that, if one solution either of that

or of certain allied equations could be guessed, the general

solution could be written down
;
but he did not explain how

one solution could be obtained. He added that the equation

y
2 = nx* 1 could not be satisfied by integral values of x and y

unless n could be expressed as the sum of the squares of two

integers. Curiously enough the former of these equations was

sent by Fermat as a challenge to Wallis and Lord Brouncker

in the seventeenth century, and the latter found the same

solutions as Brahmagupta had previously done. It is perhaps
worth noticing that the early algebraists, whether Greeks,

Hindoos, Arabs, or Italians, drew no distinction between the

problems which led to determinate and those which led to

indeterminate equations. It was only after the introduction

of syncopated algebra that attempts were made to give general
solutions of equations, and the .difficulty of giving such solu

tions of indeterminate equations other than those of the first

degree has led to their practical exclusion from elementary

algebra.

In geometry Brahmagupta proved the pythagorean property
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of a right-angled triangle (Euc. i. 47). He gave expressions for

the area of a triangle and of a quadrilateral inscribable in a

circle in terms of their sides
;
and shewed that the area of a

circle was equal to that of a rectangle whose sides were the

radius and semiperimeter. He was less successful in his

attempt to rectify a circle, and his result is equivalent to

taking \/10 for the value of TT. He also determined the sur

face and volume of a pyramid and cone
; problems over which

Arya-Bhata had blundered badly. The next part of his

geometry is almost unintelligible, but it seems to be an at

tempt to find expressions for several magnitudes connected

with a quadrilateral inscribed in a circle in terms of its sides :

most of this is wrong.
It must not be supposed that in the original work all the

propositions which deal with any one subject are collected

together, and it is only for convenience that I have tried to

arrange them in that way. It is impossible to say whether

the whole of Brahmagupta s results given above are original.

He knew of Arya-Bhata s work, for he reproduces the table

of sines there given ;
and it is likely that some progress in

mathematics had been made by Arya-Bhata s immediate suc

cessors, and that Brahmagupta was acquainted with their

works
;
but there seems no reason to doubt that the bulk of

Brahmagupta s algebra and arithmetic is original, although

perhaps influenced by Diophantus s writings : the origin of

the geometry is more doubtful, probably some of it is derived

from Hero s works.

Bhaskara. To make this account of Hindoo mathematics

complete, I may depart from the chronological arrangement
and say that the remaining great Indian mathematician was

Bhaskara who was born in 1114. He is said to have been

the lineal successor of Brahmagupta as head of an astronomical

observatory at Ujein or as it is sometimes written Ujjayini.

He wrote an astronomy of which only four chapters have been

translated. Of these one termed Lilavati is on arithmetic
;
a

second termed Bija Ganita is on algebra; the third and fourth
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are on astronomy and the sphere*. This work was I believe

known to the Arabs almost as soon as it was written and

influenced their subsequent writings, though they failed to

utilize or extend most of the discoveries contained in it. The

results thus became indirectly known in the West before the

end of the twelfth century, but the text itself was not intro

duced into Europe till within recent times.

The treatise is in verse but there are explanatory notes

in prose. It is not clear whether it is original or whether it

is merely an exposition of the results then known in India;

but in any case it is most probable that Bhaskara was ac

quainted with the Arab works which had been written in the

tenth and eleventh centuries, and with the results of Greek

mathematics as transmitted through Arabian sources. The

algebra is syncopated and almost symbolic, which marks a

great advance over that of Brahmagupta and of the Arabs.

The geometry is also superior to that of Brahmagupta, but

apparently this is due to the knowledge of various Greek works

obtained through the Arabs.

The first book or Lilavati commences with a salutation

to the god of wisdom. The general arrangement of the work

may be gathered from the following table of contents. Systems
of weights and* measures. Next decimal numeration, briefly

described. Then the eight operations of arithmetic, namely,

addition, subtraction, multiplication, division, square, cube,

square-root, and cube-root. Reduction of fractions to a common

denominator, fractions of fractions, mixed numbers, and the

eight rules applied to fractions. The &quot; rules of
cipher,&quot; namely,

a a, O
2 =

0, v = 0, a -4- = GO , The solution of some

simple equations which are treated as questions of arithmetic.

The rule of false assumption. Simultaneous equations of the

first degree with applications. Solution of a few quadratic

* See the article Viga Ganita in the Penny Cyclopaedia, London,
1843

;
and the translations of the Lilavati and the Bija Ganita issued

by H. T. Colebrooke, London, 1817. The two chapters on astronomy
and the sphere were edited by L. Wilkinson, Calcutta, 1842.
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equations. Rule of three and compound rule of three, with

various cases. Interest, discount, and partnership. Time of

filling a cistern by several fountains. Barter. Arithmetical

progressions, and sums of squares and cubes. Geometrical pro

gressions. Problems on triangles and quadrilaterals. Approxi
mate value of TT. Some trigonometrical formulae. Contents

of solids. Indeterminate equations of the first degree. Lastly
the book ends with a few questions on combinations.

This is the earliest known work which contains a syste

matic exposition of the decimal system of numeration. It is

possible that Arya-Bhata was acquainted with it, and it is

most likely that Brahmagupta was so, but in Bhaskara s arith

metic we meet with the Arabic or Indian numerals and a sign

for zero as part of a well-recognized notation. It is impossible

at present to definitely trace these numerals further back than

the eighth century, but there is no reason to doubt the assertion

that they were in use at the beginning of the seventh century.

Their origin is a difficult and disputed question. I mention

below (see p. 189) the view which on the whole seems most

probable and perhaps is now generally accepted, and I reproduce
there some of the forms used in early times.

To sum the matter up briefly it may be said that the

Lilavati gives the rules now current for addition, subtraction,

multiplication, and division, as well as the more common pro
cesses in arithmetic; while the greater part of the work is

taken up with the discussion of the rule of three, which is

divided into direct and inverse, simple and compound, and

is used to solve numerous questions chiefly on interest and

exchange the numerical questions being expressed in the

decimal system of notation with which we are familiar.

Bhaskara was celebrated as an astrologer no less than as a

mathematician. He learnt by this art that the event of his

daughter Lilavati marrying would be fatal to himself. He
therefore declined to allow her to leave his presence, but by

way of consolation he not only called the first book of his

work by her name, but propounded many of his problems in
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the form of questions addressed to her. For example,
&quot;

Lovely

and dear Lilavati, whose eyes are like a fawn s, tell me what

are the numbers resulting from 135 multiplied by 12. If thou

be skilled in multiplication, whether by whole or by parts,

whether by division or by separation of digits, tell me, auspi

cious damsel, what is the quotient of the product when divided

by the same multiplier.&quot;

I may add here that the problems in the Indian works give

a great deal of interesting information about the social and

economic condition of the country in which they were written.

Thus Bhaskara discusses some questions on the price of slaves,

and incidentally remarks that a female slave was generally

supposed to be most valuable when 16 years old, and subse

quently to decrease in value in inverse proportion to the age;

for instance, if when 16 years old she were worth 32 nishkas,

her value when 20 would be represented by (16 x 32) H- 20

nishkas. It would appear that, as a rough average, a female

slave of 16 was worth about 8 oxen which had worked for

two years. The interest charged for money in India varied

from 3 to 5 per cent, per month. Amongst other data thus

given will be found the price of provisions and labour.

The chapter termed Bija Ganita commences with a sentence

so ingeniously framed that it can be read as the enunciation

of a religious, or a philosophical, or a mathematical truth.

Bhaskara after alluding to his Lilavati or arithmetic states that

he intends in this book to proceed to the general operations of

analysis. The idea of the notation is as follows. Abbrevia

tions and initials are used for symbols; subtraction is indicated

by a dot placed above the coefficient of the quantity to be

subtracted; addition by juxtaposition merely; but no symbols
are used for multiplication, equality, or inequality, these being
written at length. A product is denoted by the first syllable

of the word subjoined to the factors, between which a dot is

sometimes placed. In a quotient or fraction the divisor is

written under the dividend without a line of separation. The
two sides of an equation are written one under the other,
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confusion being prevented by the recital in words of all the

steps which accompany the operation. Various symbols for

the unknown quantity are used, but most of them are the

initials of names of colours, and the word colour is often used

as synonymous with unknown quantity; its Sanscrit equivalent
also signifies a letter, and letters are sometimes used either

from the alphabet or from the initial syllables of subjects of

the problem. In one or two cases symbols are used for the

given as well as for the unknown quantities. The initials of

the words square and solid denote the second and third powers,
and the initial syllable of square root marks a surd. Poly
nomials are arranged in powers, the absolute quantity being

always placed last and distinguished by an initial syllable de

noting known quantity. Most of the equations have numerical

coefficients, and the coefficient is always written after the un

known quantity. Positive or negative terms are indiscrimi

nately allowed to come first
;
and every power is repeated on

both sides of an equation, with a zero for the coefficient when
the term is absent. After explaining his notation, Bhaskara

goes on to give the rules for addition, subtraction, multiplica

tion, division, squaring, and extracting the square root of alge

braical expressions : he then gives the rules of cipher as in the

Lilavati
\

solves a few equations ;
and lastly concludes with

some operations on surds. Many of the problems are given in

a poetical setting with allusions to fair damsels and gallant

warriors.

Other chapters on algebra, trigonometry, and geometrical

applications exist, and fragments of them have been translated

by Colebrooke. Amongst the trigonometrical formulae is one

which is equivalent to the equation d (sin 0)
= cos dO.

I have departed from the chronological order in treating

here of Bhaskara, but as he was the only remaining Hindoo

writer of exceptional eminence I thought it better to mention

him at the same time as I was discussing his compatriots. It

must be remembered however that he flourished subsequently

to all the Arab mathematicians considered in the next section.
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The works with which the Arabs first became acquainted
were those of Arya-Bhata and Brahmagupta, and it is doubtful

if they ever made much use of the great treatise of Bhaskara.

It is probable that the attention of the Arabs was called

to the works of the first two of these writers by the fact that

the Arabs adopted the Indian system of arithmetic, and were

thus led to look at the mathematical text-books of the Hindoos.

The Arabs had always had considerable commerce with India,

and with the establishment of their empire the amount of trade

naturally increased
;

at that time, circ. 700, they found the

Hindoo merchants beginning to use the system of numeration

with which we are familiar and adopted it at once. This

immediate acceptance of it was made the easier as they had

no collection of science or literature written in another system,
and it is doubtful whether they then possessed any but the

most primitive system of notation for expressing numbers.

The earliest definite date assigned for the use in Arabia of the

decimal system of numeration is 773. In that year some

Indian astronomical tables were brought to Bagdad, and it is

almost certain that in these Indian numerals (including a zero)

were employed.

Tlie development of mathematics in Arabia*.

In the preceding sections of this chapter I have indicated

the two sources from which the Arabs derived their knowledge
of mathematics, and have sketched out roughly the amount of

knowledge obtained from each. We may sum the matter up

by saying that before the end of the eighth century the Arabs

were in possession of a good numerical notation and of

Brahmagupta s work on arithmetic and algebra ;
while before

* A work by Baldi on the lives of several of the Arab mathematicians
! Tinted in Boncompagni s Bullctino di bibliogmjia, 1872, vol. v.,

!]). i-J7 S3 I.

I .. 11
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the end of the ninth century they were acquainted with the

masterpieces of Greek mathematics in geometry, mechanics,

and astronomy. I have now to explain what use they made

of these materials.

Alkarismi. The first and in some respects the most illus

trious of the Arabian mathematicians was Mohammed ibn

Musa Abu Djefar Al-Khwdrizmi. There is no common agree

ment as to which of these names is the one by which he is to

be known : the last of them refers to the place where he was

born, or in connection with which he was best known, and I

am told that it is the one by which he would have been

usually known among his contemporaries. I shall therefore

refer to him by that name
;
and shall also generally adopt the

corresponding titles to designate the other Arabian mathema

ticians. Until recently this was almost always written in the

corrupt form Alkarismi, and, though this way of spelling it is

incorrect, it has been sanctioned by so many writers that I

shall make use of it. We know nothing of Alkarismi s life

except that he was a native of Khorassan and librarian of the

caliph Al/Mamun; and that he accompanied a mission to

Afghan.istan, and possibly came back through India. On his

return, about 830, he wrote an algebra which is founded on

that of Brahmagupta, but in which some of the proofs rest on

the Greek method of representing numbers by lines : it was

published by Rosen, with an English translation, at London in

1831. Alkarismi also wrote a treatise on arithmetic : an

anonymous tract termed Algoritmi De Numero Indorum, which

is in the university library at Cambridge, is believed to be a

Latin translation of this treatise; tftis was published by B.

Boncompagni at Rome in 1857. Besides these two works

Alkarismi compiled some astronomical tables, with explanatory

remarks ;
these included results taken from both Ptolemy and

Brahmagupta.
The algebra of Alkarismi holds a most important place in

the history of mathematics, for we may say that the subsequent

Arabian and the early mediaeval works on algebra were
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founded on it, and also that through it the Arabic or Indian

system of decimal numeration was introduced into the West.

The work is termed Al-gebr we I mukabala: al-gebr, from

which the word algebra is derived, may be translated by
the restoration and refers to the fact that any the same magni
tude may be added to or subtracted from both sides of an

equation ;
al mukabala means the process of simplification

and is generally used in connection with the combination of

like terms into a single term. The unknown quantity is

termed either &quot; the
thing&quot;

or &quot;the root&quot;
(i.e.

of a plant)
and from the latter phrase our use of the word root as applied
to the solution of an equation is derived. The square of the

unknown is called &quot; the
power.&quot;

All the known quantities

are numbers.

The work is divided into five parts. In the first Alkarismi

gives, without any proofs, rules for the solution of quadratic

equations, which he divides into six classes of the forms

ax2 = bx, ax2 =
c, bx c, ax

2 + bx = c, ax
9 + c = bx, and ax2

bx + c,

where a, b, c are positive numbers. He considers only real

and positive roots, but he recognizes the existence of two

roots, which as far as we know was never done by the Greeks.

It is somewhat curious that when both roots are positive he

generally takes only that root which is derived from the

negative value of the radical.

He next gives geometrical proofs of these rules in a

manner analogous to that of Euclid n. 4. For example, to

solve the equation x2 + Wx= 39, or any equation of the form

x3

+px =
q, he gives two methods of which one is as follows.

Let A il represent the value of x, and construct on it the

square ABCD (see figure on next page). Produce DA to //

and DC to F so that AH --CF=.5 (or %p) ;
and complete the

figure as drawn below. Then the areas AC, HB, and HF
represent the magnitudes x2

, 5x, and 5x. Thus the left-hand

side of the equation is represented by the sum of the areas ACt

///&amp;gt;,
and ttl \ that is, by the gnomon IfCG. To both sides of

the equation add the square KG, the area of which is 25 (or

112
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\p*\ and we shall get a new square whose area is by hypo
thesis equal to 39 + 25, that is, to 64 (or q + ffi) and whose

side therefore is 8. The side of this square DH which is

equal to 8 will exceed AH which is equal to 5 by the value

of the unknown required, which therefore is 3.

In the third part of the book Alkarismi considers the

product of (xa) and (xb). In the fourth part he states

the rules for addition and subtraction of expressions which

involve the unknown, its square, or its square root; gives rules

for the calculation of square roots; and concludes with the

theorems that a*Jb = \ a2
b and ija Jb \/ab. In the fifth

and last part he gives some problems, such, for example, as to

find two numbers whose sum is 10 and the difference of whose

squares is 40.

In all these early works there is no clear distinction between

arithmetic and algebra, and we find the account and explana
tion of arithmetical processes mixed up with algebra and treated

as part of it. It was from this book then that the Italians

first obtained not only the ideas of algebra but also of an arith-

me.ic founded on the decimal system. This arithmetic was

long known as algorism, or the art of Alkarismi, which served

to distinguish it from the arithmetic of Boethius
;
and this

name remained in use till the eighteenth century.
Tabit ibn Korra. The work commenced by Alkarismi was

carried on by Tabit ibn Korra, born at Harran in 836 and died
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in 901, who was one of the most brilliant and accomplished

scholars produced by the Arabs. He issued translations of

the chief works of Euclid, Apollonius, Archimedes, and Ptolemy

(see above, p. 151). He also wrote several original works, all

of which are lost with the exception of a fragment on algebra,

consisting of one chapter on cubic equations, which are solved

by the aid of geometry in somewhat the same way as that given

later (see below, p. 228).

Algebra continued to develope very rapidly, but it re

mained entirely rhetorical. The problems with which the

Arabs were concerned were, either the solution of equations,

problems leading to equations, or properties of numbers. The

two most prominent algebraists of a later date were Omar

Alkayami and Alkarki, both of whom flourished at the

beginning of the eleventh century.

Alkayami. The first of these, Omar Alkayami, is notice

able for his geometrical treatment of cubic equations by which

he obtained a root as the abscissa of a point of intersection

of a conic and a circle. The equations he considers are of

the following forms, where a and c stand for positive integers,

(i) a;
3 + b

2x = 6
2

c, whose root he says is the abscissa of a point

of intersection of x2 = by and y
2 = x (c x) \ (ii)

#3
h ax

2 = c
3
,

whose root he says is the abscissa of a point of intersection

of xy = c
2 and y

2 - c (x + a) ; (iii)
x3 ax2 + b

2x = b
2

c, whose

root he says is the abscissa of a point of intersection of

y*
= (x a) (c

-
x) and x (by) = be. He gives one biquadratic,

namely, (100
- x2

) (10
-
x)

2 = 8100, the root of which is deter

mined by the point of intersection of (10 x)y = 90 and

x* + y
2 = 100. It is sometimes said that he stated that it was

impossible to solve the equation x
3 + v/

3 = s
3
in positive integers,

or in other words that the sum of two cubes can never be

a cube; though whether he gave an accurate proof, or whether,

as is more likely, the proposition (if enunciated at all) was the

result of a wide induction, it is now impossible to say ;
but

the fact that such a theorem is attributed to him will serve to

illustrate the extraordinary progress the Arabs had made in
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algebra. His treatise on algebra was published by Fr.

Woepcke, Paris, 1851.

Alkarki. The other mathematician of this time (circ.

1000) whom I mentioned was Alkarki. He gave expressions

for the sums of the first, second, and third powers of the first

n natural numbers
;
solved various equations, including some

of the forms ax2p =t bxp c =
;
and discussed surds, shewing,

for example, that
&amp;lt;/8

+ ^18 = ^50. His algebra was published

by Fr. Woepcke at Paris in 1853, and his arithmetic was

translated into German by Ad Hochheim at Halle in 1878.

Even where the methods of Arab algebra are quite general

the applications are confined in all cases to numerical problems,
and the algebra is so arithmetical that it is difficult to treat the

subjects apart. From their books on arithmetic and from the

observations scattered through various works on algebra we may
say that the methods used by the Arabs for the four fundamental

processes were analogous to, but more cumbrous than, those now
in use (see below, chapter XL); but the problems to which the

subject was applied were similar to those given in modern

books, and were solved by similar methods, such as rule of

three, &c. Some minor improvements in notation were intro

duced, such e.g. as the introduction of a line to separate the

numerator from the denominator of a fraction
;
and hence a

line between two symbols came to -be used as a symbol of

division (see below, p. 244), Alhossein (980 1037) invented

the rule for testing the results of addition and multiplication

by
&quot;

casting out the nines.&quot;

I am not concerned with the Arabian views of astronomy or

the value of their observations, but I may remark in passing

that the Arabs accepted the theory as laid down by Hippar-
chus and Ptolemy, and did not materially alter or advance it.

Albategni. Albuzjani. Like the Greeks, the Arabs never

used trigonometry except in connection with astronomy : but

they introduced the trigonometrical expressions which are now

current, and worked out the plane trigonometry of a single

angle. They were also acquainted with the elements of
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spherical trigonometry. The trigonometrical ratios seem to

have been the invention of Albategni, born at Batan in

Mesopotamia in 877 and died at Bagdad in 929, who was

among the earliest of the many distinguished Arabian astro

nomers. He wrote the Science of the Stars (published by

Regiomontanus at Nuremberg in 1537) and in it he determined

his angles by &quot;the semi-chord of twice the
angle,&quot;

i.e. by
the sine of the angle (taking the radius vector as unity).

Hipparchus and Ptolemy, it will be remembered, had used the

chord. It is doubtful whether Albategni was acquainted
with the previous introduction of sines by Arya-Bhata and

Brahmagupta. Shortly after the death of Albategni, Albuzjani
who is also known as Abul- Wafa, born in 940 and died in 998,

introduced all the trigonometrical functions, and constructed

tables of tangents and cotangents. He was celebrated not

only as an astronomer but as one of the most distinguished

geometricians of his time.

Alhazen. Abd-al-gehl. The Arabs were at first content

to take the works of Euclid and Apollonius for their text-books

in geometry without attempting to comment on them, but

Alhazen (born at Bassora in 987 and died at Cairo in 1038)
issued in 1036 a collection of problems something like the

Data of Euclid, this was translated by Sedillot and published
at Paris in 1836. Besides commentaries on the definitions of

Euclid and on the Almagest Alhazen also wrote a work on

optics which shews that he was a geometrician of considerable

power : this was published at Bale in 1572, and served as the

foundation for Kepler s treatise. In it he gives, amongst
other things, a geometrical solution of the problem to find at

what point of a concave mirror a ray from a given point must
be incident so as to be reflected to another given point.

Another geometrician of a slightly later date was Abd-al-yehl

(circ. 1100) who wrote on conic sections, and was also the

author of three small geometrical tracts.

It was shortly after the last of the mathematicians mentioned

above that Bhaskara, the third great Hindoo mathematician,
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flourished : there is every reason to believe that he was familiar

with the works of the Arab school as described above, and also

that his writings were at once known in Arabia.

The Arab schools continued to flourish until the fifteenth

century. But they produced no other mathematician of any

exceptional genius, nor was there any great advance on the

methods indicated above, and it is unnecessary for me to crowd

my pages with the names of a number of writers who did not

materially affect the progress of the science in Europe.
I have not alluded to a strange theory which has been

accepted by some writers, but which seems to me to be most

improbable. According to this theory there were two rival

schools of thought in Arabia, one of which derived its mathe

matics entirely from Greek sources and represented numbers by

lines, and the other from Hindoo sources and represented

numbers by abstract symbols each disdaining to make any use

of the authorities preferred by its rival.

From this rapid sketch it will be seen that the work of the

Arabs in arithmetic, algebra, and trigonometry was of a high
order of excellence. They appreciated geometry and the appli

cations of geometry to astronomy, but they did not extend the

bounds of the science. It may be also added that they made

no special progress in statics, or optics, or hydrostatics ; though
there is abundant evidence that they had a thorough knowledge
of practical hydraulics.

The general impression left on my mind is that the Arabs

were quick to appreciate the work of others notably of the

Greek masters and of the Hindoo mathematicians but, like

the ancient Chinese and Egyptians, they were unable to sys

tematically develope a subject to any considerable extent.

Their schools may be taken to have lasted in all for about

650 years, and if the work produced be compared with that

of Greek or modern European writers it is as a whole second-

rate both in quantfty and quality.
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CHAPTER X.

THE INTRODUCTION OF ARABIAN WORKS INTO EUROPE.

CIRC. 1150 1450.

IN the last chapter but one I discussed the development of

European mathematics to a date which corresponds roughly
with the end of the &quot; dark ages

&quot;

;
and in the last chapter

I traced the history of the mathematics of the Hindoos and

Arabs to the same date. The mathematics of the two or

three centuries that follow and are treated in this chapter are

characterized by the introduction of the Arabian mathematical

text-books and of Greek books derived from Arabian sources,

and the assimilation of the new ideas thus presented.
It was however from Spain and not from Arabia that

Arabian mathematics came into western Europe. The Moors
had established their rule in Spain in 747, and by the tenth or

eleventh century had attained a high degree of civilization.

Though their political relations with the caliphs at Bagdad
were somewhat unfriendly, they gave a ready welcome to the

works of the great Arabian mathematicians. In this way the

Arab translations of Euclid, Archimedes, Apollonius, Ptolemy,
and perhaps of other Greek writers, together with the works
of the Arabian algebraists, were read and commented on at

the three great Moorish universities or schools of Granada,

Cordova, and Seville. It seems probable that these works

indicate the full extent of Moorish learning, but, as all know-
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ledge was jealously guarded from Christians, it is impossible to

speak with certainty either on this point or on that of the time

when the Arab books were first introduced into Spain.
The eleventh century. The earliest Moorish writer of dis

tinction of whom I find mention is G-eber ibn Aphla, who was

born at Seville and died towards the latter part of the eleventh

century at Cordova. His works, which deal chiefly with astro

nomy and trigonometry, were translated into Latin by Gerard

and published at Nuremberg in 1533. He seems to have dis

covered the theorem that the sines of the angles of a spherical

triangle are proportional to the sines of the opposite sides.

Another Arab of about the same date was Arzachel*,
who was living at Toledo in 1080. He suggested that the

planets moved in ellipses, but his contemporaries with scientific

intolerance declined to argue about a statement which was

contrary to that made by Ptolemy in the Almagest.
The twelfth century. During the course of the twelfth

century copies of the books used in Spain were obtained in

western Christendom. The first step towards procuring a

knowledge of Arab and Moorish science was taken by an

English monk, Adelhard of Bath
t&amp;gt; who, under the disguise of

a Mohammedan student, attended some lectures at Cordova

about 1120 and obtained a copy of Euclid s Elements. This

copy, translated into Latin, was the foundation of all the edi

tions known in Europe till 1533, when the Greek text was

recovered. How rapidly a knowledge of the work spread we

may judge when we recollect that before the end of the thir

teenth century Roger Bacon was familiar with it, while before

the close of the fourteenth century the first five books formed

part of the regular curriculum at some, if not all, universities.

The enunciations of Euclid seem to have been known before

* See his life by Baldi, circ. 1000, reprinted in Boneompagiii s

Bulletino di libliografia, 1872, vol. v, p. 508.

t On the influence of Adelhard and Ben Ezra, see the Abhandlungen

zur Geschichte der Mathematik in the Zeitschrift fiir Mathematik, vol.

xxv, 1880.
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Adelhard s time, and possibly as early as the year 1000,

though copies were rare. Adelhard also procured a manu

script of or commentary on Alkarismi s work, which he like

wise translated into Latin. He also issued a text-book on the

use of the abacus.

During the same century other translations of the Arab

text-books or commentaries on them were obtained. Amongst
those who were most influential in introducing Moorish learn

ing into Europe I may mention Abraham Ben Ezra*. Ben

Ezra was born at Toledo in 1097, and died at Rome in 1167.

He was one of the most distinguished Jewish rabbis who had

settled in Spain, where it must be recollected that they were

tolerated and even protected by the Moors on account of their

medical skill. Besides some astronomical tables and an astro

logy, Ben Ezra wrote an arithmetic, a short analysis of which

was published by O. Terquein in Liouville s Journal for 1841.

In this he explains the Arab system of numeration with nine

symbols and a zero, gives the fundamental processes of arith

metic, and explains the rule of three.

Another European who was induced by the reputation of

the Arab schools to go to Toledo was Gerard f who was born

at Cremona in 1114 and died in 1187. He translated the

Arab edition of the Almagest, the works of Alhazen, and the

works of Alfarabius whose name is otherwise unknown to us.

In this translation of Ptolemy s work which was made in

1136 the Arabic numerals are introduced. Gerard also wrote

a short treatise on algorism which exists in manuscript in

the Bodleian Library at Oxford. He was acquainted with

ne of the Aral) editions of Euclid s Elements, which he trans

lated into Latin.

Among, the contemporaries of Gerard was John Hispalensis

of Seville, who was originally a rabbi but was converted to

Christianity and baptized under the name given above. He

* See footnote on p. 170.

t Sec Boncompagni s /&amp;gt;//,/ ritu &amp;lt; &amp;lt;1&amp;lt; lie open- di (iJierunio

Koine, 1851.
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made translations of several Arab and Moorish works, and
also wrote an algorism which contains the earliest examples of

the extraction of the square roots of numbers by the aid of

the decimal notation.

The thirteenth century. During the thirteenth century
there was a revival of learning throughout Europe, but the

new learning was I believe confined to a very limited class.

The early years of this century are memorable for the de

velopment of several universities, and for the appearance of

three remarkable mathematicians Leonardo of Pisa, Jordanus,
and Roger Bacon the Franciscan monk of Oxford.

Leonardo*. Leonardo Fibonacci (i.e. filius Bonaccii) gene

rally known as Leonardo of Pisa, was born at Pisa in 1175.

His father Boiiacci was a merchant, and was sent by his

fellow-townsmen to control the custom-house at Bugia in

Barbary ;
there Leonardo was educated, and he thus became

acquainted with the Arabic system of numeration as also

with Alkarismi s work on algebra which was described in

the last chapter. It would seem that Leonardo was entrusted

with some duties in connection with the custom-house which

required him to travel. He returned to Italy about 1200,

and in 1202 published a work called Algebra et almuchabala

(the title being taken from Alkarismi s work) but generally

known as the Liber Abaci. He there explains the Arabic

system of numeration, and remarks on its great advantages
over the Roman system. He then gives an account of algebra,

and points out the convenience of using geometry to get rigid

demonstrations of algebraical formulae. He shews how to

solve simple equations, solves a few quadratic equations, and

states some methods for the solution of indeterminate equa

tions; these rules are illustrated by problems on numbers.

All the algebra is rhetorical. This work had a wide circu-

* See the Leben und Schriften Leonardos da Pisa by J. Giesing,

Dobeln, 1886
;
and Cantor, chaps. XLI., XLII. ;

see also two articles by

Fr. Woepcke in the Atti delV Academia pontificia de nuovi Lincei for

1861, vol. xiv., pp. 342 348. Most of Leonardo s writings were edited

and published by B. Boncompagni between the years 1854 and 1862.
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lation, and for at least two centuries remained a standard

authority.

The Liber Abaci is especially interesting in the history of

arithmetic since it practically introduced the use of the Arabic

numerals into Christian Europe. The language of Leonardo

implies that they were previously unknown to his countrymen;
he says that having had to spend some years in Barbary he

there learnt the Arabic system which he found much more

convenient than that used in Europe; he therefore published

it &quot;in order that the Latin* race might no longer be deficient

in that knowledge.&quot; Now Leonardo had read very widely,

and had travelled in Greece, Sicily, and Italy; and there is

therefore every presumption that the system was not then com

monly employed in Europe. Though Leonardo introduced its

use into commercial affairs, it is probable that a knowledge of

it as a method which was current in the East was previously
not uncommon among travellers and merchants, for the inter

course between Christians and Mohammedans was sufficiently

close for each to learn something of the language and common

practices of the other. We can also hardly suppose that the

Italian merchants were ignorant of the method of keeping ac

counts used by some of their best customers
;
and we must recol

lect too that there were numerous Christians who had escaped
or been ransomed after serving the Mohammedans as slaves.

It was however Leonardo who brought the system into general

use, and by the middle of the thirteenth century a large pro

portion of the Italian merchants employed it by the side of the

old system.

The majority of mathematicians must have already known
of the system from the works of Ben Ezra, Gerard, and John

Hispalensis. But shortly after the appearance of Leonardo s

book Alphonso of Castile (in 1252) published some astronomical

* Dean Peacock says that the earliest known application of the word
Italians to describe the inhabitants of Italy occurs about the middle of

tlu thirteenth century : by the end of that century it was in common
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tables, founded on observations made in Arabia, which -were

computed by Arabs and which were expressed in Arabic nota

tion. Alphonso s tables had a wide circulation among men
of science and were largely instrumental in bringing these

numerals into universal use among mathematicians. By the

end of the thirteenth century it was generally assumed that all

scientific men would be acquainted with the system: thus

Roger Bacon writing in that century recommends the algorism

(that is, the arithmetic founded on the Arab notation) as a

necessary study for theologians who ought he says &quot;to abound

in the power of numbering.&quot; We may then consider that by
the year 1300, or at the latest 1350, these numerals were

familiar both to mathematicians and to Italian merchants.

So great was Leonardo s reputation that the emperor
Frederick II. stopped at Pisa in 1225 in order to hold a sort

of mathematical tournament to test Leonardo s skill of which

he had heard such marvellous accounts. The competitors were

informed beforehand of the questions to be asked, some or

all of which were composed by John of Palermo who was one

of Frederick s suite. This is the first time that we meet

with an instance of those challenges to solve particular pro

blems which were so common in the sixteenth and seventeenth

centuries. The first question propounded was to find a number

of which the square when either increased or decreased by
5 would remain a square. Leonardo gave an answer, which

is correct, namely 41/12. The next question was to find by

the methods used in the tenth book of Euclid a line whose

length x should satisfy the equation ar* + 2x2 + Wx = 20.

Leonardo shewed by geometry that the problem was im

possible, but he gave an approximate value of the root of this

equation, namely, 1 -22 7&quot; 42
&quot;

33&quot;&quot; 4V 40vi
,
which is equal to

1*3688081075..., and is correct to nine places of decimals*,

Another question was as follows. Three men A, B, C, possess

a sum of money u, their shares being in the ratio 3:2:1. A
takes away x, keeps half of it, and deposits the remainder with

* See Fr. Woepcke in Liouville s JmirnaJ for 1854, p. 401.
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D\ B takes away ?/, keeps two-thirds of it, and deposits the

remainder with D\ C takes away all that is left namely z,

keeps five-sixths of it, and deposits the remainder with D.

This deposit with D is found to belong to A, B, and C in

equal proportions. Find u
t x, ?/, and z. Leonardo shewed

that the problem was indeterminate and gave as one solution

^ = 47, a; = 33, y^!3, z-\. The other competitors failed to

solve any of these questions.

The chief work of Leonardo is the Liber Abaci alluded to

above. This work contains a proof of the well-known result

(a
9 + b

a

)(c* 4- d*)
=

(ac + bdf + (be
-
ad)

2 = (ad + be)
2 + (bd

-
acf.

He also wrote a geometry termed Practica Geometriae which

was issued in 1220. This is a good compilation and some

trigonometry is introduced; among other propositions and

examples he finds the area of a triangle in terms of its sides.

Subsequently he published a Liber Quadratorum dealing with

problems similar to the first of the questions propounded at

the tournament*. He also issued a tract dealing with deter

minate algebraical problems: these are all solved by the rule

of false assumption in the manner explained above on p. 104.

Frederick II. The emperor Frederick II. who was born in

1194, succeeded to the throne in 1210, and died in 1250, was

not only interested in science, but did as much as any other

single man of the thirteenth century to disseminate a know

ledge of the works of the Arab mathematicians in western

Europe. The universities of Naples and Padua remain as

monuments of his munificence
;
he having founded the former

in 1224, and the latter in 1238. I have already mentioned

that the presence of the Jews had Uvn tolerated in Spain on

account of their medical skill and scientific knowledge, and as

a matter of fact the titles of physician and algebraist!

* Fr. Woepcke in Liouville s Journal for 1855 (p. 51) has given an

analysis of Leonardo s method of treating problems on square numbers.

t For instance the reader may recollect that in Don (J it i.rote (part u.,

th.
1&quot;&amp;gt;),

when Samson Carasco is thrown by the knight from his horse

and has his ribs broken, an tilfi,&amp;gt;l&amp;gt;ri*tii i- snninmiu d to bind up his wounds.
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for a long time nearly synonymous ;
thus the Jewish physicians

were admirably fitted both to get copies of the Arab works and

to translate them. Frederick II. made use of this fact to engage
a staff of learned Jews to translate the Arab works which he

obtained, though there is no doubt that he gave his patronage
to them the more readily because it was singularly offensive to

the pope with whom he was then engaged in a quarrel. Afc

any rate by the end of the thirteenth century copies of Euclid,

Archimedes, Apollonius, Ptolemy, and some of the Arab works

on algebra were obtainable from this source, and by the end of

the next century were not uncommon. From this time then

we may say that the development of science in Europe was

independent of the aid of the Arabian schools.

Jordanus*. Among Leonardo s contemporaries was a

German mathematician, whose works were until the last few

years almost unknown. This was Jordanus Nemorarius,

sometimes called Jordanus de Saxonia or Teutonicus. Of the

details of his life we know but little, save that he was elected

general of the Dominican order in 1222.

Prof. Curtze, who has made a special study of the subject,

considers that the following works are due to Jordanus :

Geometria vel de Triangulis and De Similibus Arcubis, published

by M. Curtze in 1887 in vol. vi. of the Mitteilungen des Coper-

nicus-Vereins zu Thorn
,
De Isoperimetris ;

Arithmetica De-

monstrata, published by Faber Stapulensis at Paris in 1496,

second edition, 1514; Alyoritkmus Demonstratus, published

by J. Schoner at Nuremberg in 1534; De Numeris Datis,

published by P. Treutlein in 1879 and edited in 1891 with

comments by M. Curtze in vol. xxxvi. of the Zeitschrift fur

Mathematikund Physik-, De Ponderibus, published by P. Apian
at Nuremberg in 1533, and re-issued at Venice in 1565

;
and

lastly two or three tracts on Ptolemaic astronomy. If we

assume, as Prof. Curtze does, that these works have not been

added to or improved by subsequent annotators, we must

* See Cantor, chaps. XLIII, XLIV, where the references to the autho

rities on Jordanus are collected.
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esteem Jordanus as one of the most eminent mathematicians

of the middle ages.

His knowledge of geometry is illustrated by his De

TrianyaliS) De Siinilibus Arcubis, and De Isoperiiwtris. The

most important of these is the De Trianyulis which is divided

into four books. The first book, besides a few definitions,

contains 13 propositions on triangles which are based on

Euclid s Elements. The second book contains 19 propositions,

mainly on the ratios of straight lines and their application to

compare the areas of triangles ;
for example, one problem is to

find a point inside a triangle so that the lines joining it to the

angular points may divide the triangle into three equal parts.

The third book contains 12 propositions, mainly concerning
arcs and chords of circles. The fourth book contains 28 propo

sitions, partly 011 regular polygons and partly on miscellaneous

questions such as the duplication and trisection problems.

The Algorithmic Demonstratus contains practical rules for

the four fundamental processes, and Arabic numerals are

generally (but not always) used. It is divided into ten books

dealing with properties of numbers, primes, perfect numbers,

polygonal numbers, &c., ratios, powers, and the progressions.
It would seem from it that Jordanus knew the general expres
sion for the square of any algebraic multinomial.

The De Numeris Da.is consists of four books containing
solutions of 115 problems. Some of these lead to simple or

quadratic equations involving more than one unknown quan
tity. He shews a knowledge of proportion ;

but many of the

demonstrations of his general propositions are only numerical

illustrations of them.

In several of the propositions of the Algorithmus and De
A a. merits Datis letters are employed to denote both known
and unknown quantities, and they are used in the demonstra

tions of the rules of arithmetic as well as of algebra. As an

example of this I quote the following proposition (from the

De A anfris Datis, book i. prop. 3) the object of which is to

determine two quantities whose sum and product are known.

B. 12
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Dato numero per duo diuiso si, quod ex ductu unius in alterum pro-

ducitur, datum fuerit, et utrumque eorum datum esse necesse est.

Sit numerus datus abc diuisus in ab et c, atque ex ab in c fiat d datus,

itemque ex abc in se fiat e. Sumatur itaque quadruplum d, qui fit /, quo

dempto de e remaneat g, et ipse erit quadratum differentiae ab ad c.

Extrahatur ergo radix ex g, et sit h, eritque h differentia ab ad c, cumque
sic h datum, erit et c et ab datum.

Huius operatic facile constabit hoc modo. Verbi gratia sit x diuisus

in numeros duos, atque ex ductu unius eorum in alium fiat xxi
; cuius

quadruplum, et ipsum est LXXXIIII, tollatur de quadrato x, hoc est c, et

remanent xvi, cuius radix extrahatur, quae erit quatuor, et ipse est

differentia. Ipsa tollatur de x et reliquum, quod est vi, dimidietur,

eritque medietas in, et ipse est minor portio et maior vii.

It will be noticed that Jordanus, like Diophantus and the

Hindoos, denotes addition by juxtaposition. Expressed in

modern notation his argument is as follows. Let the numbers

be a + b (which I will denote by y) and c. Then y + c is

given; hence (y + c)
2

is known; denote it by e. Again yc is

given ;
denote it by d

;
hence 4yc, which is equal to 4c, is

known
;
denote it by f. Then (y

-
c)

2
is equal to e -f, which

is known
;

denote it by g. Therefore y c *Jg, which is

known ;
denote it by h. Hence y + c and y

- c are known,
and therefore y and c can be at once found. It is curious

that he should have taken a sum, like a + b for one of his

unknowns. In his numerical illustration he takes the sum to

be 10 and the product 21.

The above works are the earliest instances known in

European mathematics of syncopated algebra in which letters

are used for algebraical symbols. It is probable that the

Alyorithmus was not generally known until it was printed in

1534, and it is doubtful how far the works of Jordanus exercised

any considerable influence on the development of algebra. In

fact it constantly happens in the history of mathematics that

improvements in notation or discoveries are made long before

they are generally adopted or their advantages realized. Thus

the same thing may be discovered over and over again, and it

is not until the general standard of knowledge requires some

such improvement, or it is enforced by some one whose zeal or
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attainments compel attention, that it is adopted and becomes

part of the science. Jordan us in using letters or symbols to

represent any quantities which occur in analysis was far in

advance of his contemporaries. A similar notation was ten

tatively introduced by other and later mathematicians, but

it was not until it had been thus independently discovered

several times that it came into general use.

It is not necessary to describe in detail the mechanics,

optics, or astronomy of Jordanus. The treatment of mechanics

throughout the middle ages was generally unintelligent.

No mathematicians of the same ability as Leonardo and

Jordanus appear in the history of the subject for over two

hundred years. Their individual achievements must not be

taken to imply the standard of knowledge then current, but

their works were accessible to students in the following two

centuries though there were not many who seem to have

derived much benefit therefrom or who attempted to extend

the bounds of arithmetic and algebra as there expounded.

During the thirteenth century the most famous centres of

learning in western Europe -were Paris and Oxford, and I

must now refer to the more eminent members of those

schools.

Holywood. I will begin by mentioning John de Ilolywood.

whose name is perhaps better known in the latinized form of

Sacrobosco. Holywood was born in Yorkshire and educated

at Oxford, but after taking his master s degree he moved to

1 MIMS and taught there till his death in 1244 or 1246. His

liviures on algorism and algebra are the earliest of which I

can find mention. His work on arithmetic was for many
years a standard authority: it was printed at Paris in 1496,

and was re-issued in Halli well s Rura Mathematica, London,
1841. He also wrote a treatise on the sphere which was

made public in 1256: this had a wide circulation, and in

dicates how rapidly a knowledge of mathematics was spreading.

lea these, two pamphlets by him entitled respectively De

Compute / / xi txfico and De Astrolabio are still extant.

12-*
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Roger Bacon*. Another contemporary of Leonardo and

Jordaiius was lloger Bacon, who for physical science did work

somewhat analogous to what they did for arithmetic and

algebra. Roger Bacon was born near Ilchester in 1214 and

died at Oxford on June 11, 1294. He was the son of royal

ists, most of whose property had been confiscated at the end of

the civil wars : at an early age he was entered as a student at

Oxford, and is said to have taken orders in 1233. In 1234

he removed to Paris, then the intellectual capital of western

Europe, where he lived for some years devoting himself espe

cially to languages and physics ;
and there he spent on books

and experiments all that remained of his family property and

his savings. He returned to Oxford soon after 1240, and

there for the following ten or twelve years he laboured in

cessantly, being chiefly occupied in teaching science. His

lecture room was crowded but everything that he earned was

spent in. buying manuscripts and instruments. He tells us

that altogether at Paris and Oxford he spent over 2000

in this way a sum which represents at least .20,000 now-a-

days.

Bacon strove hard to replace logic in the university curri

culum by mathematical and linguistic studies, but the influences

of the age were too strong for him. His glowing eulogy on
&quot; divine mathematics &quot; which should form the foundation of a

liberal education and which &quot;alone can purge the intellect

and fit the student for the acquirement of all knowledge
&quot;

fell

on deaf ears. We can judge how small was the amount of

geometry which was implied in the quadrivium when he tells

us that in geometry few students at Oxford read beyond Euc.

i. 5
; though we might perhaps have inferred as much from

the character of the work of Boethius.

* See Roger Bacon, sa vie, ses ouvrages... by E. Charles, Paris, 1861 ;

and the memoir by J. S. Brewer, prefixed to the Opera Inedita, Rolls

Series, London, 1859 : a somewhat depreciatory criticism of the former of

these works is given in lloger Bacon eine Monographic by L. Schneider,

Augsburg, 1873.
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At last worn out, neglected, and ruined Bacon was per

suaded by his friend Grosseteste, the great bishop of Lincoln,

to renounce the world and take the Franciscan vows. The

society to which he now found himself confined was singularly

uncongenial to him, and he beguiled the time by writing on

scientific questions and perhaps lecturing. The superior of the

order heard of this, and in 1257 forbad him to lecture or

publish anything under penalty of the most severe punish

ments, and at the same time directed him to take up his

residence at Paris where he could be more closely watched.

Clement IV. when in England had heard of his abilities, and

in 1266 when he became pope he invited Bacon to write. The

Franciscan order reluctantly permitted him to do so, but they

refused him any assistance. With great difficulty Bacon ob

tained sufficient money to get paper and the loan of books, and

within the short space of fifteen months he produced in 1267

his Opus majus with two supplements which summarized all

that was then known in science, and laid down the principles

on which not only science, but philosophy and literature, should

be studied. He stated as the fundamental principle that the

study of natural science must rest solely on experiment ;
and

in the fourth part he explained in detail how all sciences rest

ultimately on mathematics, and progress only when their fun

damental principles are expressed in a mathematical form.

Mathematics, he says, should be regarded as the alphabet of

all philosophy.

The results that he arrived at in this and his other works

are nearly in accordance with modern ideas, but were too far

in advance of that age to be capable of appreciation or perhaps
even of comprehension, and it was left for later generations to

rediscover his works, and give him that credit which he never

experienced in his lifetime. In astronomy he laid down the

principles for a reform of the calendar, explained the pheno
mena of shooting stars, and stated that the Ptolemaic system
was unscientific in so far as it rested on the assumption that

circular motion was the natural motion of a planet, while the
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complexity of the explanations required made it improbable
that the theory was true. In optics he enunciated the laws of

reflexion and in a general way of refraction of light, and

used them to give a rough explanation of the rainbow and of

magnifying glasses. Most of his experiments in chemistry
were directed to the transmutation of metals and led to no

result. He gave the composition of gunpowder, but there is

no doubt that it was nob his own invention, though it is

the earliest European mention of it. On the other hand some

of his results in these subjects appear to be guesses which

are more or less ingenious, while certain statements he makes

are certainly erroneous.

In the years immediately following the publication of his

Opus majus he wrote numerous works which developed in

detail the principles there laid down. Most of these have now
been published but I do not know of the existence of any com

plete edition. They deal only with applied mathematics and

physics.

Clement took no notice of the great work for which he had

asked, except to obtain leave for Bacon to return to England.
On the death of Clement, the general of the Franciscan order

was elected pope and took the title of Nicholas IV. Bacon s

investigations had never been approved of by his superiors,

and he was now ordered to return to Paris where we are told

he was immediately accused of magic : he was condemned in

1280 to imprisonment for life, and was released only about a

year before his death.

Campanus. The only other mathematician of this century
whom I need mention is Giovanni Campano, or in the latinized

form Campanus, a canon of Paris. A copy of Adelhard s

translation of Euclid s Elements fell into the hands of Campa
nus, who issued it as his own *

;
he added a commentary thereon

in which he discussed the properties of a regular re-entrant

pentagon : this edition was printed by Ratdolt at Venice in

* On this work see J. L. Heiberg in the Zeitschrift fiir Mathematik,

vol. xxxv, 1890.
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1482. Besides some minor works Campanus wrote the Theory

of the Planets, which was a free translation of the Almagest.

The fourteenth century. The history of the fourteenth

century, like that of the one preceding it, is mostly concerned

with the introduction and assimilation of the Arabian mathe

matical text-books and the Greek books derived from Arabian

sources.

Bradwardine*. A mathematician of this time, who was

perhaps sufficiently influential to justify a mention here, is

Thomas Bradivardine, archbishop of Canterbury. Bradwardine

was born at Chichester about 1290. He was educated at

Merton College, Oxford, and subsequently lectured in that

university. From 1335 to the time of his death he was chiefly

occupied with the politics of the church and state : he took a

prominent part in the invasion of France, the capture of

Calais, and the victory of Cressy. He died at Lambeth in

1349. His mathematical works, which were probably written

when he was at Oxford, are (i)
the Tractatus de Proportioni-

bus, printed at Paris in 1495
; (ii)

the Arithmetica Speculative^,

printed at Paris in 1502; (iii)
the Geometria Speculative*^

printed at Paris in 1511; and (iv) the De Quadratures Circuli,

printed at Paris in 1495. They probably give a fair idea of

tin- nature of the mathematics then read at an English uni

versity.

Oresnmst. Nicholas Oresmus was another writer of the

fourteenth century who is said in most histories of mathematics

to have influenced the development of the subject. He was born

at ( Vien in 1323, became the confidential adviser of Charles V.

by whom he was made tutor to Charles VI., and subsequently
\vas appointed bishop of Lisieux, at which city he died on

Inly 11, 1382. He wrote the Algorismus Proportionum in

which the idea of fractional indices is introduced, and in the

* See my History of Mathematics at Cambridge, 1889, pp. C 7;

Cantor, vol. n. , p. 102 ct
xr&amp;lt;/.

t See ])&amp;lt;&amp;lt; matln inatixt-hi-n Srhrift,-n fa Nicok Orcsme by M. Curtzo,

Thorn. 1H70.



184 INTRODUCTION OF ARABIAN WORKS INTO EUROPE.

eyes of his contemporaries was prominent as a mathematician

not less than as an economist and theologian ;
but I do not

propose to discuss his writings. The treatise on which his

reputation chiefly rests deals with questions of coinage and

commercial exchange, from the mathematical point of view it

is noticeable only for the use of vulgar fractions and the intro

duction of symbols for them.

By the middle of this century Euclidean geometry (as ex

pounded by Campanus) and algorism were fairly familiar to

all professed mathematicians, and the Ptolemaic astronomy was
also generally known. About this time the almanacks began
to add to the explanation of the Arabic symbols the rules of

addition, subtraction, multiplication, and division,
u de al-

gorismo.&quot; The more important calendars arid other treatises

also inserted a statement of the rules of proportion, illustrated

by various practical questions.

In the latter half of this century there was a general revolt

of the universities against the intellectual tyranny of the school

men. This was largely due to Petrarch, who to his own gene
ration was celebrated as a humanist rather than as a poet,

and who exerted all his power to destroy scholasticism, and

encourage scholarship. The result of these influences on

the study of mathematics may be seen in the changes then

introduced in the study of the quadrivium* The stimulus

came from the university of Paris, where a statute to that effect

was passed in 1366, and a year or two later similar regulations

were made at Oxford and Cambridge ; unfortunately no text

books are mentioned. We can however form a reasonable

estimate of the range of mathematical reading required, by

looking at the statutes of the universities of Prague founded

in 1348, of Vienna founded in 1365, and of Leipzig founded

in 1389.

By the statutes of Prague, dated 1384, candidates for the

bachelor s degree were required to have read Holywood s

* On the authorities for these statements, see my History of the Study

of Mathematics at Cambridge, Cambridge, 1889, p. 8 et seq.
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treatise on the sphere, and candidates for the master s degree

to be acquainted with the first six books of Euclid, optics,

hydrostatics, the theory of the lever, and astronomy. Lectures

were actually delivered on arithmetic, the art of reckoning with

the fingers, and the algorism of integers ;
on almanacks, which

probably meant elementary astrology ;
and on the Almagest,

that is, on Ptolemaic astronomy. There is however some reason

for thinking that mathematics received far more attention here

than was then usual at other universities.

At Vienna in 1389 the candidate for a master s degree was

required to have read five books of Euclid, common perspec

tive, proportional parts, the measurement of superficies, and

the Theory of the Planets. The book last named is the treatise

by Campanus which was founded on that by Ptolemy. This

was a fairly respectable mathematical standard, but I would

remind the reader that there was no such thing as &quot;

plucking&quot;

in a mediaeval university. The student had to keep an act or

give a lecture on certain subjects, but whether he did it well or

badly he got his degree, and it is probable that it was only the

few students whose interests were mathematical who really

mastered the subjects mentioned above.

The fifteenth century. A few facts gleaned from the

history of the fifteenth century tend to shew that the regula

tions about the study of the quadrivium were not seriously

enforced. The lecture lists for the years 1437 and 1438 of the

university of Leipzig (the statutes of which are almost identical

with those of Prague as quoted above) are extant, and shew

that the only lectures given there on. mathematics in those

years were confined to astrology. The records of Bologna,

Padua, and Pisa seem to imply that there also astrology was

the only scientific subject taught in the fifteenth century, and

even as late as 1598 the professor of mathematics at Pisa was

required to lecture on the Quadripartitum, an astrological work

purporting (probably falsely) to have been written by Ptolemy.
The only mathematical subjects mentioned in the registers of

the university of Oxford as read there between the years 1449
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and 1463 were Ptolemy s astronomy (or some commentary on

it) and the first two books of Euclid. Whether most students

got as far as this is doubtful. It would seem, from an edition

of Euclid published at Paris in 1536, that after 1452 candi

dates for the master s degree at that university had to take

an oath that they had attended lectures on the first six books

of Euclid s Elements.

Beldomandi. The only writer of this time that I need

mention here is Prodocimo Beldomandi of Padua, born about

1380, who wrote an algoristic arithmetic, published in 1410,
which contains the summation of a geometrical series; and

some geometrical works : for further details see Boncompagni s

Bulletino di bibliogrqfia, vols. xn., xvm.

By the middle of the fifteenth century printing was in

vented, and the facilities it gave for disseminating knowledge
were so great as to revolutionize the progress of science. We
have now arrived at a time when the results of Arab and

Greek science were known in Europe ;
and this perhaps then

is as good a date as can be fixed for the close of this period

and the commencement of that of the renaissance. The mathe

matical history of the renaissance begins with the career of

Regiomontanus ;
but before proceeding with the general history

it will be convenient to collect together the chief facts con

nected with the development of arithmetic during the middle

ages and the renaissance. To this the next chapter is devoted.



187

CHAPTER XL

THE DEVELOPMENT OF ARITHMETIC*.

CIRC. 13001637.

WE have seen in the last chapter that by the end of the

thirteenth century the Arabic arithmetic had been fairly intro

duced into Europe and was practised by the side of the older

arithmetic which was founded on the work of Boetbius. It will

be convenient to depart from the chronological arrangement
and briefly to sum up the subsequent history of arithmetic, but

I hope, by references in the next chapter to the inventions and

improvements in arithmetic here described, that I shall be able

to keep the order of events and discoveries quite clear.

The older arithmetic consisted of two parts : practical arith

metic or the art of calculation which was taught by means of

the abacus and possibly the multiplication table, and theoretical

arithmetic by which was meant the ratios and properties of

numbers taught according to Boethius a knowledge of the

latter being confined to professed mathematicians. The theo

retical part of this system continued to be taught till the

middle of the fifteenth century, ;md the practical part of it

* Sec the article on Arithmetic by G. Peacock in the Encyclopaedia
M &quot;juilitana, vol. i., London, 1845; Arithmcticnl Html;* by A. De

m, London, 1847; and an article by P. Treutlein of Karlsruhe,

in the supplement (pp. 1 100) of tlir Ahhinnlliinin-ti :ur f/Yxr// /&amp;lt;///, //&amp;lt;;

ik, 1H77.
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was used by the smaller tradesmen in England*, Germany,
and France till the beginning of the seventeenth century.

The new Arabian arithmetic was called algorism or the art

of Alkarismi to distinguish it from the old or Boethian arith

metic. The text-books on algorism commenced with the Arabic

system of notation, and began by giving rules for addition, sub

traction, multiplication, and division
;
the principles of propor

tion were then applied to various practical problems, and the

books usually concluded with general rules for many of the

common problems of commerce. Algorism was in fact a mer

cantile arithmetic though at first it also included all that was

then known as algebra. Thus algebra has its origin in arith

metic; and to most people the term universal arithmetic by
which it was sometimes designated conveys a more accurate

impression of its objects and methods*than the more elaborate

definitions of modern mathematicians certainly better than the

definition of Sir William Hamilton as the science of pure time,

or that of De Morgan as the calculus of succession. Noo

doubt logically there is a marked distinction between arithmetic

and algebra, for the former is the theory of discrete magnitude
while the latter is that of continuous magnitude ;

but a

scientific distinction such as this is of quite recent origin, and

the idea of continuity was not introduced into mathematics

before the time of Kepler. Of course the fundamental rules

of this algorism were not at first strictly proved that is the

work of advanced thought but until the middle of the seven

teenth century there was some discussion of the principles

involved
;
since then very few arithmeticians have attempted

* See e.g. Chaucer, The Miller s Tale, v. 2225 ; Shakespeare, The

Winter s Tale, Act -iv. Sc. 2
; Othello, Act i. Sc. 1. I am not sufficiently

familiar with early French or German literature to know whether they

contain any references to the use of the abacus. I believe that the

Exchequer division of the High Court of Justice derives its name from

the table before which the judges and officers of the court originally sat:

this was covered with black cloth divided into squares or chequers by

white lines, and apparently was used as an abacus.
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to justify or prove the processes used, or to do more than

enunciate rules and illustrate their use by numerical examples.

I have alluded frequently to the Arabic system of numeri

cal notation. I may therefore conveniently begin by a few

notes on the history of the symbols now current.

Their origin is obscure and has been much disputed*. On
the whole it seems probable that the symbols for the numbers

4, 5, 6, 7, and 9 (and possibly 8 too) are derived from the

initial letters of the corresponding words in the Indo-Bactrian

alphabet in use in the north of India perhaps 150 years before

Christ
;
that the symbols for the numbers 2 and 3 are derived

respectively from two and three parallel penstrokes written

cursively; and similarly that the symbol for the number 1

represents a single penstroke. Numerals of this type were in

use in India before the end of the second century of our era

The origin of the symbol for zero is unknown
;

it is not

impossible that it was originally a dot inserted to indicate a

blank space, or it may represent a closed hand, but these are

mere conjectures ;
there is reason to believe that it was in

troduced in India towards the close of the fifth century of

our era, but the earliest writing now extant in which it occurs

is assigned to the eighth century.

The numerals used in India in and after the eighth century
are termed Devanagari numerals and their forms are shewn in

the first line of the table given on the next page. These forms

wi iv slightly modified by the eastern Arabs, and the resulting

symbols were again slightly modified by the western Arabs or

Moors. It is perhaps probable that at first the Spanish
Arabs discarded the use of the symbol for zero and only
re-inserted it when they found how inconvenient the omission

proved. The symbols finally used by the Arabs are termed

Gobur numerals, and an idea of the forms most commonly used

* See A. P. Pihan, Siyni-* ih numeration, Paris, 1860; Fr. Woepcke,
I.n propitiiat nm f/rx

f/&amp;lt;////vs
Imlii ms, Paris, 1863; A. C. Burnell, Stmth

Indian l\iUn
o&amp;lt;iniphy, Mangalore, 1874; mul Is. Taylor, The Alphabet,

London, 1883; &\&o passim M. Cantor.
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may be gathered from those printed in the second line of the

table given below. From Spain or Barbary the Gobar numerals

passed into western Europe. The further evolution of the

forms of the symbols to those with which we are familiar is

indicated below by facsimiles* of the numerals used at diffe

rent times. All the sets of numerals here represented are

written from left to right and in the order 1, 2, 3, 4, 5, 6,

7, 8, 9, 10.

Devaiiagari (Indian) nu

merals, circ. 950.

Gobar Arabic numerals,) \ *? &amp;lt;^ C (j V ^ Q Ck \

(7) i
I ,C,7,7;T.,0,/,3,. Vcirc. 1100(

From a missal, circ. 1385,m a missal, circ. 1385, )

i&quot;&amp;gt;2ri//-&quot; &amp;gt;vO/\

of German origin. $ /, *&quot;&amp;gt;
j&amp;gt;&amp;gt; &amp;lt;** ^ &amp;gt; ,A ,#,J ,

European (probably Italian)

numerals, circ. 1400.

From the Mirrour of the

World, printed by Cax-

ton in 1480.

From a Scotch calendar

for 1482, probably of

French origin.

From 1500 onwards the symbols employed are practically the

same as those now in use. t

The evolution of the symbols by the Arabs proceeded almost

independently of European influence. There are minute dif-

* The first, second, and fourth examples are taken from Is. Taylor s

Alphabet, London, 1883, vol. n., p. 266; the others are taken from

Leslie s Philosophy of Arithmetic, pp. 114, 115.

t See for example Tonstall s De Arte Supputandi, London, 1522 ;

or Eecord s Grounde of Artes, London, 1540, and Whetstone of Witte,

London, 1557.
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ferences in the forms used by various writers and in some

cases alternative forms, without however entering into these

\ r r J*6n VA q i

details we may say that the numerals commonly employed finally

took the form shewn above, but the symbol there given for 4 is

at the present time generally written cursively.

Leaving now the history of the symbols I proceed to

discuss their introduction into general use and the develop
ment of algoristic arithmetic. I have already explained how
men of science, and particularly astronomers, had become

acquainted with the Arabic system by the middle of the

thirteenth century. The trade of Europe during the thirteenth

and fourteenth centuries was mostly in Italian hands, and the

obvious advantages of the algoristic system led to its general

adoption in Italy for mercantile purposes though not without

considerable opposition : thus, an edict was issued at Florence

in 1299 forbidding bankers to use Arabic numerals, and the

authorities of the university of Padua in 1348 directed that a

list should be kept of books for sale with the prices marked
&quot; non per cifras sed per literas claras.&quot; The rapid spread of

the use of Arabic numerals and arithmetic through the rest of

Europe seems to have been quite as largely due to the makers

of almanacks and calendars as to merchants and men of science.

These calendars had a wide circulation in mediaeval times.

They were of two distinct types. Some of them were composed
with special reference to ecclesiastical purposes, and contained

the dates of the different festivals and fasts of the church

for a period of some seven or eight years in advance as well

as notes on church ritual. Nearly every monastery and

church of any pretensions possessed one of these, and numerous

specimens are still extant. Those of the second type were

written specially for the use of astrologers and physicians,
;uul the better specimens contained notes on various scien

tific subjects (especially medicine and astronomy); these were
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not then uncommon, but, since it was only rarely that they
found their way into any corporate library, specimens are

now rather scarce. It was the fashion to use the Arabic

symbols in ecclesiastical works
; while their occurrence in all

astronomical tables and their oriental origin (which savoured

of magic) secured their use in calendars intended for scientific

purposes. Thus the symbols were generally employed in both

kinds of almanacks, and there are few, if any, specimens of

calendars issued after the year 1300 in which an explanation

of their use is not included. Towards the middle of the four

teenth century the rules of arithmetic de algorismo were also

added, and by the year 1400 we may consider that the Arabic

symbols were generally known throughout Europe, and were

used in most scientific and astronomical works. Most merchants,

outside Italy, continued however to keep their accounts in

Roman numerals till about 1550, and monasteries and colleges

till about 1650; though in both cases it is probable that

in and after the fifteenth century the processes of arithmetic

were performed in the algoristic manner. No instance of a

date or number being written in Arabic numerals is known

to occur in any English parish register or the court rolls of

any English manor before the sixteenth century ;
but in the

rent roll of the St Andrews Chapter, Scotland, the Arabic

numerals are used in writing an entry for the year 1490. The

Arabic numerals were introduced into Constantinople by

Planudes at about the same time as into Italy (see above,

p. 119).

The history of mercantile arithmetic in Europe begins then

with its use by Italian merchants, and it is especially to the

Florentine traders and writers that we owe its early develop

ment and improvement. It was they who invented the system

of book-keeping by double entry. In this system every

transaction is entered on the credit side in one ledger, and

on the debtor side in another ; thus, if cloth be sold to A,

A s account is debited with the price, and the stock book con

taining the transactions in cloth is credited with the amount



IMPROVEMENTS INTRODUCED. 193

sold. It was they too who arranged the problems to which

arithmetic could be applied in different classes, such as rule of

three, interest, profit and loss, &c. They also reduced the

fundamental operations of arithmetic &quot; to seven, in reverence
&quot;

says Pacioli &quot;of the seven gifts of the Holy Spirit: namely,

numeration, addition, subtraction, multiplication, division,

raising to powers, and extraction of roots.&quot; Brahmagupta
had enumerated twenty processes besides eight subsidiary

ones, and had stated that &quot;a distinct and several knowledge
of these&quot; was &quot;essential to all who wished to be calculators&quot;;

and whatever may be thought of Pacioli s reason for the

alteration the consequent simplification of the elementary pro
cesses was satisfactory.

The operations of algoristic arithmetic were at first very
cumbersome. The chief improvements subsequently intro

duced into the early Italian algorism were (i) the simplification

of the four fundamental processes : (ii) the introduction of

signs for plus, minus, and equality; and (though not so im

portant) for multiplication and division : (iii)
the invention

of logarithms : and (iv) the use of decimals. I will consider

these in succession.

(i) In addition and subtraction the Arabs usually worked

from left to right. The modern plan of working from right

to left is shorter : it is said to have been introduced by an

Englishman named Garth, of whose life I can find no account.

The old plan continued in partial use till about 1600; even

now it would be more convenient in approximations where it

is necessary to keep only a certain number of places of decimals.

The Indians and Arabs had several systems of multipli

cation. These were all somewhat laborious, and were made
the more so as multiplication tables if not unknown were

at any rate used but rarely. The operation was regarded
as one of considerable difficulty, and the test of the accuracy
of the result by &quot;casting out the nines&quot; was invented by
the Arabs as a check on the correctness of the work. Various

other systems of multiplication were subsequently employed

B. 13
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in Italy, of which several examples are given by Pacioli

and Tartaglia; and the use of the multiplication table at

least as far as 5 x 5 became common. From this limited

table the resulting product of the multiplication of all

numbers up to 10 x 10 can be deduced by what was termed

the regula ignavi. This is a statement of the identity

(5 + a) (5 + b)
=

(5
-

a) (5
-

b) + 10 (a + b).
The rule was usually

enunciated in the following form. Let the number five be

represented by the open hand the number six by the hand

with one finger closed
;
the number seven by the hand with two

fingers closed
;
the number eight by the hand with three fingers

closed
y
and the number nine by the hand with four fingers

closed. To multiply one number by another let the multiplier

be represented by one hand, and the number multiplied by the

other, according to the above convention. Then the required
answer is the product of the number of fingers (counting the

thumb as a finger) open in the one hand by the number of

fingers open in the other together with ten times the total

number of fingers closed. The system of multiplication now
in use seems to have been first introduced at Florence.

The difficulty which all but professed mathematicians ex

perienced in the multiplication of large numbers led to the

invention of several mechanical ways of effecting the process.

Of these the most celebrated is that of Napier s rods invented

in 1617. In principle it is the same as a method which had

been long in use both in India and Persia, and which has

been described in the diaries of several travellers and notably

in the Travels of Svr John Chardin in Persia, London, 1686.

To use the method a number of rectangular slips of bone,

wood, metal, or cardboard are prepared, and each of them

divided by cross lines into nine little squares; a slip being

generally about three inches long and a third of an inch

across. In the top square one of the digits is engraved,

and the results of multiplying it by 2, 3, 4, 5, 6, 7, 8, and

9 are respectively entered in the eight lower squares : where

the result is a number of two digits, the ten-digit is written
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above and to the left of the unit-digit and separated from it

by a diagonal line. The slips are usually arranged in a box.

Figure i below represents nine such slips side by side : figure ii

Figure i. Figure ii.

s^Ti

2

Figure iii.

shews the seventh slip, which is supposed to be taken out

of the box and put by itself. Suppose we wish to multiply

2985 by 317. The process as effected by the use of these slips

is as follows. The slips headed 2, 9, 8, and 5 are taken

out of the box and put side by side as shewn in figure iii

above. The result of multiplying 2985 by 7 may be written

thus

2985
7

35
56

63
14

20895

Now if the reader will look at the seventh line in figure iii,

he will see that the upper and lower rows of figures are respec

tively 1653 and 4365
;
moreover these are arranged by the

132
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diagonals so that roughly the 4 is under the 6, the 3 under

the 5, and the 6 under the 3
;
thus

1653
4365.

The addition of these two numbers gives the required result.

Hence the result of multiplying by 7, 1, and 3 can be

successively determined in this way, and the required answer

(namely the product of 2985 and 713) is then obtained by
addition.

The whole process was written as follows.

2985

20895 / 7

2985 / 1

8955 /3
946245

The modification introduced by Napier in his Rabdologia,

published in 1617, consisted merely in replacing each slip by a

prism with square ends, which he called &quot; a
rod,&quot;

each lateral

face being divided and marked in the same way as one of the

slips above described. These rods not only economized space,

but were easier to handle, and were arranged in such a way as

to facilitate the operations required.

If multiplication was considered difficult, division was at

first regarded as a feat which could be performed only by
skilled mathematicians. The method commonly employed by
the Arabs and Persians for the division of one number by
another will be sufficiently illustrated by a concrete instance.

Suppose we require to divide 17978 by 472. A sheet of

paper is divided into as many vertical columns as there

are figures in the number to be divided. The number to

be divided is written at the top and the divisor at the bottom
;

the first digit of each number being placed at the left hand

side of the paper. Then, taking the left hand column, 4 will
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go into 1 no times, hence the first figure in the dividend is 0,

which is written under the last figure of the divisor. This is

represented in figure i. Next (see figure ii)
re-write the 472

Figure i. Figure ii. Figure iii.

immediately above its former position but shifted one place to

the right, and cancel the old figures. Then 4 will go into 17

four times
; but, as on trial it is found that 4 is too big for the

first digit of the dividend, 3 is selected
;
3 is therefore written

below the last digit of the divisor and next to the digit of the

dividend last found. The process of multiplying the divisor

by 3 and subtracting from the number to be divided is

indicated in figure ii, and shews that the remainder is 3818.

A similar process is then repeated, i.e. 472 is divided into

3818, shewing that the quotient is 38 and the remainder

42. This is represented in figure iii, which shews the whole

operation.

The method described above never found much favour

in Italy. The present system was in use there as early as the



198 THE DEVELOPMENT OF ARITHMETIC. 1300 1637.

beginning of the fourteenth century, but the method generally

employed was that known as the galley or scratch system.

The following example from Tartaglia, in which it is required

07
4 9

059Q
1 3 3 (15
844

8

to divide 1330 by 84, will serve to illustrate this method : the

arithmetic given by Tartaglia is shewn above, where numbers

in thin type are supposed to be scratched out in the course of

the work.

The process is as follows. First write the 84 beneath the

1330, as indicated below, then 84 will go into 133 once, hence

the first figure in the quotient is 1. Now 1 x8 = 8, which

subtracted from 13 leaves 5. Write this above the 13, and

cancel the 13 and the 8, and we have as the result of the

first step
5

1 330(1
84

Next, 1x4 = 4, which subtracted from 53 leaves 49. Insert

the 49, and cancel the 53 and the 4, and we have as the next

step
4
59

1330(1
8 4

which shews a remainder 490.

We have now to divide 490 by 84. Hence the next figure

in the quotient will be 5, and re-writing the divisor we have

4
59

1 3 3
( 15

844
8
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Then 5 x 8 = 40, and this subtracted from 49 leaves 9. Insert

the 9, and cancel the 49 and the 8, and we have the following

result

49
5 9

1 3 3
( 15

844
8

Next 5x4 = 20, and this subtracted from 90 leaves 70. Insert

the 70, and cancel the 90 and the 4, and the final result,

shewing a remainder 70, is

7
4 9

59Q
1 3 3

( 15
844

8

The three extra zeros inserted in Tartaglia s work are un

necessary, but they do not affect the result, as it is evident that

a figure in the dividend may be shifted one or more places up
in the same vertical column if it be convenient to do so.

The mediaeval writers were acquainted with the method

now in use, but considered the scratch method more simple.

In some cases the latter is very clumsy as may be illustrated

by the following example take from Pacioli. The object is

to divide 23400 by 100. The result is obtained thus

040
03400
2 3 4

( 234
10000

1 00
1

The galley method was used in India, and the Italians may
have derived it thence. In Italy it became obsolete some

where about 1600; but it continued in partial use for at least
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another century in other countries. I should add that Napier s

rods can be, and sometimes were, used to obtain the result of

dividing one number by another.

(ii)
The signs + and - to indicate addition and sub

traction occur in Widman s arithmetic published in 1489 (see

below, p. 210), but were first brought into general notice, at

any rate as symbols of operation, by Stifel in 1554 (see below,

p. 220). I believe I am correct in saying that Vieta in 1591

was the first well-known writer who used these signs consist

ently throughout his work, and it was not until the beginning
of the seventeenth century that they became recognized and

well-known symbols. The sign = to denote equality was in

troduced by Record in 1557 (see below, p. 218).

(iii)
The invention of logarithms*, without which many

of the numerical calculations which have constantly to be

made would be practically impossible, was due to Napier of

Merchistoun (see below, p. 239). The first public announce

ment of the discovery was made in his Mirifici Logarithmorum
Canonis Descriptio, published in 1614, and of which an English
translation was issued in the following year; but he had

privately communicated a summary of his results to Tycho
Brahe as early as 1594. In this work Napier explains the

nature of logarithms by a comparison between corresponding
terms of an arithmetical and geometrical progression. He
illustrates their use, and gives tables of the logarithms of the

sines and tangents of all angles in the first quadrant, for differ

ences of every minute, calculated to seven places of decimals.

His definition of the logarithm of a quantity n was what we

should now express by 107

loge (I0
7

/n). This work is the more

interesting to us as it is the first valuable contribution to the

progress of mathematics which was made by any British writer.

The method by which the logarithms were calculated was ex

plained in the Conslructioj a posthumous work issued in 1619 :

it seems to have been very laborious and depended either on

* See the article on Logarithms in the Encyclopedia Britannica,

ninth edition.
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direct involution and evolution or on the formation of geome
trical means. The method by finding the approximate value

of a convergent series was introdiH^d^by^Newtonj Cotes, and _

Euler^^Napier had determined to change the base to one ___

which was a power of 10, but died before he could effect it.

TEe rapid recognition throughout Europe of the advantages
of using logarithms in practical calculations was mainly due to

Briggs (see below, p. 240), who was one of the earliest to recognize

the value of Napier s invention. Briggs at once realized that

thji_J3ase to which Napier s logarithms were calculated&quot; was
^

very inconvenient,! he accordingly visited Napier in 1616,

and urged the change to a decimal base, which was recognized

by Napier as an improvement. On his return Briggs im-

mediately^setTp^work to calculate tables to a decimal base, and

in 1617 he brought out a table of logarrthnis ofThenumbers
from 1 to 1000 calculated to fourteen places of&quot;&quot; decimals.

He^uBsequently (in 1624) published tables of tlie^ogarithins

of additional numbers^a^d^oTvariQuijfigonometricar functions.

His logarithms of the natural numbers_are_equal tojbhose to

the base 10 when multiplied by 108

^a,nd^of the sines of angles

to those toTEe baseTO when multiplied by 10
12

. A table of the

logarithms, to seven places of decimals, of the sines and tangents
of angles in the first quadrant had been brought out in 1620

by Edmund Gunter, one of the Gresham lecturers, who was

the inventor of the words cosine and cotangent. The calculation

of the logarithms of 70,000 numbers which had been omitted

by Briggs from his tables of 1624 was performed by Adrian

Vlacq and published in 1628 : with this addition the table gave
the logarithms of all numbers from 1 to 101,000. The Aritk-

metica Logarithmica of Briggs and Vlacq are substantially
the same as the existing tables : parts have at different times

been recalculated, but no tables of an equal range and fulness

entirely founded on fresh computations have been published
since. These tables were supplemented by Briggs s Trigono-
metrica Britannica, which contains tables not only of the

logarithms of the trigonometrical functions, but also of their
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natural values: it was published posthumously in 1633. By
1630 tables of logarithms were in general use.

(iv) The introduction of the decimal notation for fractions

is also (in my opinion) due to Briggs. Stevinus had in 1585

used a somewhat similar notation, for he wrote a number

such as 25-379 either in the form 25, 3 7&quot; 9&quot;
,
or in the form

25379@; and Napier in 1617 in his essay on

rods had adopted the former notation. But these writers

had employed the notation only as a concise way of stating

results, and made no use of it as an operative form. The

same notation occurs however in the tables published by

Briggs in 1617, and would seem to have been adopted by
him in all his works; and, though it is difficult to speak
with absolute certainty, I have myself but little doubt that

he there employed the symbol as an operative form. In

Napier s posthumous Constructio published in 1619 it is

denned and used systematically as an operative form, and as

this work was written after consultation with Briggs, circ.

1615 6, and probably was revised by the latter before it was

issued, 1 think it confirms the view that the invention is due

to Briggs and was communicated by him to Napier. At any
rate it was not employed as an operative form by Napier in

1617, and, if Napier were then acquainted with it, it must be

supposed that he regarded its use as unsuitable in ordinary

arithmetic*. Before the sixteenth century fractions were

commonly written in the sexagesimal notation (ex. gr. see above

pp. 98, 102, 174).

In Napier s work of 1619 the point is written in the form

now adopted, but Briggs underlined the decimal figures, and

would have printed a number such as 25*379 in the form

25379. Subsequent writers added another line and would

have written it as 251379; nor was it till the beginning of the

eighteenth century that the notation now current was generally

employed.
* The claims of Napier to the invention are advocated by Dr Glaisher

in the Transactions of the British Association, 1873, pp. 1317.
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CHAPTER XII.

THE MATHEMATICS OF THE RENAISSANCE*.

14501637.

THE last chapter is a digression from the chronological

arrangement to which as far as possible I have throughout

adhered, but I trust by references in this chapter to keep the

order of events and discoveries clear. I return now to the

general history of mathematics in western Europe. Mathe

maticians had barely assimilated the knowledge obtained from

the Arabs, including their translations of Greek writers, when
the refugees who escaped from Constantinople after the fall of

the eastern empire brought the original works and the tradi

tions of Greek science into Italy. Thus by the middle of the

fifteenth century the chief results of Greek and Arabian

mathematics were accessible to European students.

The invention of printing about that time rendered the dis

semination of discoveries comparatively easy. It is almost a

truism to remark that until printing was introduced a writer

appealed to a very limited class of readers, but we are perhaps

apt to forget that when a mediaeval writer &quot;

published&quot; a

* For an account of the Italian mathematicians of this period for

win &amp;gt;m no special references are given, see Guil. Libri, Histoire des sciences

mathematiques en Itaiie, 4 vols., Paris, 1838 1841
; and for the German

and other mathematicians of the renaissance for whom no references are

given, see parts xn, xni, and xiv of Cantor s Vorlt tmnfien fiber GeschicJttc

&amp;lt;/(T Mathcmatik issued since the first edition of this work was published.
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work the results were known to only a few of his contem

poraries. This had not been the case in classical times for

then and until the fourth century of our era Alexandria was
the recognized centre for the reception and dissemination of

new works and discoveries. In mediaeval Europe on the

other hand there was no common centre through which men of

science could communicate with one another, and to this cause

the slow and fitful development of mediaeval mathematics may
be partly ascribed.

The introduction of printing marks the beginning of the

modern world in science as in politics; for it was contempo
raneous with the assimilation by the indigenous European
school (which was born from scholasticism, and whose history

was traced in chapter vm.) of the results of the Indian and ?

Arabian schools (whose history and influence were traced in

chapters ix. and x.) and of the Greek schools (whose history
was traced in chapters u. to v.).

The last two centuries of this period of our history, which

may be described as the renaissance, were distinguished by

great mental activity in all branches of learning. The creation

of a fresh group of universities (including those in Scotland)
of a somewhat less complex type than the mediaeval univer

sities above described testify to the general desire for know

ledge. The discovery of America in 1492 and the discussions

that preceded the Reformation flooded Europe with new ideas

which by the invention of printing were widely disseminated ;

but the advance in mathematics was at least as well marked

as that in literature and that in politics.

During the first part of this time the attention of mathe

maticians was to a large extent concentrated on syncopated

algebra and trigonometry : the treatment of these subjects is

discussed in the first
,
section of this chapter, but the relative

importance of the mathematicians of this period is not very

easy to determine. The middle years of the renaissance were

distinguished by the development of symbolic algebra: this is

treated in the second section of this chapter. The close of
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the sixteenth century saw the creation of the science of dyna
mics: this forms the subject of the first section of chapter

xin. About the same time and in the early years of the

seventeenth century considerable attention was paid to pure

geometry : this forms the subject of the second section of

chapter xin.

The development of syncopated algebra and trigonometry.

Regiomontanus*. Amongst the many distinguished writers

of this time Johann Regiomontanus was the earliest and one of

the most able. He was born at Konigsberg on June 6, 1436,

and died at Rome on July 6, 1476. His real name was

Johannes Muller, but, following the custom of that time, he

issued his publications under a Latin pseudonym which in his

case was taken from his birthplace. To his friends, his

neighbours, and his tradespeople he may have been Johannes

Miiller, but the literary and scientific world knew him as

Regiomontanus, just as they knew Zepernik as Copernicus,
and Schwarzerd as Melanchthon. It seems to me as pedantic
as it is confusing to refer to an author by his actual name
when he is universally recognized under another: I shall there

fore in all cases as fa,r as possible use that title only, whether

latinized or not, by which a writer is generally known.

Regiomontanus studied mathematics at the university of

Vienna, then one of the chief centres of mathematical studies

in Europe, under Purbach who was professor there. His
first work, done in conjunction with Purbach, consisted of an

analysis of the Almagest. In this the trigonometrical functions

sine and cosine were used and a table of natural sines was

* His life was written by P. Gassendi, The Hague, second edition

1655. His letters, which afford much valuable information on the

mathematics of his time, were collected and edited by C. G. von Murr,

Nuremberg, 1786. An account of his works will be found in Eegiomon-
tanux, ciii fieixthjer Vorlihifer den Copernicus, by A. Ziegler, Dresden,
1874 : see also Cantor, chap. LV.
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introduced. Purbach died before the book was finished : it

was finally published at Venice, but not till 1496. As soon as

this was completed Regiomontanus wrote a work on astrology,

which contains some astronomical tables and a table of natural

tangents: this was published in 1490.

Leaving Vienna in 1462, Regiomontanus travelled for

some time in Italy and Germany; and at last in 1471 settled

for a few years at Nuremberg where he established an obser

vatory, opened a printing-press^ and probably lectured. Three

tracts on astronomy by him were written here. A mechanical

eagle, which flapped its wings and saluted the Emperor
Maximilian I. on his entry into the city, bears witness to

his mechanical ingenuity and was reckoned among the marvels

of the age. Thence Regiomontanus moved to Rome on an

invitation from Sixtus IV. who wished him to reform the

calendar. He was assassinated, shortly after his arrival, at

the age of 40.

Regiomontanus was among the first to take advantage of

the recovery of the original texts of the Greek mathematical

works in order to make himself acquainted with the methods

of reasoning and results there used
;

the earliest notice in

modern Europe of the algebra of Diophantus is a remark of

his that he had seen a copy of it at the Vatican. He was

also well read in the works of the Arab mathematicians.

The fruit of this study was shewn in his De Triangulis

written in 1464. This is the earliest modern systematic

exposition of trigonometry, plane and spherical, though the

only trigonometrical functions introduced are those of the sine

and cosine. It is divided into five books. The first four are

given up to plane trigonometry, and in particular to determin

ing triangles from three given conditions. The fifth book is

devoted to spherical trigonometry. The work was printed in

five volumes at Nuremberg in 1533, nearly a century after the

death of Regiomontanus.
As an example of the mathematics of this time I quote one

of his propositions at length. It is required to determine a
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triangle when the difference of two sides, the perpendicular on

the base, and the difference between the segments into which

the base is thus divided are given (book ii., prop. 23). The

following is the solution given by Regiomontanus.

Sit talis triangulus ABG, cujus duo latera AB et AG differentia

habeant nota HG, ductaque perpendicular! AD duorum casuum BD et

DG, differentia sit EG: hae duae differentiae sint datae, et ipsa perpen-

dicularis AD data. Dico quod omnia latera trianguli nota concludentur.

Per artem rei et census hoc problema absolvemus. Detur ergo differentia

laterum ut 3, differentia casuum 12, et perpendicularis 10. Pono pro

basi unam rem, et pro aggregate laterum 4 res, nae proportio basis ad

B D E G

congeriem laterum est ut HG ad GE, scilicet unius ad 4. Erit ergo BD
4 rei minus 6, sed AB erit 2 res demptis f . Duco AB in se, producuntur
4 census et 2^ demptis 6 rebus. Item BD in se facit census et 36

minus 6 rebus : huic addo quadratum de 10 qui est 100. Colliguntur

census et 136 minus 6 rebus aequales videlicet 4 censibus et 2 demptis
6 rebus. Eestaurando itaque defectus et auferendo utrobique aequalia,

quemadmodum ars ipsa praecipit, habemus census aliquot aequales

numero, unde cognitio rei patebit, et inde tria latera trianguli more suo

innotescet.

To explain the language of the proof I should add that

Regiomontanus always calls the unknown quantity res, and

its square census or zensus
,
but though he uses these technical

terms he writes the words in full. He commences by saying
that he will solve the problem by means of a quadratic equa
tion (per artem rei et census); and that he will suppose the

difference of the sides of the triangle to be 3, the difference

of tlif segments of the base to be 12, and the altitude of the
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triangle to be 10. He then takes for his unknown quantity

(unam rem or x) the base of the triangle, and therefore the

sum of the sides will be x. Therefore ED will be equal to

!# 6 (| rei minus 6), and AB will be equal to 2x -f (2 res

demptis f); hence AB2

(AB in se) will be 4=x
2 + 2|-6# (4 census

et 2J demptis 6 rebus), and BD2
will be \x

2 + 36 - Qx. To BD 2

he adds AD2

(quadratum de 10) which is 100, and states that

the sum of the two is equal to AB2
. This he says will give

the value of x2

(census), whence a knowledge of x (cognitio rei)

can be obtained, and the triangle determined.

To express this in the language of modern algebra we have

but by the given numerical conditions

AG-AB=3=\ (DG - DB),

AG+AB= (DG + DB) = x.

Therefore AB=2x-^ and BD = x-.
Hence (2x

-
1)

2 - (x -
6)

2 + 1 00.

From which x can be found, and all the elements of the triangle

determined.

It is worth noticing that Regiomontanus merely aimed at

giving a general method, and the numbers are not chosen with

any special reference to the particular problem. Thus in his

diagram he does not attempt to make GE anything like four

times as long as GH, and, since x is ultimately found to be

equal to ^ V321, the point D really falls outside the base. The

order of the letters ABG, used to denote the triangle, is of

course derived from the Greek alphabet.

Some of the solutions which he gives are unnecessarily

complicated, but it must be remembered that algebra and

trigonometry were still only in the rhetorical stage of develop

ment, and when every, step of the argument is expressed in

words at full length it is by no means easy to realise all that

is contained in a formula.
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It will be observed from the above example that Regiomon-
tarius did not hesitate to apply algebra to the solution of geo
metrical problems. Another illustration of this is to be found

in his discussion of a question which appears in Brahmagupta s

Siddhanta. The problem was to construct a quadrilateral,

having its sides of given lengths, which should be inscribable

in a circle. The solution given by Regiomontanus was effected

by means of algebra and trigonometry: this was published by
0. G. von Murr at Nuremberg in 1786.

The Alyorithmus Demonstratus of Jordanus (see above, p.

176), which was first printed in 1534, was until recently uni

versally attributed to Regiomontanus. This work, which is

concerned with algebra and arithmetic, was known to Regio
montanus and it is possible that the text which has come down
to us contains additional matter contributed by him.

Regiomontanus was the most prominent mathematician of

his generation and I have dealt with his works in some detail

as typical of the most advanced mathematics of the time. Of
his contemporaries I shall do little more than mention the

names of a few of those who are best known; none were quite
of the first rank and I should sacrifice the proportion of the

parts of the subject were I to devote much space to them.

Purbach*. I may begin by mentioning Georg Furbach, first

the tutor and then the friend of Regiomontanus, born near

Linz on May 30, 1423 and died at Vienna on April 8, 1461,
who wrote a work on planetary motions which was published
in 1460; an arithmetic, published in 1511; a table of eclipses,

published in 1514; and a table of natural sines, published in

1541.

Cusa f. Next I may mention Nicolas von Cusa, who was

born in 1401 and died in 1464. Although the sou of a poor
fisherman and without influence, he rose rapidly in the church,

* His life was written by P. Gassendi, The Hague, second edition,

1655.

t His life was written by F. A. Scharpff, Tiibingen, 1871 ; and his

collected works, edited by H. Petri, were published at Bale in 1565.

B. 14
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and in spite of being &quot;a reformer before the reformation&quot;

became a cardinal. His mathematical writings deal with the

reform of the calendar and the quadrature of the circle. He

argued in favour of the diurnal rotation of the earth.

Chuquet. I may also here notice a small treatise on

arithmetic, known as Le Triparty*, by Nicolas Ghuquet, a

bachelor of medicine in the university of Paris, which was

written in 1484. This work indicates that the extent of mathe

matics then taught was somewhat greater than was generally

believed a few years ago. It contains the earliest known use

of the radical sign with indices to mark the root taken, 2 for a

square-root, 3 for a cube-root, and so on; and also a definite

statement of the rule of signs. The words plus and minus are

denoted by the contractions p, m. The work is in French.

Introduction f of signs + and -
. In England and Germany

algorists were less fettered by precedent and tradition than in

Italy, and introduced some improvements in notation which

were hardly likely to occur to an Italian. Of these the most

prominent were the introduction of the current symbols for ad

dition, subtraction, and equality.

The earliest instances of the use of the signs + and of

which we have any knowledge occur in the fifteenth century.

Johannes Widman of Eger, born about 1460, matriculated at

Leipzig in 1480, and probably by profession a physician, wrote

a Mercantile arithmetic, published at Leipzig in 1489: in this

book these signs are used, not however as symbols of opera

tion, but apparently merely as marks signifying excess or

deficiency ;
the corresponding use of the word surplus or over

plus (see Levit. xxv. 27, and 1 Maccab. x. 41) is still retained

in commerce. It is noticeable that the signs generally occur

* See an article by A. Marre in Boncornpagni s Bulletino di biblio-

grafia for 1880, vol. xm., pp. 555659.
t See articles by P. Treutlein (Die deutsche Coss) in the Abhandlungen

zur Geschichte der Mathematik for 1879 ; by De Morgan in the Cambridge

Philosophical Transactions, 1871, vol. XL, pp. 203212 ; and by Bon-

compagni in the Bulletino di bibliografia for 1876, vol. ix., pp. 188210.
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only in practical mercantile questions : hence it has been con

jectured that they were originally warehouse marks. Some
kinds of goods were sold in a sort of wooden chest called a

layel, which when full was apparently expected to weigh

roughly either three or four centners ;
if one of these cases

were a little lighter, say 5 Ibs., than four centners Widinan

describes it as 4c - 5 Ibs. : if it were 5 Ibs. heavier than the

normal weight it is described as 4c
|

5 Ibs. : and there are

some slight reasons for thinking that these marks were chalked

on to the chests as they came into the warehouses. The

symbols are used as if they would be familiar to his readers.

It will be observed that the vertical line in the symbol for

excess printed above is somewhat shorter than the horizontal

line. This is also the case with Stifel and most of the early

writers who used the symbol : some presses continued to print

it in this, its earliest form, till the end of the seventeenth

century. Xylander on the other hand in 1575 has the vertical

bar much longer than the horizontal line, and the symbol is

something like
-)-.

We infer that the more usual case was for

a chest to weigh a little less than its reputed weight, and, as

the sign
-
placed between two numbers was a common symbol

to signify some connection between them, that seems to have

been taken as the standard case, while the vertical bar was

originally a small mark superadded on the sign
- to distinguish

the two symbols.
I am far from saying that this account of the origin of our

symbols for plus and minus is established beyond doubt, but it

i^ the most plausible that has been yet advanced. Another

suggested derivation is that + is a contraction of *$ the initial

letter in Old German of plus, while is the limiting form of m
(for minus) when written rapidly. De Morgan

*
proposed yet

another derivation. The Hindoos sometimes used a dot to

indicate subtraction, and this dot might he thought have been

elongated into a bar, and thus give the sign for minus
;
while

*
See p. 19 of his Arithmetical Hooks, London, 1847.

142
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the origin of the sign for plus was derived from it by a super-

added bar as explained above : but I take it that at a later

time he abandoned this theory for what has been called the

warehouse explanation. Another conjecture, ingenious but

unsupported by any evidence, is that the symbol for plus is

derived from the Latin abbreviation & for et
;

while that

for minus is obtained from the bar which is often written over

the contracted form of a word to signify that certain letters

have been left out.

I should perhaps here add that till the close of the six

teenth century the sign + connecting two quantities like a and

b was also used in the sense that if a were taken as the answer

to some question one of the given conditions would be too little

by b. This was a relation which constantly occurred in solu

tions of questions by the rule of false assumption (see ex. gr.

above, p. 104).

Lastly I would repeat again that these signs in Widman are

only abbreviations and not symbols of operation ;
he attached

little or no importance to them, and no doubt would have

been amazed if he had been told that their introduction was

preparing the way for a revolution of the processes used in

algebra.

The Algorithmus of Jordanus was not published till 1534;
Widman s work was hardly known outside Germany ;

and it

is to Pacioli that we owe the introduction into general use

of syncopated algebra ;
that is, the use of abbreviations for

certain of the more common algebraical quantities and opera

tions, but where in using them the rules of syntax are observed.

Pacioli*. Lucas Pacioli, sometimes known as Lucas di

Burgo, and sometimes, but more rarely, as Lucas Paciolus, was

born at Burgo in Tuscany about the middle of the fifteenth

century. We know little of his life except that he was a

Franciscan friar; that he lectured on mathematics at Rome,

* See H. Staigmiiller in the Zeitschrift filr Mathematik, 1889, vol.

xxxiv.; also Libri, vol. in., pp. 133145; and Cantor, chap. LVII.
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Pisa, Venice, and Milan; and that at the last named city he

was the first occupant of a chair of mathematics founded by
Sforza : he died at Florence about the year 1510.

His chief work was printed at Venice in 1494 and is

termed Summa de arithmetica, geometria, proporzioni e pro-

porzionalita. It consists of two parts, the first dealing with

arithmetic and algebra, the second with geometry. This was

the earliest printed book on arithmetic and algebra. It is

mainly based on the writings of Leonardo of Pisa, and its

importance in the history of mathematics is largely due to its

wide circulation.

In the arithmetic Pacioli gives rules for the four simple

processes, and a method for extracting square roots. He deals

pretty fully with all questions connected with mercantile

arithmetic, in which he works out numerous examples, and in

particular discusses at great length bills of exchange and the

theory of book-keeping by double entry. This part was the

first systematic exposition of algoristic arithmetic and has been

already alluded to in chapter xi. It and the similar work by

Tartaglia are the two standard authorities on the subject.

Most of the problems are solved by the method of false assump
tion (see above, p. 104), but there are several numerical mis

takes.

The following example will serve as an illustration of the

kind of arithmetical problems discussed.

I buy for 1440 ducats at Venice 2400 sugar loaves, whose nett weight
is 7200 lire

;
I pay as a fee to the agent 2 per cent.

;
to the weighers and

porters on the whole, 2 ducats
;

I afterwards spend in boxes, cords,

canvas, and in fees to the ordinary packers in the whole, 8 ducats ; for

the tax or octroi duty on the first amount, 1 ducat per cent. ; afterwards

for duty and tax at the office of exports, 3 ducats per cent. ;
for writing

directions on the boxes and booking their passage, 1 ducat
;

for the bark

to Rimini, 13 ducats
;

in compliments to the captains and in drink for

the crews of armed barks on several occasions, 2 ducats
;

in expenses for

provisions for myself and servant for one month, 6 ducats ; for. expenses
for several short journeys over land here and there, for barbers, for

washing of linen, and of boots for myself and servant, 1 ducat
; upon my

arrival at Rimini I pay to the captain of the port for port dues in the
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money of that city, 3 lire
;

for porters, disembarkation on land, and

carriage to the magazine, 5 lire
;

as a tax upon entrance, 4 soldi a load

which are in number 32 (such being the custom) ;
for a booth at the fair,

4 soldi per load
;

I further find that the measures used at the fair are

different to those used at Venice, and that 140 lire of weight are there

equivalent to 100 at Venice, and that 4 lire of their silver coinage are

equal to a ducat of gold. I ask therefore, at how much I must sell a

hundred lire Eimini in order that I may gain 10 per cent, upon my
whole adventure, and what is the sum which I must receive in Venetian

money?

In the algebra lie finds expressions for the sum of the

squares and the sum of the cubes of the first n natural numbers.

The larger part of this part of the book is taken up with simple
and quadratic equations, and problems on numbers which lead to

such equations. He mentions the Arabic classification of cubic

equations, but adds that their solution appears to be as im

possible as the quadrature of the circle. The following is the

rule he gives (edition of 1494, p. 145) for solving a quadratic

equation of the form x2 + x = a : it is rhetorical and not synco

pated, and will serve to illustrate the inconvenience of that

method.

&quot;Si res et census numero coaequantur, a rebus

dimidio sumpto censum prod ucere debes,

addereque numero, cujus a radice totiens

tolle semis rerum, census latusque redibit.&quot;

He confines his attention to the positive roots of equations.

Though much of the matter described above is taken from

Leonardo s Liber Abaci, yet the notation in which it is expressed

is superior to that of Leonardo. Pacioli follows the Arabs in

calling the unknown quantity the thing, in Italian cosa hence

algebra was sometimes known as the cossic art or in Latin

res, and sometimes denotes it by co or R or Rj. He calls

the square of it census or zensus and sometimes denotes it

by ce or Z
; similarly the cube of it, or cuba, is sometimes

represented by cu or C j
the fourth power, or censo di censo,

is written either at length or as ce di ce or as ce ce. It
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may be noticed that all his equations are numerical so that

he did not rise to the conception of representing known quan

tities by letters as Jordanus had done and as is the case in

modern algebra : but M. Libri gives two instances in which in

a proportion he represents a number by a letter. He indicates

addition and equality by the initial letters of the words plus

and aequalis, but he generally evades the introduction of a

symbol for minus by writing his quantities on that side of the

equation which makes them positive, though in a few places

he denotes it by m for minus or by de for demptus. This is a

commencement of syncopated algebra.

There is nothing striking in the results he arrives at in

the second or geometrical part of the work
;
nor in two other

tracts on geometry which he wrote and which were printed

at Venice in 1508 and 1509. It may be noticed however

that like Regiornontanus he applied algebra to aid him in

investigating the geometrical properties of figures.

The following problem will illustrate the kind of geome
trical questions he attacked. The radius of the inscribed circle

of a triangle is 4 inches, and the segments into which one side

is divided by the point of contact are 6 inches and 8 inches

respectively. Determine the other sides. To solve this it is

sufficient to remark that rs = A =
Js. (s a) (s b) (s c)

which

gives 4s = Js x
(s
-

14) x 6 x 8, hence s - 21
;

therefore the

required sides are 21-6 and 21 -8, that is, 15 and 13. But

Pacioli makes no use of these formulae (with which he was

acquainted) but gives an elaborate geometrical construction

and then uses algebra to find the lengths of various segments
of the lines he wants. The work is too long for me to

reproduce here, but the following analysis of it will afford

sufficient materials for its reproduction. Let ABC be the

triangle, J9, E, F the points of contact of the sides, and

the centre of the given circle. Let H be the point of inter

section of OB and DF, and K that of OC and DE. Let L
and M be the feet of the perpendiculars drawn from E and

F on BC. Draw EP parallel to AB and cutting BC in P.
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Then Pacioli determines in succession the magnitudes of the

following lines :

(i) OB, (ii) 0(7, (iii) FD, (iv) FH, (v) ED,
(vi) EK. He then forms a quadratic equation from the

solution of which he obtains the values of MB and MD.
Similarly he finds the values of LG and LD. He now finds

in succession the values of EL, FM, EP and LP
;
and then

by similar triangles obtains the value of AB which is 13.

This proof was, even sixty years later, quoted by Cardan as

&quot;incomparably simple and excellent, and the very crown of

mathematics.&quot; I cite it as an illustration of the involved and

inelegant methods then current. The problems enunciated are

very similar to those in the De Triangulis of Regiomontanus.
Leonardo da Vinci. The fame of Leonardo da Vinci as an

artist has overshadowed his claim to consideration as a mathe

matician, but he may be said to have prepared the way for

a more accurate conception of mechanics and physics, while

his reputation and influence drew some attention to the sub

ject ;
he was an intimate friend of Pacioli. Leonardo was

the illegitimate son of a lawyer of Vinci in Tuscany, was born

in 1452, and died in France in 1519 while on a visit to

Francis I. Several manuscripts by him were seized by the

French revolutionary armies at the end of the last century,

and &quot;Venturi, at the request of the Institute, reported on those

concerned with physical or mathematical subjects*.

Leaving out of account Leonardo s numerous and important
artistic works, his mathematical writings are concerned chiefly

with mechanics, hydraulics, and optics his conclusions being

usually based on experiments. His treatment of hydraulics

and optics involves but little mathematics. The mechanics

contain numerous and serious errors
;

the best portions are

those dealing with the equilibrium of a lever under any forces,

the laws of friction, the stability of a body as affected by the

position of its centre of gravity, the strength of beams, and

* Essai sur les ouvrages physico-mathdmatiques de Leonard de Vinci, by

J.-B. Venturi, Paris, 1797. See also the memoir by Fr. Woepcke, Rome,

1856.
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the orbit of a particle under a central force
;
he also treated a

few easy problems by virtual moments. A knowledge of the

triangle of forces is occasionally attributed to him, but I think

it is most probable that his views on the subject were some
what indefinite. Generally one may say that all his mathe
matical work is unfinished and consists largely of suggestions
which he had not the patience to verify or discuss in detail.

Diirer. Albrecht Diirer* was another artist of the same

time who was also known as a mathematician. He was born

at Nuremberg on May 21, 1471, and died there on April 6,

1528. His chief mathematical work was issued in 1525 and

contains a discussion of perspective, some geometry, and cer

tain graphical solutions : Latin translations of it were issued

in 1532, 1555, and 1605.

Copernicus. An account of Nicolaus Copernicus, born at

Thorn on Feb. 19, 1473 and died at Frauenberg on May 7,

1543, and his conjecture that the earth and planets all re

volved round the sun belong to astronomy rather than to

mathematics. I may however add that Copernicus wrote a

short text-book on trigonometry, published at Wittenberg in

1542, which is clear though it contains nothing new. It is

evident from this and his astronomy that he was well read in

the literature of mathematics, and was himself a mathematician

of considerable power. I describe his statement as to the

motion of the earth as a conjecture because he advocated it

only on the ground that it gave a simple explanation of natural

phenomena. Galileo in 1632 was the first to try to supply

anything like a proof of this hypothesis.

By the beginning of the sixteenth century the printing

press began to be active and many of the works of the earlier

mathematicians became now for the first time accessible to all

students. This stimulated inquiry, and before the middle of

the century numerous works were issued which, though they
did not include any great discoveries, introduced a variety

* See Diirer ah Mathematiker by H. Staigmiiller, Stuttgart, 1891.
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of small improvements all tending to make algebra more

analytical.

Record. The sign now used to denote equality was in

troduced by Robert Record*. Record was born at Tenby in

Pembrokeshire about 1510 and died at London in 1558. He
entered at Oxford, and obtained a fellowship at All Souls

College in 1531
;
thence he migrated to Cambridge, where he

took a degree in medicine in 1545. He then returned to

Oxford and lectured there, but finally settled in London and

became physician to Edward VI. and to Mary. His prosperity

must have been short-lived, for at the time of his death he

was confined in the King s Bench prison for debt.

In 1540 he published an arithmetic, termed the Grounde of

Artes, in which he employed the signs + for plus and - for

minus
;

&quot; + whyche betokeneth too muche, as this line
,

plaine without a crosse line, betokeneth too
little&quot;;

and

there are faint traces of his having used these signs as symbols
of operation and not as mere abbreviations. In this book the

equality of two ratios is indicated by two equal and parallel

lines whose opposite ends are joined diagonally, ex. gr. by ~z_ .

A few years later, in 1557, he wrote an algebra under the title

of the Whetstone of Witte. This is interesting as it contains

the earliest introduction of the sign = for equality, and he

says he selected that particular symbol because than two

parallel straight lines u noe 2 thynges can be moare equalle.&quot;

M. Charles Henry has however pointed out that this sign is a

not uncommon abbreviation for the word est in mediaeval

manuscripts ;
and this would seem to indicate a more probable

origin. In this work Record shewed how the square root of an

algebraical expression could be extracted.

He also wrote an astronomy. These works give a clear

view of the knowledge of the time.

Rudolff. Riese. About the same time in Germany,

Rudolff and Riese took up the subjects of algebra and

* See pp. 1519 of my History of the Study of Mathematics at

Cambridge, Cambridge, 1889.
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arithmetic. Their investigations form the basis of Stifel s well

known work. Christoff Rudolff* published his algebra in

1525
;

it is entitled Die Coss, and is founded on the writings

of Pacioli and perhaps of Jordanus. Rudolff introduced the

sign of ,J for the square root, the symbol being a corruption of

the initial letter of the word radix, similarly ,J *JJ denoted

the cube root, and JJ the fourth root. Adam Riese^ was born

near Bamberg, Bavaria, in 1489 of humble parentage, and after

working for some years as a miner set up a school; he died

at Annaberg on March 30, 1559. He wrote a treatise on

practical geometry, but his most important book was his well

known arithmetic (which may be described as algebraical)

issued in 1536 and founded on Pacioli s work. Riese used the

symbols + and .

Stifel + The methods used by Rudolff and Riese and their

results were brought into general notice through Stifel s work

which had a wide circulation in Germany. Michael Stifel,

sometimes known by the Latin name of Stiffelius, was born at

Esslingen in 1486 and died at Jena on April 19, 1567. He
was originally an Augustine monk, but he accepted the

doctrines of Luther of whom he was a personal friend. He
tells us in his algebra that his conversion was finally deter

mined by noticing that the pope Leo X. was the beast men
tioned in the Revelation. To shew this it was only necessary
to add up the numbers represented by the letters in Leo

decimus (the in had to be rejected since it clearly stood for

mysterUwn) and the result amounts to exactly ten less than 666,
thus distinctly implying that it was Leo the tenth. Luther

accepted his conversion, but frankly told him he had better

clear his mind of any nonsense about the number of the beast.

Unluckily for himself Stifel did not act on this advice. Be-

* See Wappler, Gi-xchii-Jiti tier dcutxcJifn Myebni it xv Jahrlutmlerte,

Zwickau, 1887.

t See two works by B. Berlot, Ueber Adum / /&amp;gt;.&amp;lt;*

, Annaberg, 1855;
mil /&amp;gt;/

. COM i;m .1 1,1/n Ilicsc, Annaberg, lsro.

: The authorities on Stifd an- given by Cantor, chap. LXII.
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lieving that he had discovered the true way of interpreting the

biblical prophecies, he announced that the world would come to

an end on Oct. 3rd, 1533. The peasants of Holzdorf, of which

place he was pastor, knowing of his scientific reputation ac

cepted his assurance on this point. Some gave themselves up to

religious exercises, others wasted their goods in dissipation, but

all abandoned their work. When the day foretold had passed,

many of the peasants found themselves ruined : furious at

having been deceived, they seized the unfortunate prophet, and

he was lucky in finding a refuge in the prison at Wittenberg,
from which he was after some time released by the personal

intercession of Luther.

Stifel wrote a small treatise on algebra, but his chief mathe

matical work is his Arithmetica Integra published at Nuremberg
in 1544, with a preface by Melanchthon.

The first two books of the Arithmetica Integra deal with

surds and incommensurables, and are Euclidean in form. The

third book is on algebra, and is noticeable for having called

general attention to the German practice of using the signs

+ and to denote addition and subtraction. There are faint

traces of these signs being occasionally employed by Stifel

as symbols of operation and not only as abbreviations; this

application of them was apparently new. He not only employed
the usual abbreviations for the Italian words which represent

the unknown quantity and its powers, but in at least one case-

when there were several unknown quantities he represented

them respectively by the letters A, B, C, &c.
;

thus re-intro

ducing the general algebraic notation which had fallen into

disuse since the time of Jordanus. It used to be said that

Stifel was the real inventor of logarithms, but it is now certain

that this opinion was due to a misapprehension of a passage

in which he compares geometrical and arithmetical progressions.

Tartaglia. Piccolo Montana, generally known as Nicholas

Tartaglia, that is, Nicholas the stammerer, was born at Brescia

in 1500 and died at Venice on December 14, 1557. After the

capture of the town by the French in 1512 most of the inhabit-
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ants took refuge in the cathedral, and were there massacred

by the soldiers. His father, who was a postal messenger at

Brescia, was amongst the killed. The boy himself had his skull

split through in three places, while both his jaws and his palate

were cut open ;
he was left for dead, but his mother got into

the cathedral, and finding him still alive managed to carry him

off. Deprived of all resources she recollected that dogs when

wounded always licked the injured place, and to that remedy
he attributed his ultimate recovery, but the injury to his palate

produced an impediment in his speech from which he received

his nickname. His mother managed to get sufficient money to

pay for his attendance at school for fifteen days, and he took

advantage of it to steal a copy-book from which he sub

sequently taught himself how to read and write
;
but so poor

were they that he tells us he could not afford to buy paper, and

was obliged to make use of the tombstones as slates on which

to work his exercises.

He commenced his public life by lecturing at Yerona, but

he was appointed at some time before 1535 to a chair of mathe

matics at Venice where he was living when he became famous

through his acceptance of a challenge from a certain Antonio

del Fieri (or Florida). Fiori had learnt from his master, one

Scipione Ferreo (who died at Bologna in 1526), an empirical
solution of a cubic equation of the form x3 + qx = r. This solu

tion was previously unknown in Europe, and it is probable that

Ferreo had found the result in an Arab work. Tartaglia, in

answer to a request from Colla in 1530, stated that he could

effect the solution of a numerical equation of the form x3

+px*=r.
Fiori believing that Tartaglia was an impostor challenged him
to a contest. According to this challenge each of them was to

deposit a certain stake with a notary, and whoever could solve

the most problems out of a collection of thirty propounded by
the other was to get the stakes, thirty days being allowed for

the solution of the questions proposed. Tartaglia was aware

that his adversary was acquainted with the solution of a cubic

equation of some particular form, and suspecting that the



22 J THE MATHEMATICS OF THE RENAISSANCE.

questions proposed to him would all depend on the solution of

such cubic equations set himself the problem to find a general

solution, and certainly discovered how to obtain a solution of

some if not all cubic equations. His solution is believed to

have depended on a geometrical construction (see below, p. iJ-S),

but led to the formula which is often, but unjustly, described

as Cardan s,

When the contest took place all the questions proposed
to Tartaglia were as he had suspected reducible to the solution

of a cubic equation, and he succeeded within two hours in

bringing them to particular cases of the equation xa + qx /, of

which he knew the solution. His opponent failed to solve

any of the problems proposed to him, which as a matter of

fact were all reducible to numerical equations of the form

.r
;{

-f pjc
2

r. Tartaglia was therefore the conqueror; he sub

sequently composed some verses commemorative of his victory.

The chief works of Tartaglia are as follows,
(i)

His AVow

9Ct6ttft, published in 15;&amp;gt;7 : in this he investigated the fall of

bodies under gravity ;
and he determined the range of a pro

jectile, stating that it was a maximum when the angle of

projection was 45, but this seems to have been a lucky

guess, (ii)
An arithmetic published in two parts in ir&amp;gt;.&quot;&amp;gt;i&amp;gt;.

(iii)
A treatise on numbers, published in four parts in Ku &amp;gt;0,

and sometimes treated as a continuation of the arithmetic :

in this he shewed how the coefficients of a; in expansion of

(1-f.r)&quot;
could be calculated from those in the expansion of

(1 + x)*~
l

for the cases when n is equal to 2, 3, 4, 5, or 6. It

is possible that he also wrote a treatise on algebra and the

solution of cubic equations, but if so no copy is now extant.

The other works were collected into a single edition and

re-published at Venice in 1GOG.

^ The treatise on arithmetic and numbers is one of the chief

authorities for our knowledge of the early Italian algorism. It

is verbose, but gives a clear account of the different arith

metical methods then in use, and has numerous historical

notes which, as far as we can judge, are reliable, and are the
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authorities for many of the statements in the last chapter.

It contains an immense number of questions on every kind

of problem which would be likely to occur in mercantile

arithmetic, and there are several attempts to frame algebraical

formulae suitable for particular problems.

These problems give incidentally a good deal of information

as to the ordinary life and commercial customs of the time.

Thus we find that the interest demanded on first class security

in Venice ranged from 5 to 12 per cent, a year; while the

interest on commercial transactions ranged from 20 per cent.

a year upwards. Tartaglia illustrates the evil effects of the

law forbidding usury by the manner in which it was evaded

in farming. Farmers who were in debt were forced by their

creditors to sell all their crops immediately after the harvest;

the market being thus glutted, the price obtained was very low,

and the money lenders purchased the corn in open market at

an extremely cheap rate. The farmers then had to borrow

their seed-corn on condition that they replaced an equal

quantity, or paid the then price of it, in the month of May,
when corn was dearest. Again, Tartaglia, who had been asked

by the magistrates at Verona to frame for them a sliding scale

by which the price of bread would be fixed by that of com,
enters into a discussion on the principles which it was then

supposed should regulate it. In another place he gives (lie

rules at that time current for preparing medicines.

Pacioli had given in his arithmetic some problems of an

amusing character, and Tartaglia imitated him by inserting a

large collection of mathematical pu/zles. He half apologi/es
for introducing them by saving that it was not uncommon at

dessert to propose; arithmetical questions to the company by

way of amusement, and he therefore adds some suitable

problems. I To gives several questions on how to guess a

number thought of by one of (.he company, or the relationships
caused by the marriage Of relatives, or diiliculties arising from

inconsistent bequests. Other pn/xles are such as t he following.
&quot;There are three men, young, handsome, ami gullant, who have
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three beautiful ladies for wives: all are jealous, as well the

husbands of the wives as the wives of the husbands. They
find on the bank of a river, over which they have to pass,

a small boat which can hold no more than two persons.

How can they pass so as to give rise to no
jealousy?&quot;

&quot;A ship, carrying as passengers fifteen Turks and fifteen

Christians, encounters a storm; and the pilot declares that in

order to save the ship and crew one-half of the passengers
must be thrown into the sea. To choose the victims, the

passengers are placed in a circle, and it is agreed that every
ninth man shall be cast overboard, reckoning from a certain

point. In what manner must they be arranged, so that the

lot may fall exclusively upon the Turks ?&quot; &quot;Three men robbed

a gentleman of a vase containing 24 ounces of balsam. Whilst

running away they met in a wood with a glass-seller of whom
in a great hurry they purchased three vessels. On reaching a

place of safety they wish to divide the booty, but they find

that their vessels contain 5, 11, and 13 ounces respectively.

How can they divide the balsam into equal portions]&quot;

These problems some of which are of oriental origin

form the basis of the collections of mathematical recreations

by Bachet de Meziriac, Ozanam, and Montucla.*

Cardanf. The life of Tartaglia was embittered by a quarrel

with his contemporary Cardan who, having under a pledge of

* Solutions of these and other similar problems are given in my
Mathematical Recreations and Problems, chaps, i., n. On Bachet, see

below, p. 306. Jacques Ozanam, born at Bouligneux in 1640 and died in

1717, left numerous works of which the only one worth mentioning is his

Recreations matJiematiques et physiques, 2 vols., Paris, 1696. Jean Etienne

Montucla, born at Lyons in 1725 and died in Paris in 1799, edited and

revised Ozanarn s mathematical recreations. His history of attempts to

square the circle, 1754, and history of mathematics to the end of the

seventeenth century in 2 volumes, 1758, are interesting and valuable works:

the second edition of the latter in 4 volumes, 1799, (the fourth volume

is by Lalande) forms the basis of most subsequent works on the subject.

t There is an admirable account of his life in the Nouvelle biographic

generate, by V. Sardou. Cardan left an autobiography of which an

analysis by H. Morley was published in two volumes in London in 1854.
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secrecy obtained Tartaglia s solution of a cubic equation,

published it. Girolamo Cardan was born at Pavia on Sept. 24,

1501, and died at Rome on Sept. 21, 1576. His career is an

account of the most extraordinary and inconsistent acts. A
gambler, if not a murderer, he was also the ardent student

of science, solving problems which had long baffled all investi

gation; at one time of his life he was devoted to intrigues

which were a scandal even in the sixteenth century, at another

he did nothing but rave on astrology, and yet at another he

declared that philosophy was the only subject worthy of man s

attention. His was the genius that was closely allied to

madness.

He was the illegitimate son of a lawyer of Milan, and was

educated at the universities of Pavia and Padua. After taking
his degree he commenced life as a doctor, and practised his

profession at Sacco and Milan from 1524 to 1550; it uas

during this period that he studied mathematics and
publi&amp;gt;hr&amp;lt;]

his chief works. After spending a year or so in France,

Scotland, and England, be returned to Milan as professor of

science, and shortly afterwards was elected to a chair at Pavia.

Here he divided his time between debauchery, astrology, and

mechanics. His two sons were as wicked and passionate as him

self : the elder was in 1560 executed for poisoning his wife, and

about the same time Cardan in a fit of rage cut off the ears of

the younger who had committed some offence; for this scan

dalous outrage he suffered no punishment as the pope Gregory
XIII. took him under his protection. In 1562 Cardan moved

to Bologna, but the scandals connected with his name were so

great that the university took steps to prevent his lecturing,

and only gave way under pressure from Rome. In 1570 he

was imprisoned for heresy on account of his having published

the horoscope of Christ, and when released he found himself so

All Cardan s printed works were collected by Sponius, and published in

10 volumes, Lyons, H .ti.&quot;. ; tlic works on arithmetic and geometry are

contained in the fourth volume. It is said that there are in the Vatican

numerous manuscript note-books of his which have not been yet edited.

B. 15
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generally detested that he determined to resign his chair. At

any rate he left Bologna in 1571, and shortly afterwards

moved to Rome. Cardan was the most distinguished astrologer
of his time, and when he settled at Rome he received a pension
in order to secure his services as astrologer to the papal court.

This proved fatal to him for, having foretold that he should

die on a particular day, he felt obliged to commit suicide in

order to keep up his reputation so at least the story runs.

The chief mathematical work of Cardan is the Ars Magna
published at Nuremberg in 1545. Cardan was much interested

in the contest between Tartaglia and Fiori, and as he had

already begun writing this book he asked Tartaglia to com

municate his method of solving a cubic equation. Tartaglia

refused, whereupon Cardan abused him in the most violent terms,

but shortly afterwards wrote saying that a certain Italian

nobleman had heard of Tartaglia s fame and was most anxious

to meet him, and begged him to come to Milan at once.

Tartaglia came, and though he found no nobleman awaiting
him at the end of his journey, he yielded to Cardan s impor

tunity and gave him the rule he wanted, Cardan on his side

taking a solemn oath that he would never reveal it, and would

not even commit it to writing in such a way that after his

death any one could understand it. The rule is given in

some doggerel verses which are still extant. Cardan asserts

that he was given merely the result, and that he obtained the

proof himself, but this is doubtful. He seems to have at once

taught the method, and one of his pupils Ferrari reduced the

equation of the fourth degree to a cubic and so solved it.

When the Ars Magna was published in 1545 the breach of

faith was made manifest. Tartaglia was not unnaturally very

angry, and after an acrimonious controversy he sent a challenge

to Cardan to take part in a mathematical duel. The pre
liminaries were settled, and the place of meeting was to be a

certain church in Milan, but when the day arrived Cardan

failed to appear, and sent Ferrari in his stead. Both sides

claimed the victory, though I gather that Tarfcaglia was the
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more successful ;
at any rate his opponents broke up the

meeting, and he was fortunate in escaping with his life. Not

only did Cardan succeed in his fraud, but modern writers

generally attribute the solution to him, so that Tartaglia has

not even that posthumous reputation which is at least his

due.

The Ars Magna is a great advance on any algebra pre

viously published. Hitherto algebraists had confined their

attention to those roots of equations which were positive.

Cardan discussed negative and even imaginary roots, and

proved that the latter would always occur in pairs, though he

declined to commit himself to any explanation as to the

meaning of these
&quot;sophistic&quot; quantities which he said were

ingenious though useless. Most of his analysis of cubic equa
tions seems to have been original ;

he shewed that if the three

roots were real, Tartaglia s solution gave them in a form

which involved imaginary quantities. Except for the somewhat
similar researches of Bombelli a few years later (see below,

p. 231), the theory of imaginary quantities received little

further attention from mathematicians until Euler took the

matter up after the lapse of nearly two centuries. Gauss first

put the subject on a systematic and scientific basis, introduced

the notation of complex variables, and used the symbol i to

denote the square root of 1 : the modern theory is chiefly

based on his researches.

Cardan found the relations connecting the roots with the

coefficients of an equation. He was also aware of the principle
that underlies Descartes s

&quot; rule of signs/ but as he followed

the then general custom of writing his equations as the

equality of two expressions in each of which all the terms were

positive he was unable to express the rule concisely. He

gave a method of approximating to the root of a numerical

equation, founded on the tact that, if a function have opposite

signs when two numbers are substituted iu it, the equation
obtained by equating the function to zero will have a root

between these t\VO lUllllUerS.
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Cardan s solution of a quadratic equation is geometrical
and substantially the same as that given by Alkarismi (see

above, p. 163). His solution of a cubic equation is also geo

metrical, and may be illustrated by the following case which

he gives in chapter xi. To solve the equation x3 + 6x= 20 (or

any equation of the form x3 + qx = r), take two cubes such that

the rectangle under their respective edges is 2 (or q) and the

difference of their volumes is 20 (or r).
Then x will be equal

to the difference between the edges of the cubes. To verify

this he first gives a geometrical lemma to shew that, if from a

line AC a portion CB be cut off, then the cube on AB will be

less than the difference between the cubes on AC and BC by
three times the right parallelopiped whose edges are respec

tively equal to AC, BC, and AB this statement is equivalent
to the algebraical identity (a b)

3 = a3
b
3

3ab (a
-

b) and

the fact that x satisfies the equation is then obvious. To obtain

the lengths of the edges of the two cubes he has only to solve

a quadratic equation for which the geometrical solution pre

viously given sufficed.

Like all previous mathematicians he gives separate proofs
of his rule for the different forms of equations which can fall

under it. Thus he proves the rule independently for equa
tions of the form x3

+ px = q, x3 = px + q, x3 + px + q = 0, and

x3 + q=px. It will be noticed that with geometrical proofs

this was almost a necessity, but he did not suspect that the

resulting formulae were general. The equations he considers

are numerical, but in some of his analysis he uses literal

coefficients.

Shortly after Cardan came a number of mathematicians who
did good work in developing the subject, but who are hardly
of sufficient importance to require detailed mention here. Of

these the most celebrated are perhaps Ferrari and E/heticus.

Ferrari. Ludovico Ferraro usually known as Ferrari,

whose name I have already mentioned in connection with the

solution of a biquadratic equation, was born at Bologna on

Feb. 2, 1522 and died on Oct. 5, 1565. His parents were poor
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and he was taken into Cardan s service as an errand boy, but

was allowed to attend his master s lectures, and subsequently

became his most celebrated pupil. He is described as &quot; a neat

rosy little fellow, with a bland voice, a cheerful face, and an

agreeable short nose, fond of pleasure, of great natural powers
&quot;

but &quot; with the temper of a fiend.&quot; His manners and numerous

accomplishments procured him a place in the service of the

cardinal Ferrando Gonzaga, where he managed to make a for

tune. His dissipations told on his health, and he retired in

1565 to Bologna where he began to lecture on mathematics.

He was poisoned the same year either by his sister, who seems

to have been the only person for whom he had any affection,

or by her paramour. Such work as he produced is incorporated
in Cardan s Ars Magna or Bombelli s Algebra, but nothing can

be definitely assigned to him except the solution of a biquad
ratic equation. Colla had proposed the solution of the equation
x4 + Qx2 + 36 = 60# as a challenge to mathematicians : this par
ticular equation had probably been found in some Arabic work.

Nothing is known about the history of this problem except
that Ferrari succeeded where Tartaglia and Cardan had failed.

Rheticus. Georg Joachim Rheticus, born at Feklkirch on

Feb. 15, 1514 and died at Kaschau on Dec. 4, 1576, was

professor at Wittenberg, and subsequently studied under

Copernicus whose works were produced under the direction of

Rheticus. Rheticus constructed various trigonometrical tables

some of which were published by his pupil Otho in 1596.

These were subsequently completed and extended by Yieta

and Pitiscus, and are the basis of those still in use. Rheticus

also found the values of sin 20 and sin 30 in terms of sin

and cos 0.

I add here the names of some other celebrated mathema
ticians of about the same time, though their works are now
of little value to any save antiquarians. Franciscus Mauro-

lycus, born at Messina of Greek parents in 1494 and died in

1575, translated numerous Latin and Greek mathematical

works, and discussed the conies regarded as sections of a cone :
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his works were published at Venice in 1575. Jean Borrel,

born in 1492 and died at Grenoble in 1572, wrote an algebra,

founded on that of Stifel
;
and a history of the quadrature of

the circle : his works were published at Lyons in 1559.

Wilhelm Xylander, born at Augsburg on Dec. 26, 1532 and

died on Feb. 10, 1576 at Heidelberg, where since 1558 he

had been professor, brought out an edition of the works of

Psellus in 1556; an edition of Euclid s Elements in 1562; an

edition of the Arithmetic of Diophantus in 1575; and some

minor works which were collected and published in 1577.

Federigo Commandino, born at Urbino in 1509 and died there

on Sept. 3, 1575, published a translation of the works of

Archimedes in 1558
;
selections from Apollonius, and Pappus

in 1566
;
Euclid s Elements in 1572

;
and selections from Ari-

starchus, Ptolemy, Hero, and Pappus in 1574 : all being

accompanied by commentaries. Jacques Peletier, born at le

Mans on July 25, 1517 and died at Paris in July 1582,

wrote several text-books on algebra and geometry : most of

the results of Stifel and Cardan are included in the former.

Adrian Romanus, born at Louvain on Sept. 29, 1561 and died

on May 4, 1625, professor of mathematics and medicine at the

university of Louvain, was the first to prove the usual formula

for sin (A + B). And lastly, Bartholomaus Pitiscus, born on

Aug. 24, 1561 and died at Heidelberg, where he was pro

fessor of mathematics, on July 2, 1613, published his Trigo

nometry in 1599 : this contains the expressions for sin (A B)
and cos (A B] in terms of the trigonometrical ratios ofA and B.

About this time also several text-books were produced
which if they did not extend the boundaries of the subject

systematized it. In particular I may mention those of Ramus
and Bombelli.

Ramus*. Peter Ramus was born at Cuth in Picardy in

1515, and was killed at Paris at the massacre of St Bartho-

* See the monographs by Ch. Waddington, Paris, 1855 ; and by
C. Desmaze, Paris, 1864.
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lomew 011 Aug. 24, 1572. He was educated at the university

of Paris, and on taking his degree he astonished and charmed

the university with the brilliant declamation he delivered on

the thesis that everything Aristotle had taught was false. He
lectured for it will be remembered that in early days there

were no professors first at le Mans, and afterwards at Paris
;

at the latter he founded the first chair of mathematics.

Besides some works on philosophy he wrote treatises on

arithmetic, algebra, geometry (founded on Euclid), astronomy

(founded on the works of Copernicus), and physics which were

long regarded on the continent as the standard text-books on

these subjects. They are collected in an edition of his works

published at Bale in 1569.

Bombelli. Closely following the publication of Cardan s

great work, Rafaello Bombelli published in 1572 an algebra
which is a systematic exposition of what was then known
on the subject. In the preface he alludes to Diophantus who,

in spite of the notice of Regiomontanus, was still unknown in

Europe, and traces the history of the subject. He discusses

radicals, real and imaginary. He also treats the theory of

equations, and shews that in the irreducible case of a cubic

equation the roots are all real
;
and he remarks that the

problem to trisect a given angle is the same as that of the

solution of a cubic equation. Finally he gave a large collection

of problems.

Bombelli is chiefly distinguished in connection with the

improvement in the notation of algebra which he introduced.

The symbols then ordinarily used for the unknown quantity
and its powers were letters which stood for abbreviations of

the words. Those most frequently adopted were R or Rj for

radix or res (x\ Z or C for zensus or census (or
2

),
C or K for

cid)us (x
3

) y
&c. Thus x* + 5x 4 would have been written

1 Z p. 5 R m. 4

where p stands for plus and in for minus. Xylander, in his

edition of the Arithmetic of Diophantus in 1575, used other
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letters and the symbols + and and would have written the

above expression thus

l() + 5^_4 :

a similar notation was sometimes used by Yieta and even by
Fermat. The advance made by Bombelli was that he intro

duced a symbol ^ for the unknown quantity, ^ for its square,

\& for its cube, and so on, and therefore wrote x2 + 5x - 4 as

1 ^ p. 5 ^ m. 4.

Stevinus in 1586 employed , 0, ,
... in a similar way ;

and suggested, though he did not use, a corresponding notation

for fractional indices (see below, p. 248). He would have

written the above expression as

1 + 5 - 4 .

But whether the symbols were more or less convenient they
were still only abbreviations for words, and were subject to

all the rules of syntax. They merely afforded a sort of short

hand by which the various steps and results could be expressed

concisely. The next advance was the creation of symbolic

algebra, and the chief credit of that is due to Vieta.

The development of symbolic algebra.

We have now reached a point beyond which any con

siderable development of algebra, so long as it was strictly

syncopated, could hardly proceed. It is evident that Stifel

and Bombelli and other writers of the sixteenth century had

introduced or were on the point of introducing some of the

ideas of symbolic algebra. But so far as the credit of in

venting symbolic algebra can be put down to any one man
we may perhaps assign it to Vieta, while we may say that

Harriot and Descartes did more than any other writers to

bring it into general use. It must be remembered however

that it took time before all these innovations became generally

known, and they were not familiar to mathematicians until the

lapse of some years after they had been published.
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Vieta*. Franciscus Vieta (Francois Viete) was born in

1540 at Fontenay near la Rochelle and died in Paris in 1603.

He was brought up as a lawyer and practised for some time

at the Parisian bar; he then became a member of the pro

vincial parliament in Brittany; and finally in 1580 through

the influence of the duke de Rohan he was made master of

requests, an office attached to the parliament at Paris; the

rest of his life was spent in the public service. He was a

firm believer in the right divine of kings, and probably a zealous

catholic. After 1580 he gave up most of his leisure to mathe

matics, though his great work In Artem Analyticam Isagoye

in which he explained how algebra could be applied to the

solution of geometrical problems was not published till 1591.

His mathematical reputation was already considerable, when

one day the ambassador from the Low Countries remarked to

Henry IV. that France did not possess any geometricians capable

of solving a problem which had been propounded in 1593 by
his countryman Adrian Romanus (see above, p. 230) to all

the mathematicians of the world and which required the solu

tion of an equation of the 45th degree. The king thereupon
summoned Vieta, and informed him of the challenge. Vieta

saw that the equation was satisfied by the chord of a circle (of

unit radius) which subtends an angle 2?r/45 at the centre,

and in a few minutes he gave back to the king two solutions of

the problem written in pencil. In explanation of this feat I

should add that Vieta had previously discovered how to form

the equation connecting sin nO with sin and cos 0. Vieta

in his turn asked Romanus to give a geometrical construction

to describe a circle which should touch three given circles.

This was the problem which Apollonius had treated in his De

TactionibuSy a lost book which Vieta at a later time conjecturally
restored. Romanus solved the problem with the aid of the

conic sections, but failed to do it by Euclidean geometry. Vieta

gave a Euclidean solution which so impressed Romanus that

* An account of Vieta s works is given in vol. n. of C. Button s

Tracts, London, 181215.
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he travelled to Fontenay, where the French court was then

settled, to make Yieta s acquaintance an acquaintanceship
which rapidly ripened into warm friendship.

Henry was much struck with the ability shewn by Yieta in

this matter. The Spaniards had at that time a cipher contain

ing nearly 600 characters which was periodically changed, and

which they believed it to be impossible to decipher. A despatch

having been intercepted, the king gave it to Yieta, and asked

him to try to read it and find the key to the system. Vieta

succeeded, and for two years the French used it, greatly to their

profit, in the war which was then raging. So convinced was

Philip II. that the cipher could not be discovered that when he

found his plans known he complained to the pope that the

French were using sorcery against him,
&quot;

contrary to the prac

tice of the Christian faith.&quot;

Yieta wrote numerous works on algebra and geometry. The

most important are the In Artem Analyticam Isagoge, Tours,

1591; the Supplementum Geometriae and a collection of geome
trical problems, Tours, 1593; and the De Numerosa Potestatum

Resolutions, Paris, 1600 : all of these were printed for private

circulation only, but they were collected by F. van Schooten

and published in one volume at Leyden in 1646. Yieta also

wrote the De JEquationum Recognitions et Emendations which

was published after his death in 1615 by Alexander Anderson.

The In Artem is the earliest work on symbolic algebra. It

also introduced the use of letters for both known and unknown

quantities, a notation for the powers of quantities, and enforced

the advantage of working with homogeneous equations. To

this an appendix called Logistice Speciosa was added on ad

dition and multiplication of algebraical quantities, and on

the powers of a binomial up to the sixth. Yieta implies that

he knew how to form the coefficients of these six expansions

by means of the arithmetical triangle as Tartaglia had pre

viously done, but Pascal was the first to give the general rule

(see below, p. 285) for forming it for any order, which is equi

valent to saying that he could write down the coefficients of x
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in the expansion of (1 + x)
n
if those in the expansion of (1 + x)*~

l

\\rrr known; Newton was the first to give the general ex

pression for the coefficient of a,* in the expansion of (1 4- x)
n

.

Another appendix known as Zetetica on the solution of

equations was subsequently added to the In Artem.

The In Artem is memorable for two improvements in alge

braic notation which were introduced here, though it is probable
that Vieta took the idea of both from other authors.

One of these improvements was that he denoted the known

quantities by the consonants B, (7, D &amp;lt;fec. and the unknown

quantities by the vowels A, E, I &c. Thus in any problem
he was able to use a number of unknown quantities : in this

particular point he seems to have been forestalled by Jordanus

and by Stifel (see above, pp. 177, 220). The present custom of

using the letters at the beginning of the alphabet a, 6, c &c. to

represent known quantities and those towards the end, x, y, z

&amp;lt;fec. to represent the unknown quantities was introduced by
Descartes in 1637.

The other improvement was this. Till this time it had

been the custom to introduce new&quot; symbols to represent the

square, cube, &amp;lt;kc. of quantities which had already occurred in

the equations ; thus, if R or N stood for x, Z or C or Q stood

for x2

,
and C or K for x3

,
&e. So long as this was the case the

chief advantage of algebra was that it afforded a concise state

ment of results every statement of which was reasoned out.

But when Vieta used A to denote the unknown quantity x, he

sometimes employed A quadratics, A cubus, ... to represent a;
2

,

#3

, ..., which at once shewed the connection between the dif

ferent powers : and later the successive powers of A wrere

commonly denoted by the abbreviations Aq, Ac, Aqq, &c. Thus
Vieta would have written the equation

as B 3 in A quad. - D piano in A + A cubo aequatur Z solido.

It will be observed that the dimensions of the constants (B, D,
and Z) are chosen so as to make the equation homogeneous :

this is characteristic of all his work. It will be also noticed

that he does not use a sign for equality : and in fact the parti-
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cular sign which we use to denote equality was employed by
him to represent

a the difference between.&quot; Vieta s notation is

not so convenient as that previously used by Bombelli and

Stevinns, but it was more generally adopted ;
occcasional in

stances of an approach to index notation, such as A q
,
are said

to occur in Vieta s works.

These two steps were almost essential to any further pro

gress in algebra. In both of them Yieta had been forestalled,

but it was his good luck in emphasizing their importance to

be the means of making them generally known at a time when

opinion was ripe for such an advance.

The De Mquationum Recognitions et Emendations is mostly
on the theory of equations. Vieta here shewed that the first

member of an algebraical equation &amp;lt;&amp;gt;(x)

= Q could be resolved

into linear factors, and explained how the coefficients of x could

be expressed as functions of the roots. He also indicated how
from a given equation another could be obtained whose roots

were equal to those of the original increased by a given quan

tity or multiplied by a given quantity : and he used this

method to get rid of the cofficient of a? in a quadratic equation

and of the coefficient of x2
in a cubic equation, and was thus

enabled to give the general algebraic solution of both.

His solution of a cubic equation is as follows. First reduce

the equation to the form Xs + 3a2x = 2b
3

. Next let x = a2

/y
-

y,

and we get y
6 + 2b

3

y
3 = a6 which is a quadratic in y*. Hence y

can be found, and therefore x can be determined.

His solution of a biquadratic is similar to that known as

Ferrari s. He first got rid of the term involving x3

,
thus

reducing the equation to the form x4 + a2x2 + b
3x = c

4
. He then

took the terms involving x2 and x to the right-hand side of

the equation and added x2

y
2 + \y* to each side, so that the

equation became (x
2 +

|-y
2

)

2 = x2

(if a2

}
b
3x + \y

4 + c
4

. He
then chose y so that the right-hand side of this equality is

a perfect square. Substituting this value of ?/, he was able

to take the square root of both sides, and thus obtain two

quadratic equations for x, each of which can be solved.

The De Numerosa Potestatum Resolutions deals with nume-
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rical equations. In this a method for approximating to the

values of positive roots is given, but it is prolix and of little

use, though the principle (which is similar to that of Newton s

rule) is correct. Negative roots are uniformly rejected. This

work is hardly worthy of Vieta s reputation.

Vieta s trigonometrical researches are included in various

tracts which are collected in Schooten s edition. Besides some

trigonometrical tables he gave the general expression for the

sine (or chord) of an angle in terms of the sine and cosine of

its submultiples : Delambre considers this as the completion
of the Arab system of trigonometry. We may take it then

that from this time the results of elementary trigonometry
were familiar to mathematicians. Vieta also elaborated the

theory of right-angled spherical triangles.

Among Vieta s miscellaneous tracts will be found a proof
that each of the famous geometrical problems of the trisection

of an angle and the duplication of the cube depends on the

solution of a cubic equation. There are also some papers
connected with an angry controversy with Clavius, in 1594,
on the subject of the reformed calendar, in which Vieta was

not well advised.

Vieta s works on geometry are good but they contain

nothing which requires mention here. He applied algebra
and trigonometry to help him in investigating the properties
of figures. He also, as I have already said, laid great stress

on the desirability of always working with homogeneous

equations, so that if a square or a cube were given it should

be denoted by expressions like a2
or b

3 and not by terms like

m or n which do not indicate the dimensions of the quantities

they represent. He had a lively dispute with Scaliger, on the

latter publishing a solution of the quadrature of the circle,

and succeeded in shewing the mistake into which his rival

had fallen. He gave a solution of his own which as far as it

goes is correct, and stated that the area of a square is to that

of the circumscribing circle as
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This is one of the earliest attempts to find the value of TT by
means of an infinite series. He was well acquainted with the

extant writings of the Greek geometricians, and introduced the

curious custom, which during the seventeenth and eighteenth
centuries became fashionable, of restoring lost classical works.

He himself produced a conjectural restoration of the De
Tactionibus of Apollonius.

Girard. Yieta s results in trigonometry and the theory
of equations were extended by Albert Girard, a Dutch mathe

matician, who was born in Lorraine in 1590 and died in

1633.

In 1626 Girard published at the Hague a short treatise

on trigonometry, to which were appended tables of the values of

the trigonometrical functions. This work contains the earliest

use of the abbreviations sin, tan, sec for sine, tangent, and

secant. The supplemental triangles in spherical trigonometry
are also discussed and seem to have been discovered by Girard,

independently of Vie%a
;
he also gave the expression for the

area of a spherical triangle in terms of the spherical excess

this was discovered independently by Cavalieri. In 1 627 Girard

brought out an edition of Maralois s Geometry with considerable

additions.

Girard s chief discoveries are contained in his Invention

nouvelle en I algebre published at Amsterdam in 1629 : this

contains the earliest use of brackets
;
a geometrical interpre

tation of the negative sign ;
the statement that the number of

roots of an algebraical equation is equal to its degree ;
the

distinct recognition of imaginary roots
;
and probably implies

also a knowledge that the first member of an algebraical equa
tion &amp;lt; (x) could be resolved into linear factors. Girard s

researches were unknown to most of his contemporaries, and

exercised no appreciable influence on the development of

mathematics.

The invention of logarithms by Napier of Merchistoun in

1614, and their introduction into England by Briggs and

others, have been already mentioned in chapter XT.
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Napier*. John Napier was born at Merchistoun in 1550

and died on April 4, 1617. He spent most of his time on the

family estate near Edinburgh, and took an active part in the

political and religious controversies of the day ;
the business

of his life was to shew that the pope was antichrist, but his

favourite amusement was the study of mathematics and science.

As soon as the use of exponents became common in algebra

the introduction of logarithms would naturally follow, but

Napier reasoned out the result without the use of any symbolic
notation to assist him, and the invention of logarithms was so

far from being a sudden inspiration that it was the result of the

efforts of many years with a view to abbreviate the processes

of multiplication and division. It is likely that Napier s

attention may have been partly directed to the desirability

of facilitating computations by the stupendous arithmetical

efforts of some of his contemporaries, who seem to have taken

a keen pleasure in surpassing one another in the extent to

which they carried multiplications and divisions. The trigono

metrical tables by Rheticus, which were published in 1596 and

1613, were calculated in a most laborious way : Vieta himself

delighted in arithmetical calculations which must have taken

hours or days of hard work and of which the results often

served no useful purpose : L. van Ceulen (1539 1610) prac

tically devoted his life to finding a numerical approximation
to the value of TT, finally in 1610 obtaining it correct to 35

places of decimals : while, to cite one more instance, P. A.

Cataldi (1548 1626), who is chiefly known for his invention

in 1613 of the form of continued fractions (though he failed to

establish any of their properties), must have spent years in

numerical calculations.

In regard to Napier s other work I may again mention

(see above, p. 196) that in his Rabdologia, published in 1617,
he introduced an improved form of rod by the use of which

* See the Memoir* of Napier by Mark Napier, Edinburgh, 1834. An
edition of all his works was issiu-d at Edinburgh in 1839. A bibliography

of his writings is appended to a translation of the Conxtmrtio by W. K.

Macdonald, Edinburgh, ls--.i
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the product of two numbers can be found in a mechanical way;

they can be also used for finding the quotient of one number

by another: he also invented two other rods called
&quot;virgulae&quot; by

which square and cube roots can be extracted. I should add that

in spherical trigonometry he discovered certain formulae known
as Napier s analogies, and also enunciated a &quot;rule of circular

parts
&quot;

for the solution of right-angled spherical triangles.

Briggs. The earliest table of common logarithms was con

structed by Briggs and published in 1617 (see above, p. 201).

Henry Briggs* was born near Halifax in 1556. He was edu

cated at St John s College, Cambridge, took his degree in

1581, and obtained a fellowship in 1588. He was elected to

the Gresham professorship of geometry in 1594, and in 1619

became Savilian professor at Oxford, a chair which he held

until his death on Jan. 26, 1631. It may be interesting to

add that the chair of geometry founded by Sir Thomas
Gresham in 1596 was the earliest professorship of mathematics

established in Great Britain. Some twenty years earlier Sir

Henry Savile had given at Oxford open lectures on Greek

geometry and geometricians, and in 1619 he endowed the

chairs of geometry and astronomy in that university which are

still associated with his name. Both in London and at Oxford

Briggs was the first occupant of the chair of geometry. He

began his lectures at Oxford with the ninth proposition of the

first book of Euclid : that being the furthest point to which

Savile had been able to carry his audiences. ^At^Qanibridga
the Lucasian chair was established in 1663, the earliest occu

pants being Barrow andiN ewton.
~&quot;

The^aTmost iminediateacfoption throughout Europe of loga

rithms for astronomical and other calculations was mainly the

work of Briggs. Amongst others he convinced Kepler of the

advantages of Napier s discovery, and the spread of the use of

logarithms was rendered more rapid by the zeal and reputation

of Kepler who by his tables of 1625 and 1629 brought them

into vogue in Germany, while Cavalieri in 1624 and Edmund

* See pp. 27 30 of my History of the Study of Mathematics at Cam

bridge, Cambridge, 1889.
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Wingatc iii 1626 did a similar service for Italian and F

mathematicians respectively.

Harriot. Thomas Harriot, who was born at Oxford in

1560, and died in London on July 2, 1621, di-. _ 1 deal

to extend and codify the theory of equations. The early part

of his life was spent in America with Sir Walter Raleigh :

while there he made the first survey of Virginia and North

Carolina, the maps of these being subsequently presented to

Queen Elizabeth. On his return to England he settled in

London, and gave up most of his time to mathematical studies.

The majority of the propositions I have assigned to Vieta

are to be found in Harriot s writings, but it is uncertain

whether they were discovered by him independently of Vieta

or not. In any case it is probable that Vieta had not fully

realized all that was contained in the propositions he had

enunciated. The full consequences of these, with numerous

extensions and a systematic exposition of the theory of equa

tions, were given by Harriot in his Artis Analyticae Praxis,

which was first printed in 1631. The Praxis does not differ

essentially from a good modern text-book; it is far more

analytical than any algebra that preceded it, and marks a

great advance both in symbolism and notation. It was widely
read and proved one of the most powerful instruments in

bringing analytical methods into general use. Harriot was I

believe the earliest writer who realized the advantage to be

obtained by taking all the terras of an equation to one side of

it. He was the first to use the signs &amp;gt; and &amp;lt; to represent

greater than and less than. When he denoted the unknown

quantity by a he represented a2

by aa, a* by aaa, and so on.

This is a distinct improvement on Vieta s notation. The same

symbolism was used by Wallis as late as 1685, but concurrently
with the modern index notation which was introduced by
Descartes. Extracts from some of the other writings of

Harriot were published by Rigaud in 1833.

Oughtred. Among those who contributed to the general

adoption in England of these various improvements and ad-

B. 16
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ditions to algorism and algebra was William Oughtred* ,
who

was born at Eton on March 5, 1574, and died at his vicarage

of Albury in Surrey on June 30, 1660 : it is usually said that

the cause of his death was the excitement and delight which

he experienced
&quot; at hearing the House of Commons had voted

the King s return,&quot; but a recent critic adds that it should be

remembered &quot;

by way of excuse that he [Oughtred] was then

eighty-six years old.&quot; Oughtred was educated at Eton and

King s College, Cambridge, of the latter of which colleges

he was a fellow and for some time mathematical lecturer.

His Clams Mathematica published in 1631 is a good sys

tematic text-book on arithmetic, and it contains practically all

that was then known on the subject. In this work he intro

duced the symbol x for multiplication, and the symbol : : in pro

portion; previously to his time a proportion such as a \b c id

was usually written as a - b c d, but he denoted it by
a . b : : c . d. Wallis says that some found fault with the

book on account of the style, but that they only displayed

their own incompetence, for Oughtred s
&quot; words be always full

but not redundant.
7

Pell makes a somewThat similar remark.

Oughtred also wrote a treatise on trigonometry published in

1657, in which abbreviations for sine, cosine, &c. were employed.
This was really an important advance, but the works of Girard

and Oughtred, in which they were used, were neglected and

soon forgotten, and it was not until Euler reintroduced con

tractions for the trigonometrical functions that they were

generally adopted.
We may say roughly that henceforth elementary arith

metic, algebra, and trigonometry were treated in a manner

which is not substantially different from that now in use
;
and

that the subsequent improvements introduced were additions to

the subjects as then known, and not a re-arrangement of them

on new foundations.

* See pp. 3031 of my History of the Study of Mathematics at

Cambridge, Cambridge, 1889. A complete edition of Oughtred s works

was published at Oxford in 1677.
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The origin of the more common symbols in algebra.

It may be convenient if I collect here in one place the

scattered remarks I have made on the introduction of the

various symbols for the more common operations in algebra*.

The later Greeks (see p. 106), the Hindoos (see p. 159), and

Jordanus (see p. 178) indicated addition by mere juxtaposition.

It will be observed that this is still the custom in arithmetic,

where e.g. 2J stands for 2 + J. The Italian algebraists, when

they gave up expressing every operation in words at full

length and introduced syncopated algebra, usually denoted

plus by its initial letter P or p, a line being sometimes drawn

through the letter to shew that it was a symbol of operation
and not a quantity : but the practice was not uniform

;
Pacioli

for example sometimes denoted it by p, and sometimes by e,

and Tartaglia commonly denoted it by &amp;lt;. The German and

English algebraists on the other hand introduced the sign +

almost as soon as they used algorism, but they spoke of it as*

signum additorum and employed it only to indicate excess,

they also used it in the sense referred to above on p. 212.

Widman used it as an abbreviation for excess in 1489 (see

p. 210): by 1630 it was part of the recognized notation of

P 1
gebra, and was also used as a symbol of operation.

Subtraction was indicated by Diophaiitus by an inverted

and truncated ^ (see p. 106). The Hindoos denoted it by a

dot (see p. 159). The Italian algebraists when they introduced

syncopated algebra generally denoted minus by M or in, a line

being sometimes drawn through the letter: but the practice
\\ as not uniform

; Pacioli for example denoting it sometimes

by ni, and sometimes by de for demptus (see p. 215). The
German and English algebraists introduced the present symbol
which they described as signum subtractorum. It is most

likely that the vertical bar MI the symbol for plus was super-

See two articles by C. Henry in the June and July numbers of the
Revue Archeologiqite, 1879, vol. xxxvii., pp. 324333, vol. xxxvin. pp.
110.
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imposed on the symbol for minus to distinguish the two. In.

origin both symbols were probably mercantile marks (see

p. 211). It may be noticed that Pacioli and Tartaglia found

the sign already used to denote a division, a ratio, or a

proportion indifferently (see p. 166 and p. 242). The present

sign was in general use by about the year 1630, and was then

employed as a symbol of operation.

Oughtred in 1631 used the sign x to indicate multiplica
tion: Harriot in 1631 denoted the operation by a dot:

Descartes in 1637 indicated it by juxtaposition. I am not

aware of any symbols for it which were in. previous use.

Leibnitz in 1686 employed the sign ^ to denote multiplica

tion, and ^ to denote division.

Division was ordinarily denoted by the Arab way of

writing the quantities in the form of a fraction by means of

a line drawn between them in any of the forms a b, a/b, or

j-
. Oughtred in 1631 employed a dot to denote either division

or a ratio. I do not know when the colon (or symbol :)
was

first introduced to denote a ratio, but it occurs in a work

by Clairaut published in 1760. I believe that the current

symbol for division -r is only a combination of the and the :
,

it was used by Johann Heinrich Rahn at Zurich in 1659, and

by John Pell in London in 1668.

The current symbol for equality was introduced by Record

in 1557 (see p. 218); Xylander in 1575 denoted it by two

parallel vertical lines; but in general till the year 1600 the

word was written at length ;
and from then until the time of

Newton, say about 1680, it was more frequently represented by
oc or by DO than by any other symbol. Either of these latter

signs was used as a contraction for the first two letters of the

word aequalis. I may add that Yieta, Schooten, and others

employed the sign ~ to denote the difference between
;
thus

a = b means with them what we denote by a - b.

The symbol :: to denote proportion, or the equality of two

ratios, was introduced by Oughtred in 1631, and was brought
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into common use by Wallis in 1686. There is no object in

having a symbol to indicate the equality of two ratios which is

different from that used to indicate the equality of other things,

and it is better to replace it by the sign = .

The sign &amp;gt; for is greater than and the sign &amp;lt; for is less

than were introduced by Harriot in 1631, but Oughtred

simultaneously invented the symbols H and U for the same

purpose ;
and these latter were frequently used till the begin

ning of the eighteenth century, e.g. by Barrow.

The symbols =j= for is not equal to, ^&amp;gt;
is not greater than,

and &amp;lt; for is not less than are of recent introduction.

The vinculum was introduced by Vieta in 1591
;

and

brackets were first used by Girard in 1629.

The different methods of representing the power to which

a magnitude was raised have been already briefly alluded to.

The earliest known attempt to frame a symbolic notation was

made by Born belli in 1572 when he represented the unknown

quantity by ^, its square by vl;, its cube by ^, &c. (see p. 232).
In 1586 Stevinus used (T), @, (?) &c. in a similar way; and

suggested though he did not use a corresponding notation for

fractional indices (see p. 232 and p. 248). In 1591 Vieta im

proved on this by denoting the different powers of A by A,

AquacL, A cub., &c., so that he could indicate the powers of

different magnitudes (see p. 235); Harriot in 1631 further

improved on Vieta s notation by writing aa for a2

,
aaa for a

3
.

&c. (see p. 241), and this remained in use for fifty years

concurrently with the index notation. In 1634 P. Herigonus,
in his Cursus mathematicus published in five volumes at Paris

in 16341637, wrote a, a2, a3, ... for a, a2
,
a3

.... The symbol

J to denote the square root was introduced by Rudolff in

1;VJC&amp;gt;;
a similar notation had been used by Bhaskjira (see

p. 160).

The idea of using exponents to mark the power to which
a quantity was raised was due to Descartes, and was intro

duced bj him in 1637: but lie used only positive integral
indices a\ a\ a\.... Wallis in 1659 explained the mean-
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ing of negative and fractional indices in expressions such

as x~\ ar, &c. (see p. 290) : the latter conception having been

foreshadowed by Oresmus (see p. 183) and perhaps by Stevinus.

Finally the idea of an index unrestricted in magnitude, such as

the n in the expression an
,
is I believe due to Newton and was

introduced by him in connection with the binomial theorem in

the letters for Leibnitz written in 1676.

The symbol &amp;lt;x&amp;gt; for infinity was first employed by Wallis in

1655 in his Arithmetica Infinitorum ;
but does not occur

again until 1713 when it is used in James Bernoulli s Ars

Conjectandi. This sign was sometimes employed by the

Romans to denote the number 1000, and it has been conjec

tured that this led to its being applied to represent any very

large number.

There are but few special symbols in trigonometry, I may
however add here the following note which contains all that I

have been able to learn on the subject. The current sexagesimal

division of angles is derived from the Babylonians through the

Greeks. The Babylonian unit angle was the angle of an equi

lateral triangle; following their usual practice (see p. 5) this

was divided into sixty equal parts or degrees, a degree was sub

divided into sixty equal parts or minutes, and so on. The word

sine was used by Regiomoiitanus and was derived from the Arabs :

the terms secant and tangent were introduced by Thomas Finck

(born in Denmark in 1561 and died in 1646) in his Geometriae

Rotundi, Bale, 1583 : the word cosecant was (I believe) first used

by Rheticus in his Opus Palatinum, 1596 : the terms cosine and

cotangent were first employed by E. Gunter in his Canon

Triangulormn, London, 1620. The abbreviations sin, tan, sec

were used in 1626 by Albert Girard, and those of cos and

cot by Oughtred in 1657
;
but these contractions did not come

into general use till Euler re-introduced them in 1748. The

idea of trigonometricalfunctions originated with John Bernoulli,

and this view of the subject was elaborated in 1748 by Euler

in his Introductio in Analysin Infinitorum.
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CHAPTER XIII.

THE CLOSE OF THE RENAISSANCE.

CIRC. 158G 1637.

THE closing years of the renaissance were marked by a

revival of interest in nearly all branches of mathematics and

science. As far. as pure mathematics is concerned we have

already seen that during the last half of the sixteenth century
there had been a great advance in algebra, theory of equations,

and trigonometry ;
and we shall shortly see (in the second sec

tion of this chapter) that in the early part of the seventeenth

century some new processes in geometry were invented. If how

ever we turn to applied mathematics it is impossible not to be

struck by the fact that even as late as the middle or end of

the sixteenth century no marked progress in the theory had been

made from the time of Archimedes. Statics (of solids) and

hydrostatics remained in much the state in which he had left

them, while dynamics as a science did not exist. It was

Stevinus who gave the first impulse to the renewed study
of statics, and Galileo who laid the foundation of dynamics ;

and to their works the first section of this chapter is devoted.

The development of mechanics and experimental methods.

Stevinus*. Simon Stemnus was born at Bruges in 1548,

and died at the Hague early in the seventeenth century. We
* An analysis of his works is given in the Histoire des sciences

maikfmatiguet ttphyriqwt chcz /ex LY
///*.

$ by L. A. J. Quetelet, Brussels,
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know very little of his life save that he was originally a

merchant s clerk at Antwerp, and at a later period of his life

was the friend of Prince Maurice of Orange by whom he was

made quarter-master-general of the Dutch army.
To his contemporaries he was best known for his works on

fortifications and military engineering, and the principles he

laid down are said to be in accordance with those which are

now usually accepted. To the general populace he was also well

known on account of his invention of a carriage which was pro

pelled by sails
\
this ran on the sea-shore, carried twenty-eight

people, and easily outstripped horses galloping by the side : his

model of it was destroyed in 1802 by the French when they
invaded Holland. It was chiefly owing to the influence of

Stevinus that the Dutch and French began a proper system
of book-keeping in the national accounts.

I have already alluded (see above, p. 232) to the intro

duction in his Arithmetic, published in 1585, of exponents to

mark the power to which quantities were raised : he is said to

have suggested the use of fractional (but not negative) expo
nents. For instance he wrote 3x2 -5x+l as 30-5(7) + ! (7).

His notation for decimal fractions was of a similar character

(see above, p. 202). In the same book he likewise suggested
a decimal system of weights and measures.

He also published a geometry which is ingenious though it

does not contain many results which were not previously known.

It is however on his Statics and Hydrostatics published (in

Flemish) at Leyden in 1586 that his fame will rest. In this

work he enunciated the triangle of forces a theorem which

some think was first propounded by Leonardo da Vinci (see

above, p. 217). Stevinus regarded this as the fundamental

proposition of the subject; previous to the publication of his

1866, pp. 144 168 : see also Notice historique sur la vie et les ouvrages

de Stevinus by J. V. Gothals, Brussels, 1841
; and Les travaux de Stevinus

by M. Steichen, Brussels, 1846. The works of Stevinus were collected

by Snell, translated into Latin and published at Leyden in 1605 under

the title llypomnemata.
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work the science of statics had rested on the theory of the

lever, but since then it has been usual to commence by

proving the possibility of representing forces by straight lines,

and so of reducing many theorems to geometrical propositions,

and in particular to obtaining in that way a proof of the

parallelogram (which is equivalent to the triangle) of forces.

Stevinus is not clear in his arrangement of the various proposi

tions and discussion of their sequence, and the new treatment

of the subject was not definitely established before the ap

pearance in 1687 of Varignon s work on mechanics. Stevinus

also found the force which must be exerted along the line of

greatest slope to support a given weight on an inclined plane
a problem the solution of which had been long in dispute. He
further distinguished between stable and unstable equilibrium.
In hydrostatics he discussed the question of the pressure which

a fluid can exercise, and explained the so-called hydrostatic

paradox. Stevinus was somewhat dogmatic in his statements,

and allowed no one to differ from his conclusions, &quot;and

those,&quot; says he, in one place,
&quot; who cannot see this, may the

Author of nature have pity upon their unfortunate eyes, for

the fault is not in the thing, but in the sight which we are

not able to give them.&quot;

Galileo*. Just as the modern treatment of statics originates
with Stevinus, so the foundation of the science of dynamics is

due to Galileo. Galileo Galilei was born at Pisa on Feb. 18,

1564, and died near Florence on Jan. 8, 1642. His father, a

poor descendant of an old and noble Florentine house, was

himself a fair mathematician and a good musician. Galileo was
educated at the monastery of Yallombrosa where his literary

* See the biography of Galileo, by T. H. Martin, Paris, 1868. There
is also a life by Sir David Brewster, London, 1841

; and a long notice by
Libri in the fourth volume of his Histoire dcs sciences mathematitjues en

Itiiiir. An edition of Galileo s works was issued in 16 volumes by
E. AlbSri, Florence, 18421856. A good many of his letters on various

mathematical subjects have been since discovered, and a new and com
plete edition is now being prepared by Antonio Favaro of Padua for the

Italian Government.
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ability and mechanical ingenuity attracted considerable atten

tion. He was persuaded to become a novitiate of the order in

1580, but his father, who intended him to be a doctor, at once

removed him, and sent him in 1581 to the university of Pisa

to study medicine. It was there that he noticed that the great

bronze lamp, which still hangs from the roof of the cathedral,

performed its oscillations in equal times, quite independently
of whether the oscillations were large or small a fact which

he verified by counting his pulse. He had been hitherto

purposely kept in ignorance of mathematics, but one day, by
chance hearing a lecture on geometry, he was so fascinated by
the science that he thenceforward devoted all his spare time to

its study, and finally he got leave to discontinue his medical

studies. He left the university in 1586, and almost im

mediately commenced his original researches.

He published in 1587 an account of the hydrostatic balance,

and in 1588 an essay on the centre of gravity in solids. The

fame of these works secured for him the appointment to the

mathematical chair at Pisa the stipend, as was the case with

most professorships, being very small. During the next three

years he carried on from the leaning tower that series of ex

periments on falling bodies which established the first principles

of dynamics. Unfortunately the manner in which he pro

mulgated his discoveries and the ridicule he threw on those

who opposed him gave not unnatural offence, and in 1591

he was obliged to resign his position.

At this time he seems to have been much hampered by
want of money. Influence was however exerted on his behalf

with the Venetian senate, and he was appointed professor at

Padua, a chair which he held for eighteen years (1592 1610).

His lectures there seem to have been chiefly on mechanics and

hydrostatics, and the substance of them is contained in his

treatise on mechanics which was published in 1612. In these

lectures he repeated his Pisan experiments, and demonstrated

that falling bodies did not (as was then believed) descend with

velocities proportional amongst other things to their weights.
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He further shewed that, if it were assumed that they descended

with a uniformly accelerated motion, it was possible to deduce

the relations connecting velocity, space, and time which did

actually exist. At a later date, by observing the times of

descent of bodies sliding down inclined planes, he shewed that

this hypothesis was true. He also proved that the path of a

projectile was a parabola, and in doing so implicitly used the

principles laid down in the first two laws of motion as

enunciated by Newton. He gave an accurate definition of

momentum which some writers have thought may be taken to

imply a recognition of the truth of the third law of motion.

The laws of motion are however nowhere enunciated in a

precise and definite form, and Galileo must be regarded rather

as prepaiing the way for Newton than as being himself the

creator of the science of dynamics.
In statics he laid down the principle that in machines what

was gained in power was lost in speed, and in the same ratio.

In the statics of solids he found the force which can support a

given weight on an inclined plane ;
in hydrostatics he pro

pounded the more elementary theorems on pressure and on

floating bodies; while among hydrostatical instruments he

invented the thermometer, though in a somewhat imperfect
form.

It is however as an astronomer that most people regard

Galileo, and though strictly speaking his astronomical researches

lie outside the subject-matter of this book it may be interest

ing to give the leading facts. It was in the spring of 1609

that Galileo heard that a tube containing lenses had been made

by Lippershey in IJolland which served to magnify objects seen

through it. This gave him the clue, and he constructed a

telescope of that kind which still bears his name, and of which

an ordinary opera-glass is an example. Within a few months

he had produced instruments which were capable of magnifying

thirty-two diameters, and within a year he had made and pub
lished observations on the solar spots, the lunar mountains,

Jupiter s satellites, the phases of Venus, and Saturn s ring.
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Honours and emoluments were showered on him, and he was
enabled in 1610 to give up his professorship and retire to

Florence. In 1611 he paid a temporary visit to Rome, and

exhibited in the gardens of the Vatican the new worlds revealed

by the telescope.

It would seem that Galileo had always believed in the

Copernican system, but was afraid of promulgating it on

account of the ridicule it excited. The existence of Jupiter s

satellites seemed however to make its truth almost certain, and

he now boldly preached it. The orthodox party resented his

action, and on Feb. 24, 1616, the Inquisition declared that to

suppose the sun the centre of the solar system was absurd,

heretical, and contrary to Holy Scripture. The edict of March

5, 1616, which carried this into effect has never been repealed

though it has been long tacitly ignored. It is well known that

towards the middle of the seventeenth century the Jesuits

evaded it by treating the theory as an hypothesis from which,

though false, certain results would follow.

In January 1632 Galileo published his dialogues on the

system of the world in which in clear and forcible language
he expounded the Copernican theory. In these, apparently

through jealousy of Kepler s fame, he does not so much as

mention Kepler s laws (the first two of which had been pub
lished in 1609 and the third in 1619) and he rejects Kepler s

hypothesis that the tides are caused by the attraction of the

moon. He rests the proof of the Copernican hypothesis on

the absurd statement that it would cause tides because different

parts of the earth would rotate with different velocities. He
was more successful in shewing that mechanical principles

would account for the fact that a stone thrown straight up
would fall again to the place from which it was thrown a

fact which had previously been one of the chief difficulties in

the way of any theory which supposed the earth to be in motion.

The publication of this book was certainly contrary to the

edict of 1616. Galileo was at once summoned to Rome, forced

to recant, do penance, and was only released on good behaviour.
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The documents recently printed shew that he was threatened

with the torture, but that there was no intention of carrying

the threat into effect.

When released he again took up his work on mechanics,

and by 1636 had finished a book which was published under

the title Discorsi intorno a due nuove scienze at Leyden in 1638.

In 1637 he lost his sight, but with the aid of pupils he con

tinued his experiments on mechanics and hydrostatics, and in

particular on the possibility of using a pendulum to regulate a

clock, and on the theory of impact.
An anecdote of this time has been preserved, which may

or may not be true, but is sufficiently interesting to bear

repetition. According to one version of the story, Galileo

was one day interviewed by some members of a Florentine

guild who wanted their pumpsKalterei^ as to raise water to a

height which was greater than thirty feet; and thereupon he

remarked that it might be desirable to first find out why the

water rose at all. A bystander interfered and said there was

110 difficulty about that because nature abhorred a vacuum.

Yes, said Galileo, but apparently it is only a vacuum which is

less than thirty feet. His favourite pupil Torricelli was

present, and thus had his attention directed to the question
which he subsequently elucidated.

Galileo s work may I think be fairly summed up by saying
that his researches on mechanics are deserving of high praise,

and that they are memorable for clearly enunciating the fact

that science must be founded on laws obtained by experiment;
his astronomical observations and his deductions therefrom

were also excellent, and were expounded with a literary

and scientific skill which leaves nothing to be desired, but

though he produced some of the evidence which placed the

Copernican theory on a satisfactory basis he did not himself

make any special advance in the theory of astronomy.
Francis Bacon*. The necessity of an experimental founda-

* See his life by J. Spedding, London, 187274. The best edition of

his works is that by Ellis, Spedding, and Heath in 7 volumes, London,
second edition, 1870.
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tion for science was advocated with even greater effect by
Galileo s contemporary frauds Bacon (Lord Verulam), who
was born at London on Jan. 22, 1561, and died on April 9,

1626. He was educated at Trinity College, Cambridge. His

career in politics and at the bar culminated in his becoming
lord chancellor with the title of Lord Verulam : the story of

his subsequent degradation for accepting bribes is well known.

His chief work is the Novum Organum, published in 1620,

in which he lays down the principles which should guide those

who are making experiments on which they propose to found

a theory of any branch of physics or applied mathematics. He

gave rules by which the results of induction could be tested,

hasty generalizations avoided, and experiments used to check

one anothei*. The influence of this treatise in the eighteenth

century was great, but it is probable that during the preceding

century it was little read, and the remark repeated by several

French writers that Bacon and Descartes are the creators of

modern philosophy rests on a misapprehension of Bacon s

influence on his contemporaries: any detailed account of this

book belongs however to the history of scientific ideas rather

than to that of mathematics.

Before leaving the subject of applied mathematics I may
add a few words on the writings of Guldinus, Wright, and

Snell.

Guldinus. Ilabakkuk Guldinus, born at St Gall on June

12, 1577, and died at Gratz on Nov. 3, 1643, was of Jewish

descent but was brought up as a protestant: he was converted

to Roman Catholicism and became a Jesuit when he took the

Christian name of Paul, and it was to him that the Jesuit

colleges at Rome and Gratz owed their mathematical reputa
tion. The two theorems known by the name of Pappus (to

which I alluded on p. 101) were published by Guldinus in the

fourth book of his De Centra Gravitatis, Vienna, 1635 1642.

Not only were the rules in question taken without acknow

ledgment from Pappus, but (according to Montucla) the proof

of them given by Guldinus was faulty, though he was success-
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ful in applying them to the determination of the volumes and

surfaces of certain solids. The theorems were however pre

viously unknown, and their enunciation excited considerable

interest.

Wright*. I may here also refer to Edward Wright, who

is worthy of mention for having put the art of navigation

on a scientific basis. Wright was born in Norfolk about 1560,

and died in 1615. He was educated at Caius College, Cam

bridge, of which society he was subsequently a fellow. He
seems to have been a good sailor and he had a special talent

for the construction of instruments. About 1600 he was

elected lecturer on mathematics by the East India Company ;

he then settled in London, and shortly afterwards was ap

pointed mathematical tutor to prince Henry of Wales, the son

of James I. His mechanical ability may be illustrated by an

orrery of his construction by which it was possible to predict

eclipses for over seventeen thousand years in advance : it was

shewn in the Tower as a curiosity as late as 1675.

In the maps in use before the time of Gerard Mercator a

degree, whether of latitude or longitude, had been represented
in all cases by the same length, and the course to be pursued

by a vessel was marked on the map by a straight line joining

the ports of arrival and departure. Mercator had seen that

this led to considerable errors, and had realized that to make
this method of tracing the course of a ship at all accurate the

space assigned on the map to a degree of latitude ought

gradually to increase as the latitude increased. Using this

principle, he had empirically constructed some charts, which

were published about 1560 or 1570. Wright set himself the

problem to determine the theory on which such maps should

be drawn, and succeeded in discovering the law of the scale of

the maps, though his rule is strictly correct for small arcs only.

The result was published in the second edition of Blundeville s

Exercises.

* See pp. 25 27 of my History of the Study of Mathematics at Cam
bridge, Cambridge, 1889.
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In 1599 Wright published his Certain errors in navigation
detected and corrected, in which he explained the theory and

inserted a table of meridional parts. The reasoning shews con

siderable geometrical power. In the course of the work he

gives the declinations of thirty-two stars, explains the pheno
mena of the dip, parallax, and refraction, and adds a table

of magnetic declinations, but he assumes the earth to be

stationary. In the following year he published some maps
constructed on his principle. In these the northernmost point
of Australia is shewn: the latitude of London is taken to be

51 32 .

Snell. A contemporary of Guldinus and Wright was

Willebrod Snell, whose name is still well known through his

discovery in 1619 of the law of refraction in optics. Snell

was born at Leydeii in 1591, occupied a chair of mathematics

at the university there, and died there on Oct. 30, 1626.

He was one of those infant prodigies who occasionally appear,

and at the age of twelve he was acquainted with the standard

mathematical works. I will here only add that in geodesy
he laid down the true principles for measuring the arc of

a meridian, and in spherical trigonometry he discovered the

properties of the pola/- or supplemental triangle.

Revival of interest in pure geometry.

The close of the sixteenth century was marked not only by
the attempt to found a theory of dynamics based on laws

derived from experiment, but also by a revived interest in

geometry. This was largely due to the influence of Kepler.

Kepler*. Johann Kepler, one of the founders of modern

astronomy, was born of humble parents near Stuttgart on

* See Johann Keppler s Leben und Wirken.loy J. L. E. von Breitschwert,

Stuttgart, 1831
;
and E. Wolf s Geschichte der Astronomic, Munich, 1871.

A complete edition of Kepler s works was published by C. Frisch at

Frankfort in 8 volumes 1858 71 ;
and an analysis of the mathematical

part of his chief work, the Harmonice mundi, is given by Chasles in his

Aperqu historique.
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Dec. 27, 1571, and died at Ratisbon on Nov. 15, 1630. He
was educated under Maestlin at Tubingen; in 1593 he was

appointed professor at Gratz, where he made the acquaintance
of a wealthy and beautiful widow whom he married, but

found too late that he had purchased his freedom from

pecuniary troubles at the expense of domestic happiness. In

1599 he accepted an appointment as assistant to Tycho Brahe,
and in 1601 succeeded his master as astronomer to the emperor

Rudolph II. But his career was dogged by bad luck; first his

stipend was not paid; next his wife went mad and then died;

and though he married again in 1611 this proved an even more

unfortunate venture than before, for though, to secure a better

choice, he took the precaution to make a preliminary selection

of eleven girls whose merits and demerits he carefully analysed
in a paper which is still extant, he finally selected a wrong
one; while to complete his discomfort he was expelled from

his chair, and narrowly escaped condemnation for heterodoxy.

During this time he depended for his income on telling

fortunes and casting horoscopes, for as he says &quot;nature which

has conferred upon every animal the means of existence lias

designed astrology as an adjunct and ally to astronomy.&quot; He
seems however to have had no scruple in charging heavily for

his services, and to the surprise of his contemporaries was

found at his death to have a considerable hoard of money.
He died while on a journey to try and recover for the benefit

of his children some of the arrears of his stipend.
In describing Galileo s work I alluded briefly to the three

laws in astronomy that Kepler had discovered, and in connec

tion with which his name will be always associated
;
and I

have already mentioned the prominent part he took in bring

ing logarithms into general use on the continent. These are

familiar facts, but it is not known so generally that Kepler was
also a geometrician and algebraist of considerable power ;

and
that he, Desargues, and perhaps Galileo may be considered as

forming a connecting link between the mathematicians of the

renaissance and those of modern times.

B. 17
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Kepler s work in geometry consists rather in certain general

principles which he laid down and illustrated by a few cases

than in any systematic exposition of the subject. Tn a short

chapter on conies inserted in his Paralipomena, published in

1604, he lays down what has been called the principle of

continuity ;
and gives as an example the statement that a

parabola is at once the limiting case of an ellipse and of a

hyperbola; he illustrates the same doctrine by reference to

the foci of conies (the word focus was introduced by him); and

he also explains that parallel lines should be regarded as meet

ing at infinity.

In his Stereometria^ which was published in 1615, he deter

mines the volumes of certain vessels and the areas of certain

surfaces, by means of infinitesimals instead of by the long and

tedious method of exhaustions. These investigations as well

as those of 1604 arose from a dispute with a wine merchant as

to the proper way of gauging the contents of a cask. This

use of infinitesimals was objected to by Guldinus and other

writers as inaccurate, but though the methods of Kepler are

not altogether free from objection he was substantially correct,

and by applying the law of continuity to infinitesimals he

prepared the way* for Cavalieri s method of indivisibles, and

the infinitesimal calculus of Newton and Leibnitz.

Kepler s work on astronomy lies outside the scope of this

book. I will mention only that it was founded on the ob

servations of Tycho Brahe f whose assistant he was. His three

laws of planetary motion were the result of many and laborious

efforts to reduce the phenomena of the solar system to certain

simple rules. The first two were published in 1609, and stated

that the planets describe ellipses round the sun, the sun

being in a focus ; and that the line joining the sun to any

planet sweeps over equal areas in equal times. The third was

published in 1619, and stated that the squares of the periodic

* See Cantor, chap. LXXVIII.

f For an account of Tycho Brahe, born at Knudstrup in 1546 and

died at Prague in 1601, see his life by J. L. E. Dreyer, Edinburgh, 1890.
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times of the planets are proportional to the cubes of the major

axes of their orbits. I ought to add that he attempted to

explain why these motions took place by a hypothesis which

is not very different from Descartes s theory of vortices.

Kepler also devoted considerable time to the elucidation of the

theories of vision and refraction in optics.

While the conceptions of the geometry of the Greeks were

being extended by Kepler, a Frenchman, whose name until

recently was almost unknown, was inventing a new method

of investigating the subject a method which is now known

as projective geometry. This was the discovery of Desargues
whom I put (with some hesitation) at the close of this period,

and not among the mathematicians of modern times.

Desargues*. Gerard Desargues, born at Lyons in 1593,

and died in 1662, was by profession an engineer and architect,

but he gave some courses of gratuitous lectures in Paris from

1626 to about 1630 which made a great impression upon his

contemporaries. Both Descartes and Pascal had a high opinion

of his work and abilities, and both made considerable use of the

theorems he had enunciated.

In 1636 Desargues issued a work on perspective ;
but most

of his researches were embodied in his Brouillon proiect on

conies, published in 1639, a copy of which was discovered

by Chasles in 1845. I take the following summary of it from

Ch. Taylor s work on conies. Desargues commences with a

statement of the doctrine of continuity as laid down by

Kepler : thus the points at the opposite ends of a straight

line are regarded as coincident, parallel lines are treated as

meeting at a point at infinity, and parallel planes on a line at

infinity, while a straight line may be considered as a circle

whose centre is at infinity. The theory of involution of six

points, with its special cases, is laid down, and the projective

property of pencils in involution is established. The theory of

polar lines is expounded, and its analogue in space suggested.

* See Oeuvres de Desargues by M. Poudra, 2 vols., Paris, 1864; and
a note in the Bibliotheca Mathematica, 1885, p. 90.

172
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A tangent is defined as the limiting case of a secant, and an

asymptote as a tangent at infinity. Desargues shews that the

lines which join four points in a plane determine three pairs
of lines in involution on any transversal, and from any conic

through the four points another pair of lines can be obtained

which are in involution with any two of the former. He
proves that the points of intersection of the diagonals and

the two pairs of opposite sides of any quadrilateral inscribed

in a conic are a conjugate triad with respect to the conic, and

when one of the three points is at infinity its polar is a

diameter
;
but he fails to explain the case in which the quad

rilateral is a parallelogram, although he had formed the con

ception of a straight line which was wholly at infinity. The

book therefore may be fairly said to contain the fundamental

theorems on involution, homology, poles and polars, and per

spective.

The influence exerted by the lectures of Desargues on

Descartes, Pascal, and the French geometricians of the seven

teenth century was considerable
;
but the subject of projective

geometry soon fell into oblivion, chiefly because the analytical

geometry of Descartes was so much more powerful as a method

of proof or discovery.

The researches of Kepler and Desargues will serve to

remind us that as the geometry of the Greeks was not capable
of much further extension, mathematicians were now beginning
to seek for new methods of investigation, and were extending
the conceptions of geometry. The invention of analytical

geometry and of the infinitesimal calculus temporarily diverted

attention from pure geometry, but at the beginning of the

present century there was a revival of interest in it, and since

then it has been a favourite subject of study with many
mathematicians.



THE CLOSE 0V THE RENAISSANCE. 261

Mathematical knowledge at the close of the renaissance.

Thus by the beginning of the seventeenth century we may
say that the fundamental principles of arithmetic, algebra,

theory of equations, and trigonometry had been laid down, and

the outlines of the subjects as we know them had been traced.

It must be however remembered that there were no good

elementary text-books on these subjects ;
and a knowledge of

them was therefore confined to those who could extract it from

the ponderous treatises in which it lay buried. Though much of

the modern algebraical and trigonometrical notation had been

introduced, it was not familiar to mathematicians, nor was it

even universally accepted ;
and it was not until the end of the

seventeenth century that the language of these subjects was

definitely fixed. Considering the absence of good text- books I

am inclined rather to admire the rapidity with which it came

into universal use, than to cavil at the hesitation to trust to it

alone which many writers shewed.

If we turn to applied mathematics we find on the other

hand that the science of statics had made but little advance in

the eighteen centuries that had elapsed since the time of

Archimedes, while the foundations of dynamics were laid by
Galileo only at the close of the sixteenth century. In fact, as

we shall see later, it was not until the time of Newton that the

science of mechanics was placed on a satisfactory basis. The

fundamental conceptions of mechanics are difficult, but the

ignorance of the principles of the subject shewn by the mathe

maticians of this time is greater than would have been antici

pated from their knowledge of pure mathematics.

With this exception we may say that the principles of

analytical geometry and of the infinitesimal calculus were

needed before there was likely to be much further progress.

The former was employed by Descartes in 1637, the latter was

invented by Newton (and possibly independently by Leibnitz)
some thirty or forty years later: and their introduction may be

taken as marking the commencement of the period of modern

mathematics.
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THIRD PERIOD.

Jtflatfcnnatfcs.

This period begins with the invention of analytical geometry
and the infinitesimal calculus. The mathematics is far more

complex than that produced in either of the preceding periods :

but it may be generally described as characterized by the de

velopment of analysis, and its application to the phenomena of
nature.



263

I continue the chronological arrangement of the subject.

Chapter xv. contains the history of the forty years from 1635

to 1675, and an account of the mathematical discoveries of

Descartes, Cavalieri, Pascal, Wallis, Fermat, and Huygens.

Chapter xvi. is given up to a discussion of Newton s researches.

Chapter xvn. contains an account of the works of Leibnitz and

his followers during the first half of the eighteenth century

(including D Alembert), and also of the contemporary English
school to the death of Maclaurin. The works of Euler, La-

grange, Laplace, and their contemporaries form the subject-

matter of chapter xvm. Lastly in chapter xix. I have added

some notes on a few of the mathematicians of recent times
;

but I exclude all detailed reference to living writers, and

partly because of this, partly for other reasons there given, the

account of contemporary mathematics does not profess to be

exhaustive or complete. I may remind the reader that the

lives of the mathematicians considered at the end of one

chapter generally overlap the lives of some of those who are

mentioned in the next chapter ;
and that the close of a chapter

is not a sign of any abrupt change in the history of the

subject, though it generally indicates a point when new
methods of analysis or new subjects were coming into promi
nence.



264

CHAPTER XIV.

FEATURES OF MODERN MATHEMATICS.

THE division between this period and that treated in the

last six chapters is by no means so well defined as that which

separates the history of Greek mathematics from the mathe

matics of the middle agea. The methods of analysis used in

the seventeenth century and the kind of problems attacked

changed but gradually; and the mathematicians at the begin

ning of this period were in immediate relations with those at

the end of that last considered. For this reason some writers

have divided the history of mathematics into two parts only,

treating the schoolmen as the lineal successors of the Greek

mathematicians, and dating the creation of modern mathe

matics from the introduction of the Arab text-books into

Europe. The division I have given is I think more con

venient, for the introduction of analytical geometry and of

the calculus completely revolutionized the development of

the subject, and it therefore seems preferable to take their in

vention as marking the commencement of modern mathematics.

The time that has elapsed since these methods were in

vented has been a period of incessant intellectual activity in

all departments of knowledge, and the progress made in mathe

matics has been immense. The greatly extended range of

knowledge and the rapid intercommunication of ideas due to

printing increase the difficulties of a historian
;
while the mass

of materials which has to be mastered, the absence of per-
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spective, and even the echoes of old controversies combine to

make it very difficult to give a clear and just account of the

development of the subject. As however the leading facts

are generally known, and the works published during this

time are accessible to any student, I may deal more concisely

with the lives and writings of modern mathematicians than

with those of their predecessors, and confine myself more

strictly than before to those who have materially affected the

progress of the subject.

Roughly speaking we may say that five distinct stages in

the history of this period can be discerned.

First of all there is the invention of analytical geometry by
Descartes in 1637; and almost at the same time the intro

duction of the method of indivisibles, by the use of which

areas, volumes, and the positions of centres of mass can be

determined by summation in a manner analogous to that

effected now-a-days by the aid of the integral calculus. The

method of indivisibles was soon superseded by the integral

calculus. Analytical geometry however maintains its position
as part of the necessary training of every mathematician, and
is incomparably more potent than the geometry of the ancients

for all purposes of research. The latter is still no doubt

an admirable intellectual training, and it frequently affords

an elegant demonstration of some proposition the truth of

which is already known, but it requires a special procedure
for every particular problem attacked. The former on the

other hand lays down a few simple rules by which any

property can be at once proved or disproved.
In the second place, we have the invention of the fluxional

or differential calculus about 1666 (and possibly an indepen
dent invention of it in 1674). Wherever a quantity changes

according to some continuous law (and most things in nature

do so change) the differential calculus enables us to measure its

rate of increase or decrease; and, from its rate of increase or

decrease, the integral calculus enables us to find the original

quantity. Formerly every separate function of x such as
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(I+x)
n

, log(l+#), sin a;, tan~ 1

,^, &c., could be expanded in

ascending powers of x only by means of such special procedure
as was suitable for that particular problem ; but, by the aid of

the calculus, the expansion of any function of x in ascending

powers of x is in general reducible to one rule which covers

all cases alike. So again the theory of maxima and minima,
the determination of the lengths of curves, and the areas en

closed by them, the determination of surfaces, of volumes, and
of centres of mass, and many other problems are each reducible

to a single rule. The theories of differential equations, of the

calculus of variations, of finite differences, &c. are the develop
ments of the ideas of the calculus.

These two subjects analytical geometry and the calculus

became the chief instruments of further progress in mathe

matics. In both of them a sort of machine was constructed :

to solve a problem, it was only necessary to put in the parti
cular function dealt with, or the equation of the particular
curve or surface considered, and on performing certain simple

operations the result came out. The validity of the process
was proved once for all, and it was no longer requisite to

invent some special method for every separate function, curve,

or surface.

In the third place, Huygens laid the foundation of a satis

factory treatment of dynamics, and Newton reduced it to an

exact science. The latter mathematician proceeded to apply
the new analytical methods not only to numerous problems in

the mechanics of solids and fluids on the earth but to the solar

system: the whole of mechanics terrestrial and celestial was

thus brought within the domain of mathematics. There is no

doubt that Newton used the calculus to obtain many of his re

sults, but he seems to have thought that, if his demonstrations

were established by the aid of a new science which was at that

time generally unknown, his critics (who would not understand

the fluxional calculus) would fail to realize the truth and im

portance of his discoveries. He therefore determined to give

geometrical proofs of all his results. He accordingly cast the
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Principia into a geometrical form, and thus presented it to the

world in a language which all men could then understand.

The theory of mechanics was extended and was systematized
into its modern form by Laplace and Lagrange towards the end

of the eighteenth century.

In the fourth place, we may say that during this period

the chief branches of physics have been brought within the

scope of mathematics. This extension of the domain of mathe

matics was commenced by Huygens and Newton when they

propounded their theories of light; but it was not until the

beginning of this century that sufficiently accurate observations

were made in most physical subjects to enable mathematical

reasoning to be applied to them. From the results of the

observations and experiments which have been since published,

numerous and far-reaching conclusions have been obtained by
the use of mathematics, but we now want some more simple

hypotheses from which we can deduce those laws which at

present form our starting-point. If, to take one example, we
could say in what electricity consisted, we might get some

simple laws or hypotheses from which by the aid of mathe

matics all the observed phenomena could be deduced, in the

same way as Newton deduced all the results of physical astro

nomy from the law of gravitation. All lines of research seem

moreover to indicate that there is an intimate connection be

tween the different branches of physics, e.g. between light, heat,

electricity, and magnetism. The ultimate explanation of this

and of the leading facts in physics seems to demand a study
of molecular physics; a knowledge of molecular physics in its

turn seems to require some theory as to the constitution of

matter; it would further appear that the key to the constitu

tion of matter is to be found in chemistry or chemical physics.
So the matter stands at present. Helmholtz in Germany, and

Maxwell and Lord Kelvin (Sir William Thomson) in Great

Britain, have done a great deal in applying mathematics to

physics; but the connection between the different branches of

physics, and the fundamental laws of those branches (if there
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be any simple ones), are riddles which are yet unsolved. This

history does not pretend to treat of problems which are now
the subject of investigation, and though mathematical physics
forms a large part of &quot;modern mathematics&quot; I shall not dis

cuss it in any detail.

Fifthly, this period has seen an immense extension of pure
mathematics. Much of this is the creation of comparatively
recent times, and I regard the details of it as outside the limits

of this book though in chapter xix. I have allowed myself to

mention some of the subjects discussed. The most striking

features of this extension are the developments of higher

geometry, of higher arithmetic or the theory of numbers,
of higher algebra (including the theory of forms), and of

the theory of equations, also the discussion of functions of

double and multiple periodicity, and notably the creation of

a theory of functions.
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CHAPTER XV.

HISTORY OF MATHEMATICS FROM DESCARTES TO HUYGENS.

CIRC. 16351675.

I PROPOSE in this chapter to consider the history of mathe

matics during the forty years in the middle of the seventeenth

century. I regard Descartes, Cavalieri, Pascal, Wallis, Fermat,
and Huygens as the leading mathematicians of this time.

I shall treat them in that order, and I shall conclude with

a brief list of the more eminent remaining mathematicians

of the same date.

I have already stated that the mathematicians of this

period and the remark applies more particularly to Descartes,

Pascal, and Fermat were largely influenced by the teaching
of Kepler and Desargues, and I would repeat again that I

regard these latter and Galileo as forming a connecting link

between the writers of the renaissance and those of modern

times. I should also add that the mathematicians considered

in this chapter were contemporaries, and, although I have tried

to place them roughly in such an order that their chief works

shall come in a chronological arrangement, it is essential to

remember that they were in relation one with the other, and
in general were acquainted with one another s researches as

soon as these were published.
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Descartes*. Subject to the above remarks we may con

sider Descartes as the first of the modern school of mathe

matics. Rene Descartes was born near Tours on March 31,

1596, and died at Stockholm on Feb. 11, 1650 : he was thus a

contemporary of Galileo and Desargues. His father, who as

the name implies was of a good family, was accustomed to

spend half the year at Henries when the local parliament
in which he held a commission as councillor was in session,

and the rest of the time on his family estate of les Cartes

at la Haye. Rene, the second of a family of two sons and one

daughter, was sent at the age of eight years to the Jesuit

School at la Fleche, and of the admirable discipline and

education there given he speaks most highly. On account

of his delicate health he was permitted to lie in bed till late in

the mornings ;
this was a custom which he always followed, and

when he visited Pascal in 1647 he told him that the only way
to do good work in mathematics and to preserve his health was

never to allow anyone to make him get up in the morning
before he felt inclined to do so : an opinion which I chronicle

for the benefit of any schoolboy into whose hands this work

may fall.

On leaving school in 1612 Descartes went to Paris to be

introduced to the world of fashion. Here through the medium

of the Jesuits he made the acquaintance of Mydorge and

renewed his schoolboy friendship with Father Mersenne, and

together with them he devoted the two years of 1615 and

1616 to the study of mathematics. At that time a man of

position usually entered either the army or the church; Descartes

chose the former profession, and in 1617 joined the army of

* See La vie de Descartes by A. Baillet, 2 vols., Paris, 1691, which

is summarized in vol. i. of K. Fischer s Geschichte der neuern Philosophic,

Munich, 1878. A tolerably complete account of his mathematical and

physical investigations is given in Ersch and Gruber s Encyclopadie,
and is the authority for most of the statements here contained. The

most complete edition of his works is that by Victor Cousin in 11 vols.

Paris, 1824 6. Some minor papers subsequently discovered were printed

by F. de Careil, Paris, 1859.
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Prince Maurice of Orange then at Breda. Walking through the

streets he saw a placard in Dutch which excited his curiosity,

and stopping the first passer asked him to translate it into either

French or Latin. The stranger, who happened to be Isaac

Beeckman, the head of the Dutch College at Dort, offered to do

so if Descartes would answer it : the placard being in fact a

challenge to all the world to solve a geometrical problem there

given. Descartes worked it out within a few hours, and a warm

friendship between him and Beeckman was the result. This

unexpected test of his mathematical attainments made the

uncongenial life of the army distasteful to him, but under

family influence and tradition he remained a soldier, and was

persuaded at the commencement of the thirty years war to

volunteer under Count de Bucquoy in the army of Bavaria.

He continued all this time to occupy his leisure with mathe

matical studies, and was accustomed to date the first ideas of

his new philosophy and of his analytical geometry from three

dreams which he experienced on the night of Nov. 10, 1619, at

Neuberg when campaigning on the Danube. He regarded
this as the critical day of his life, and one which determined

his whole future.

He resigned his commission in the spring of 1621, and

spent the next five years in travel, during most of which time

he continued to study pure mathematics. In 1626 we find

him settled at Paris &quot;a little well-built figure, modestly clad

in green taffety, and only wearing sword and feather in token of

his quality as a gentleman.&quot; During the first two years there

he interested himself in general society and spent his leisure in

the construction of optical instruments
;
but these pursuits were

merely the relaxations of one who failed to find in philosophy
that theory of the universe which he was convinced finally

awaited him. In 1628 Cardinal de Berulle, the founder of the

Oratorians, met Descartes, and was so much impressed by his

conversation that he urged on him the duty of devoting his

life to the examination of truth. Descartes agreed, and the

better to secure himself from interruption moved to Holland
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then at the height of its power. There for twenty years he

lived, giving up all his time to philosophy and mathematics.

Science, he says, may be compared to a tree, metaphysics is the

root, physics is the trunk, and the three chief branches are me
chanics, medicine, and moi*als, these forming the three applica
tions of our knowledge, namely, to the external world, to the

human body, and to the conduct of life : and with these sub

jects alone his writings are concerned. He spent the first four

years, 1629 to 1633, of his stay in Holland in writing Le
Monde which embodies an attempt to give a physical theory
of the universe; but finding that its publication was likely to

bring on him the hostility of the church, and having no desire

to pose as a martyr, he abandoned it : the incomplete manu

script was published in 1664. He then devoted himself to

composing a treatise on universal science
;

this was published
at Leyden in 1637 under the title Discours de la methode

pour bien conduire sa raison et chercher la verite dans les

sciences, and was accompanied with three appendices (which

possibly were not issued till 1638) entitled La Dioptrique,
Les Meteores, and La Geometric: it is from the last of these

that the invention of analytical geometry dates. In 1641 he

published a work called Meditationes in which he explained
at some length his views of philosophy as sketched out in

the Discours. In 1644 he issued the Principia Philosophiae,

the greater part of which was devoted to physical science,

especially the laws of motion and the theory of vortices. In

1647 he received a pension from the French court in honour

of his discoveries. He went to Sweden on the invitation of

the Queen in 1649, and died a few months later of inflam

mation of the lungs.

In appearance, Descartes was a small man with large head,

projecting brow, prominent nose, and black hair coming down
to his eyebrows. His voice was feeble. Considering the range
of his studies he was by no means widely read, and he de

spised both learning and art unless something tangible could

be extracted therefrom. In disposition he was cold and selfish.
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He never married and left no descendants, though he had one

illegitimate daughter who died young.
As to his philosophical theories, it will be sufficient to say

that he discussed the same problems which have been debated

for the last two thousand years. It is hardly necessary to say

that the problems themselves are of great interest, but from

the nature of the case no solution ever offered is capable either

of proof or of disproof, and whenever a philosopher like

Descartes believes that he has at last finally settled a question
it has been easy for his successors to point out the fallacy in

his assumptions. All that can be effected is to make one

explanation somewhat more probable than another. I have

read somewhere that philosophy has always been chiefly en

gaged with the inter-relations of God, Nature, and Man. The

earliest philosophers were Greeks who occupied themselves

mainly with the relations between God and Nature, and dealt

with Man separately. The Christian Church was so absorbed

in the relation of God to Man as to entirely neglect Nature.

Finally modern philosophers concern themselves chiefly with

the relations between Man and Nature. Whether this is a

correct historical generalization of the views which have been

successively prevalent I do not care to discuss here, but the

statement as to the scope of modern philosophy marks the

limitations of Descartes s writings, and these may be taken

as the commencement of the modern school.

Descartes s chief contributions to mathematics were his

analytical geometry and his theory of vortices, and it is on

his researches in connection with the former of these subjects

that his reputation rests.

Analytical geometry does not consist merely (as is some

times loosely said) in the application of algebra to geometry :

that had been done by Archimedes and many others, and had

become the usual method of procedure in the works of the

mathematicians of the sixteenth century. The great advance

made by Descartes was that he saw that a point in a plane
could be completely determined if its distances, say x and y,

B. 18
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from two fixed lines drawn at right angles in the plane were

given, with the convention familiar to us as to the interpre

tation of positive and negative values
;
and that though an

equationf (x, 2/)
= was indeterminate and could be satisfied by

an infinite number of values of x and y, yet these values of x and

y determined the co-ordinates of a number of points which form

a curve of which the equation f (x, y)
= expresses some geo

metrical property, that is, a property true of the curve at every

point on it. Descartes asserted that a point in space could be

similarly determined by three coordinates, but he confined his

attention to plane curves.

It was at once seen by Descartes and his successors that

in order to investigate the properties of a curve it was sufficient

to select any characteristic geometrical property as a definition,

and to express it by means of an equation between the (current)

coordinates of any point on the curve, that is, to translate the

definition into the language of analytical geometry. The equa
tion so obtained contains implicitly every property of the

curve, and any particular property can be deduced from it

by ordinary algebra without troubling about the geometry of

the figure. The points in which two curves intersect can

be determined by finding the roots common to their two equa
tions. I need not go further into details, for nearly every

one to whom the above is intelligible will have read analytical

geometry, and be able to appreciate the value of its invention.

Descartes s Geometrie is divided into three books : the

first two of these treat of analytical geometry, and the third in

cludes an analysis of the algebra then current. It is some

what difficult to follow the reasoning, but the obscurity was

intentional and due to the jealousy of Descartes. &quot; Je n ai

rien omis,&quot; says he,
&quot;

qu a dessein...j avois prevu que cer-

taines gens qui se vantent de S9avoir tout n auroient pas

manque de dire que je n avois rien ecrit qu ils n eussent sgu

auparavant, si je me fusse rendu assez intelligible pour eux.&quot;

The first book commences with an explanation of the prin

ciples of analytical geometry, and contains a discussion of a
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certain problem which had been propounded by Pappus in the

seventh book of his Swaywy?; and of which some particular

cases had been considered by Euclid and Apollonius. The

general theorem had baffled previous geometricians, and it was

in the attempt to solve it that Descartes was led to the inven

tion of analytical geometry. The full enunciation of the

problem is rather involved, but the most important case is to

find the locus of a point such that the product of the perpen

diculars on m given straight lines shall be in a constant ratio to

the product of the perpendiculars on n other given straight lines.

The ancients had solved this geometrically for the case ?n,= l,

n 1
,
and the case m = 1

,
n = 2. Pappus had further stated

that, if m = n 2, the locus was a conic, but he gave no proof ;

Descartes also failed to prove this by pure geometry, but he

shewed that the curve was represented by an equation of the

second degree, that is, was a conic
; subsequently Newton gave

an elegant solution of the problem by pure geometry.
In the second book Descartes divides curves into two

classes
; namely, geometrical and mechanical curves. He de

fines geometrical curves as those which can be generated by
the intersection of two lines each moving parallel to one co

ordinate axis with &quot;commensurable&quot; velocities, by which he

meant that dyjdx was an algebraical function, as for example
is the case in the ellipse and the cissoid. He calls a curve

mechanical when the ratio of the velocities of these lines is

&quot;incommensurable,&quot; by which he meant that dyjdx was a

transcendental function, as for example is the case in the

cycloid and the quadratrix. Descartes confined his discussion

to algebraical curves, and did not treat of the theory of me
chanical curves. The classification into algebraical and transcen

dental curves now usual is due to Newton (see below, p. 346).

Descartes also paid particular attention to the theory of

the tangents to curves as perhaps might be inferred from

his system of classification just alluded to. The then current

definition of a tangent at a point was a straight line through
the point such that between it and the curve no other straight

182
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line could be drawn, i.e. the straight line of closest contact.

Descartes proposed to substitute for this that the tangent was

the limiting position of the secant
; Fermat, and at a later

date Maclaurin and Lagrange, adopted this definition. Barrow,
followed by Newton and Leibnitz, considered a curve as the

limit of an inscribed polygon when the sides become indefinitely

small, and stated that a side of the polygon when produced
became in the limit a tangent to the curve. Roberval on the

other hand defined a tangent at a point as the direction of

motion at that instant of a point which was describing the curve.

The results are the same whichever definition is selected, but

the controversy as to which definition was the correct one was

none the less lively. Descartes illustrated his theory by giving

the general rule for drawing tangents and normals to a roulette.

The method used by Descartes to find the tangent or

normal at any point of a given curve was substantially as

follows. He determined the centre and radius of a circle

which should cut the curve in two consecutive points there.

The tangent to the circle at that point will be the required

tangent to the curve. In modern text-books it is usual to

express the condition that two of the points in which a straight

line (such as y = mx + c) cuts the curve shall coincide with the

given point : this enables us to determine m and c, and thus

the equation of the tangent there is determined. Descartes

however did not venture to do this, but selecting a circle as

the simplest curve and one to which he knew how to draw a

tangent, he so fixed his circle as to make it touch the given

curve at the point in question and thus reduced the problem
to drawing a tangent to a circle. I should note in passing that

he only applied this method to curves which are symmetrical
about an axis, and he took the centre of the circle on the axis.

Much of the reasoning in these two books is not easy to

follow
;

but a Latin translation of them, with explanatory

notes, was prepared by F. de Beaune, and an edition of this

with a commentary by F. van Schooten was issued in 1659,

and had a wide circulation.
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The third book of the Geometrie contains an analysis of

the algebra then current, and it has affected the language
of the subject by fixing the custom of employing the letters at

the beginning of the alphabet to denote known quantities, and

those at the end of the alphabet to denote unknown quantities*.

Descartes further introduced the system of indices now in use,

but I would here remind the reader that the suggestion had

been made by previous writers, though it had not been generally

adopted; but very likely it was original on the part of Descartes.

I think also that Descartes was the first to realize that his

letters might represent any quantities, positive or negative, and

that it was sufficient to prove a proposition for one general case

(compare the old procedure as illustrated above on p. 163). In

this book he made use of the rule for determining a limit to

the number_of_positive and of negative roots of an algebraical

equation, which is still known by his name
;
and introduced the

method of indeterminate coefficients for the solution of equations.
He believed that he had given a method by which algebraical

equations of any order could be solved, but in this he was mis

taken. He made use of the method of indeterminate coefficients.

Of the two other appendices to the Discours one was

devoted to optics. The chief interest of this consists in the

statement given of the law of refraction. This appears to have

been taken from SnelPs work (see above, p. 256), but not only
is there no acknowledgment of the source from which it was

obtained, but it is enunciated in such a way as to lead a

careless reader to suppose that it is due to the researches of

Descartes. Descartes would seem to have repeated Snell s

experiments when in Paris in 1626 or 1627, and it is possible
that he subsequently forgot how much he owed to the earlier

investigations of Snell. A large part of the optics is devoted

to determining the best shape for the lenses of a telescope, but

the mechanical difficulties in grinding a surface of glass to a

* On the origin of the custom of using x to represent an unknown

example, see a note by G. Enestrom in the Bibliotheca Mathematica,
1885, p. 43.
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required form are so great as to render these investigations of

little practical use. Descartes seems to have been doubtful

whether to regard the rays of light as proceeding from the eye
and so to speak touching the object, as the Greeks had done, or

as proceeding from the object, and so affecting the eye ; but,

since he considered the velocity of light to be infinite, he did

not deem the point particularly important.

The other appendix, on meteors, contains an explanation
of numerous atmospheric phenomena, including the rainbow

;

Descartes was unacquainted with the unequal refrangibility

of rays of light of different colours, and the explanation of

the latter is necessarily incomplete.

Descartes s physical theory of the universe, embodying most

of the results contained in his earlier and unpublished Le

Monde, was given in his Principia, 1644, and rests on a ineta-

Rhysical basjs. He commences with_jt discussion an_motion ;

and thenjays dowrTten laws ofliature, of which the first two

are almost identical with the tirst two laws of motion as

given by Newton fsee below, p. 337) ;
the remaining eight

laws are inaccurate^ li!e next proceeds to discuss the nature

of matter which he regards as uniform in kind though there

are three forms of it. He assumes that the matter of the

universe must be in motion, and that the motion must result

in a number of vortices. He states that the sun is the centre

of an immense whirlpool of this matter, in which the planets

float and are swept round like straws in a whirlpool of water.

Each planet is supposed to be the centre of a secondary whirl

pool by which its satellites are carried : these secondary whirl

pools are supposed to produce variations of density in the

surrounding medium which constitute the primary whirlpool,

and so cause the planets to move in ellipses and not in circles.

All these assumptions are arbitrary and unsupported by any

investigation. It is not difficult to prove that on his hypotheses

the sun would be in the centre of these ellipses and not at a

focus (as Kepler had shewn was the case), and that the weight

of a body at every place on the surface of the earth except the
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equator would act in a direction which was not vertical
;
but

it will be sufficient here to say that Newton in the second book

of his Principia, 1687, considered the theory in detail, and

shewed that its consequences are not only inconsistent with

each of Kepler s laws and with the fundamental laws of

mechanics, but are also at variance with the ten laws of nature

assumed by Descartes. Still, in spite of its crudeness and its

inherent defects, the theory of vortices marks a fresh era in

astronomy, for it was an attempt to explain the phenomena of

the whole universe by the same mechanical laws which ex

periment shews to be true on the earth.

Cavalieri*. Almost contemporaneously with the publica

tion in 1637 of Descartes s geometry, the principles of the

integral calculus, so far as they are concerned with summation,

were being worked out in Italy. This was effected by what

was called the principle of indivisibles, and was the invention

of Cavalieri. It was applied to numerous problems connected

with the quadrature of curves and surfaces, the determination

of volumes, and the positions of centres of mass to the com

plete exclusion of the tedious method of exhaustions used by
the Greeks. In principle the methods are the same, but the

notation of indivisibles is more concise and convenient. It

was in its turn superseded at the beginning of the eighteenth

century by the integral calculus, but its use will be familiar to

all mathematicians who have read any commentary on the first

section of the first book of Newton s Principia in the appli

cation of lemmas 2 and 3 to the determination of areas,

volumes, &c.

Bonaventura Cavalieri was born at Milan in 1598, and died

at Bologna on Nov. 27, 1647. He became a Jesuit at an early

age ;
on the recommendation of the Order he was in 1629 made

professor, of mathematics at Bologna ; and he continued to

*
Cavalieri s life has been written by P. Frisi, Milan, 1778; by F.

Predari, Milan, 1843
; by Gabrio Piola, Milan, 1844

;
and by A. Favaro,

Bologna, 1888. An analysis of his works is given in Marie s Histoire,

vol. iv., pp. 6990.
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occupy the chair there until his death. I have already
mentioned Cavalieri s name for the part that he took in in

troducing the use of logarithms into Italy. He was one of the

most influential mathematicians of his time, but his subsequent

reputation rests mainly on his invention of the principle of

indivisibles.

The principle of indivisibles had been used by Kepler (see

above, p. 258) in 1604 and 1615 in a somewhat crude form.

It was first stated by Cavalieri in 1629, but he did not publish
his results till 1635. In his early enunciation of the principle

in 1635 Cavalieri asserted that a line was made up of an

infinite number of points (each without magnitude), a surface

of an infinite number of lines (each without breadth), and a

volume of an infinite number of surfaces (each without thick

ness). To meet the objections of Guldinus and others the

statement was recast, and in its final form as used by the

mathematicians of the seventeenth century it was published in

Cavalieri s Exercitationes Geometricae Sex in 1647, the third of

which is devoted to a defence of the theory. These exercises

contain the first rigid demonstration of the properties of

Pappus (see above, pp. 101, 254). Cavalieri s works on the

subject were reissued with his later corrections in 1653.

The method of indivisibles is simply that any magnitude

may be divided into an infinite number of small quantities

which can be made to bear any required ratios (e.g. equality)

one to the other. The analysis given by Cavalieri is hardly

worth quoting except as being one of the first steps taken

towards the formation of an infinitesimal calculus. One

example will suffice. Suppose it be required to find the area

of a right-angled triangle. Let the base contain n points and

the other side na points, then the ordinates at the successive

points of the base will contain a, 2a, . . .
,
na points. Therefore

the number of points in the figure is a + 2a + . . . + na
;

the

sum of which is ^n
2a + \na. Since n is very large, we may

neglect the \na as inconsiderable compared with the %n*a, and

the area is J (na) n, that is, \ altitude x base. There is no diffi-
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culty in criticizing such a proof, but, although the form in which

it is presented is indefensible, the substance of it is correct.

It would be misleading to give the above as the only

specimen of the method of indivisibles, and I therefore quote
another example, taken from a later writer, which will fairly

illustrate the use of the method when modified and corrected

by the method of limits. Let it be required to find the area

bounded by the parabola APC the tangent at A, and any
diameter DC. Complete the parallelogram ABCD. Divide

AD into n equal parts, let AM contain r of them, and let

B

MN be the (r + l)th part. Draw MP and NQ parallel to AB,
and draw PR parallel to AD. Then, when n becomes in

definitely large, the curvilinear area APCD will be the limit of

the sum of all parallelograms like PN. Now
area PN : area BD = MP . MN : DC .AD.

But by the properties of the parabola

MP : DC = AM2
: AD2 = r

2
: ri\

and MN : AD = I : n.

Hence MP . MN : DC . AD = r
2

: n3
.

Therefore area PN : area BD = r
2

: n
3

.

Therefore ultimately

area APCD : area BD= I
2 + 2

2 + ... + (n
-

I)
2

: n3

= *n(n
which, in the limit, =1:3.
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It is perhaps worth noticing that Cavalieri and his suc

cessors always used the method to find the ratios of two areas,

volumes, or magnitudes of the same kind and dimensions, that

is, they never thought of an area as containing so many units

of area. The idea of comparing a magnitude with a unit of the

same kind seems to have been due to Wallis.

It is evident that in its direct form the method is appli
cable to only a few curves. Cavalieri proved that, if m be

a positive integer, then the limit, when n is infinite, of

... .

^TI is ----
,
which is equivalent to saying that

n m + 1

he found the integral to x of xm from x = to x = 1
;
he also

discussed the quadrature of the hyperbola.

Pascal*. Among the contemporaries of Descartes none

displayed greater natural genius than Pascal, but his reputa
tion rests more on what he might have done than on what
he actually effected, as during a considerable part of his life

he deemed it his duty to devote his whole time to religious

exercises.

Blaise Pascal was born at Clermont on June 19, 1623, and

died at Paris on Aug. 19, 1662. His father, a local judge at Cler

mont and himself of some scientific reputation, moved to Paris

in 1631, partly to prosecute his own scientific studies, partly

to carry on the education of his only son who had already

displayed exceptional ability. Pascal was kept at home in

order to ensure his not being overworked, and with the same

object it was directed that his education should be at first con

fined to the study of languages and should not include any
mathematics. This naturally excited the boy s curiosity, and

one day being then twelve years old he asked in what geometry
consisted. His tutor replied that it was the science of con-

* See Pascal by J. Bertrand, Paris, 1891. Pascal s life, written by
his sister Mme P6rier, was edited by A. P. Faugere, Paris, 1845, and

has formed the basis for several works. An edition of his writings was

published in 5 vols. at the Hague in 1779, second edition, Paris, 1819;
some additional pamphlets and letters were published by Lahure in

3 vols. at Paris in 1858.
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stracting exact figures and of determining the proportions

between their different parts. Pascal, stimulated no doubt by
the injunction against reading it, gave up his play-time to this

new study, and in a few weeks had discovered for himself

many properties of figures, and in particular the proposition

that the sum of the angles of a triangle is equal to two right

angles. I have read somewhere, but I cannot lay my hand on

the authority, that his proof merely consisted in turning the

angular points of a triangular piece of paper over so as to

meet in the centre of the inscribed circle : a similar demon

stration can be got by turning the angular points over so as

to meet at the foot of the perpendicular drawn from the biggest

angle to the opposite side. His father struck by this display

of ability gave him a copy of Euclid s Elements, a book which

Pascal read with avidity and soon mastered.

At the age of fourteen he was admitted to the weekly

meetings of Roberval, Mersenne, Mydorge, and other French

geometricians; from which the French Academy ultimately

sprung, being created by ordinance of Louis XIV. on Dec. 22,

16G6. At sixteen Pascal wrote an essay on conic sections;

and in 1641, at the age of eighteen, he constructed the first

arithmetical machine, an instrument which eight years later

he further improved and patented. His correspondence with

Fermat about this time shews that he was then turning his

attention to analytical geometry and physics. He repeated
Torricelli s experiments, -by which the pressure of the atmo

sphere could be estimated as a weight, and he confirmed his

theory of the cause of barometrical variations by obtaining at

the same instant readings at different altitudes on the hill of

Puy-de-D6me.
In 1G50, when in the midst of these researches, Pascal

suddenly abandoned his favourite pursuits to study religion, or

as he says in his Pensees u to contemplate the greatness and the

misery of man &quot;

;
and about the same time he persuaded the

younger of his two sisters to enter the Port Royal society.

In 1653 he had to administer his father s estate. He now
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took up his old life again, and made several experiments on the

pressure exerted by gases and liquids : it was also about this

period that he invented the arithmetical triangle, and together

with Fermat created the calculus of probabilities. He was

meditating marriage when an accident again turned the current

of his thoughts to a religious life. He was driving a four-in-

hand on Nov. 23, 1654, when the horses ran away; the two

leaders dashed over the parapet of the bridge at Neuilly, and

Pascal was only saved by the traces breaking. Always some

what of a mystic, he considered this a special summons to

abandon the world. He wrote an account of the accident on

a small piece of parchment, which for the rest of his life he

wore next to his heart to perpetually remind him of his cove

nant
;
and shortly moved to Port Royal where he continued

to live until his death in 1662. Always delicate, he had

injured his health by his incessant study ;
from the age of

seventeen or eighteen he suffered from insomnia and acute

dyspepsia, and at the time of his death was completely worn

out.

His famous Provincial Letters directed against the Jesuits,

and his Pensees, were written towards the close of his life, and

are the first example of that finished form which is characte

ristic of the best French literature. The only mathematical

work that he produced after retiring to Port Royal was the

essay on the cycloid in 1658. He was suffering from sleepless

ness and tooth-ache when the idea occurred to him, and to his

surprise his teeth immediately ceased to ache. Regarding this

as a divine intimation to proceed with the problem, he worked

incessantly for eight days at it, and completed a tolerably full

account of the geometry of the cycloid.

I now proceed to consider his mathematical works in

rather greater detail.

His early essay on the geometry of conies, written in 1639

but not published till 1779, seems to have been founded on

the teaching of Desargues. Two of the results are important

as well as interesting. The first of these is the theorem known
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now as &quot;Pascal s theorem,&quot; namely, that if a hexagon be

inscribed in a conic, the points of intersection of the opposite

sides will lie in a straight line. The second, which is really due

to Desargues, is that if a quadrilateral be inscribed in a conic,

and a straight line be drawn cutting the sides taken in order

in the points A, B, C, and
/&amp;gt;,

and the conic in P and Q, then

PA . PC : PB . PD = QA . QC : QB . QD.

Pascal s Arithmetical triangle was written in 1653, but

not printed till 1665. The triangle is constructed as in the

11111
12345
1 3 6 /10 15

10 20 35

5 15 35 70

annexed figure, each horizontal line being formed from the one

above it by making every number in it equal to the sum of those

above and to the left of it in the row immediately above
; e.g. in

the 4th line 20 = 1 + 3 + 6 + 10. Then Pascal s arithmetical

triangle (to any required order) is got by drawing a diagonal
downwards from right to left as in the figure. These num
bers are what are now called jiyurate numbers. Those in

the first line are called numbers of the first order; those

in the second line, natural numbers or numbers of the second

order; those in the third lino numbers of the third order,

and so on. It is easily -li&amp;lt; \vn that the &amp;gt;//th number in the ?tth

row is (m + n - 2) ! / (m -
1) ! (n -1)1

The numbers in any diagonal give the coefficients of the

expansion of a binomial : for example, the figures in the
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fifth diagonal namely, 1, 4, 6, 4, 1, are the coefficients in the

expansion (a + b)
4
. Pascal used the triangle partly for this

purpose and partly to find the numbers of combinations of .

ra things taken n at a time, which he stated (correctly) to

be (n + 1) (n + 2) (n + 3) . . . m / (ra
-
n) !

Perhaps as a mathematician Pascal is best known in

connection with his correspondence with Fermat in 1654 in

which he laid down the principles of the theory ofprobabilities.
This correspondence arose from a problem proposed by a

gamester, the Chevalier de Mere, to Pascal who communicated

it to Fermat. The problem was this. Two players of equal

skill want to leave the table before finishing their game. Their

scores and the number of points which constitute the game

being given, it is desired to find in what proportion should they
divide the stakes. Pascal and Fermat agreed on the answer,

but gave different proofs. The following is a translation of

Pascal s solution. That of Fermat is given later.

The following is my method for determining the share of each player,

when, for example, two players play a game of three points and each

player has staked 32 pistoles.

Suppose that the first player has gained two points, and the second

player one point ; they have now to play for a point on this condition,

that, if the first player gain, he takes all the money which is at stake,

namely, 64 pistoles ; while, if the second player gain, each player has two

points, so that they are on terms of equality, and, if they leave off play

ing, each ought to take 32 pistoles. Thus, if the first player gain, then

64 pistoles helong to him, and, if he lose, then 32 pistoles belong to him.

If therefore the players do not wish to play this game, but to separate

without playing it, the first player would say to the second &quot;I am certain

of 32 pistoles even if I lose this game, and as for the other 32 pistoles

perhaps I shall have them and perhaps you will have them ;
the chances

are equal. Let us then divide these 32 pistoles equally, and give me also

the 32 pistoles of which I am certain.&quot; Thus the first player will have

48 pistoles and the second 16 pistoles.

Next, suppose that the first player has gained two points and the

second player none, and that they are about to play for a point; the

condition then is that, if the first player gain this point, he secures the

game and takes the 64 pistoles, and, if the second player gain this point,

then the players will be in the situation already examined, in which the

first player is entitled to 48 pistoles and the second to 16 pistoles.
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Thus, if they do not wish to play, the first player would say to the second

&quot;If I gain the point, I gain 64 pistoles; if I lose it, I am entitled to

48 pistoles. Give me then the 48 pistoles of which I am certain, and

divide the other 16 equally, since our chances of gaining the point are

equal.&quot; Thus the first player will have 56 pistoles and the second player
8 pistoles.

Finally, suppose that the first player has gained one point and the

second player none. If they proceed to play for a point, the condition is

that, if the first player gain it, the players will be in the situation first

examined, in which the first player is entitled to 56 pistoles ;
if the first

player lose the point, each player has then a point, and each is entitled

to 32 pistoles. Thus, if they do not wish to play, the first player would

say to the second * Give me the 32 pistoles of which I am certain and

divide the remainder of the 56 pistoles equally, that is, divide 24 pistoles

equally.&quot; Thus the first player will have the sum of 32 and 12 pistoles,

that is, 44 pistoles, and consequently the second will have 20 pistoles.

Pascal proceeds next to consider the similar problem when
the game is won by whoever first obtains m -f n points, and one

player has m while the other has n points. The answer is ob

tained by using the arithmetical triangle. The general solution

(in which the skill of the players is unequal) is given in many
modern text-books on algebra and agrees with Pascal s result,

though of course the notation of the latter is different and

less convenient.

Pascal made a most illegitimate use of the new theory in

the seventh chapter of his Pensees. He practically puts his

argument that, as the value of eternal happiness must be infi

nite, then, even if the probability of a religious life ensuring
eternal happiness be very small, still the expectation (which is

measured by the product of the two) must be of sufficient

magnitude to make it worth while to be religious. The argu

ment, if worth anything, would apply equally to any religion

which promised eternal happiness to those who accepted its

doctrines. If any conclusion may be drawn from the statement

it is the undesirability of applying mathematics to questions of

morality of which some of the data are necessarily outside the

range of an exact science. It is only fair to add that no one

had more contempt than Pascal for those who changed their
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opinions according to the prospect of material benefit, and this

isolated passage is at variance with the spirit of his writings.

The last mathematical work of Pascal was that on the

cycloid in 1658. The cycloid is the curve traced out by a

point on the circumference of a circular hoop which rolls along
a straight line. Galileo, in 1630, nad been the first to call

attention to this curve, and had suggested that the arches of

bridges should be built in the form of it: it is a graceful

curve, but the only bridge with cycloidal arches of which

I have heard is the one built by Essex in the grounds of

Trinity College, Cambridge. Four years later, in 1634,

Roberval found the area of the cycloid ;
Descartes thought

little of this solution and defied him to find its tangents, the

same challenge being also sent to Fermat who at once solved

the problem. Several questions connected with the curve, and

with the surface and volume generated by its revolution about

its axis, base, or the tangent at its vertex were then proposed

by various mathematicians. These and some analogous ques

tions, as well as the positions of the centres of the mass of the

solids formed, were solved by Pascal in 1658, and the results

were issued as a challenge to the world. Wallis succeeded in

solving all the questions except those connected with the centre

of mass. Pascal s own solutions were effected by the method

of indivisibles, and are similar to those which a modern

mathematician would give by the aid of the integral calculus.

He obtained by summation what are equivalent to the follow

ing integrals

/sin &amp;lt; dfa /sin
2

&amp;lt;

c/&amp;lt;,
/&amp;lt;/&amp;gt;

siii
&amp;lt;/&amp;gt; d&amp;lt;j&amp;gt;,

one limit being either or JTT. He also investigated the

geometry of the Archimedean spiral, These researches ac

cording to D Alembert form a connecting link between the geo

metry of Archimedes and the infinitesimal calculus of Newton.

Wallis*. John Wallis was born at Ashford on Nov. 22,

* See my History of the Study of Mathematics at Cambridge, pp. 41

46. An edition of Wallis s mathematical works was published in three

volumes at Oxford, 169398.
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1616, and died at Oxford on Oct. 28, 1703. When fifteen

years old he happened to see a book of arithmetic in the hands

of his brother; struck with curiosity at the odd signs and

symbols in it he borrowed the book, and in a fortnight had

mastered the subject. It was intended that he should be a

doctor, and he was sent to Emmanuel College, Cambridge.
While there he kept an &quot; act

&quot; on the doctrine of the circulation

of the blood this is said to have been the first occasion in

Europe on which this theory was publicly maintained in a

disputation. His interests however centred on mathematics.

He was elected to a fellowship at Queens College, Cam

bridge, and subsequently took orders, but on the whole

adhered to the Puritan party to whom he rendered great

assistance in deciphering the royalist despatches. He however

joined the moderate Presbyterians in signing the remonstrance

against the execution of Charles I., by which he incurred the

lasting hostility of the Independents. In spite of their oppo

sition, he was appointed in 1649 to the Savilian chair of

geometry at Oxford, where he lived until his death on Oct. 28,

1703. Besides his mathematical works he wrote on theology,

logic, and philosophy ;
and was the first to devise a system for

teaching deaf-mutes. I confine myself to a few notes on his

more important mathematical writings. They are notable partly

for the introduction of the use of infinite series as an ordinary

part of analysis, and partly for the fact that they revealed and

explained to all students the principles of those new methods

which distinguish modern from classical mathematics.

The most important of Wallis s works was his Amthmetica

Infinitorum, which was published in 1656. In this treatise

the methods of analysis of Descartes and Cavalieri were

systematized and greatly extended, but their logical exposition
is open to criticism. It at once became the standard book

on the subject, and is constantly referred to by subsequent
writers. It is prefaced by a short tract on conic sections

which was subsequently expanded into a separate treatise.

He commences by proving the law of indices ;
shews that

B. 19
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05, x~\ x~2
... represent 1, l/x, l/x

2
...

;
that x* represents the

square root of x, that x* represents the cube root of x2

,
and

generally that x~
n

represents the reciprocal of xn and that

x represents the qth root of xp
.

Leaving the numerous algebraical applications of this dis

covery he next proceeds to find, by the method of indivisibles,

the area enclosed between the curve y = xm
,
the axis of x, and

any ordinate x=-h m

}
and he proves that the ratio of this area

to that of the parallelogram on the same base and of the

same altitude is equal to the ratio 1 : m + 1 . He apparently
assumed that the same result would be true also for the

curve y = axm
,
where a is any constant, and m any number

positive or negative ;
but he only discusses the case of the

parabola in which m =
2, and that of the hyperbola in which

m 1 : in the latter case his interpretation of the result is

incorrect. He then shews that similar results might be

written down for any curve of the form y = 2&amp;lt;ax

m
;
and hence

that, if the ordinate y of a curve can be expanded in powers
of the abscissa x, its quadrature can be determined : thus he

said that, if the equation of a curve were y x + x1 + x2 + . . .
,

its area would be x + ^x
2 + ^x

3 + ... . He then applies this

to the quadrature of the curves y (x- x2

) , y (x a?
2

)

1

,

y (x x2

)

2
, y = (x x2

)

3

,
&c. taken between the limits x and

x 1
;
and shews that the areas are respectively 1, ^, ^, T^,

i

&c. He next considers curves of the form y = xm and estab

lishes the theorem that the area bounded by the curve, the axis

of x, and the ordinate x = 1, is to the area of the rectangle on

the same base and of the same altitude as m : m + 1. This is

C ~

equivalent to finding the value of / xmdx. He illustrates

this by the parabola in which m 2. He states, but does not

prove, the corresponding result for a curve of the form y xp

This work contains also one of the earliest investigations of

the formation and properties of continued fractions, a dis-
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cussion that was suggested by Brouncker s use of these fractions

(see below, p. 314).

Wallis shewed considerable ingenuity in reducing the equa
tions of curves to the forms given above, but, as he was

unacquainted with the binomial theorem, he could not effect

the quadrature of the circle, whose equation is y = (x-x*)^&amp;gt;

since he was unable to expand this in powers of x. He laid

down however the principle of interpolation. Thus, as the ordi-

nate of the circle y = (x-x
2

)*
is the geometrical mean between

the ordinates of the curves y (x x2
)
and y (x a;

2

)

1

,
it might

be supposed that, as an approximation, the area of the semi

circle / (x - x2

) dx, which is
|-TT, might be taken as the geometri-

J o

cal mean between the values of I (x-x
2

)dx and I (x x*)
l

dx,
Jo Jo

that is, 1 and J ;
this is equivalent to taking 4 J^ or 3 *26 . . .

as the value of TT. But, Wallis argued, we have in fact a

series 1, , -$, T|^, ...
,
and therefore the term interpolated

between 1 and ^ ought to be so chosen as to obey the law

of this series. This, by an elaborate method, which I need

not describe in detail, leads to a value for the interpolated

term which is equivalent to taking

2.2.4.4.6.6.8.8..
=2

1.3.3.5.5.7.7.9
The subsequent mathematicians of the seventeenth century

constantly used interpolation to obtain results which we should

attempt to obtain by direct analysis.

A few years later, in 1659, Wallis published a tract con

taining the solution of the problems on the cycloid which had

been proposed by Pascal (see above, p. 288). In this he

incidentally explained how the principles laid down in his

Arithmetics Infinitorum could be used for the rectification of

algebraic curves
;
and gave a solution of the problem to rectify

the semi-cubical parabola x3 =
ay*, which had been discovered

iu 1657 by his pupil William Neil. This was the first case

192
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in which the length of a curved line was determined by

mathematics, and since all attempts to rectify the ellipse

and hyperbola had been (necessarily) ineffectual, it had

been previously supposed that no curves could be rectified,

.
as indeed Descartes had definitely asserted to be the case.

The cycloid was the second curve rectified
;
this was done by

Wren in 1658. Early in 1658 a similar discovery, independ
ent of that of Neil, was made by van Heuraet*, and this was

published by van Schooten in his edition of Descartes s Geometria

in 1659. Van Heuraet s method is as follows. He supposes
the curve to be referred to rectangular axes

;
if this be so,

and if (x, ?/)
be the coordinates of any point on it, and n the

length of the normal, and if another point whose coordinates

are (x, rj)
be taken such that f]\li n\y^ where h is a con

stant
; then, if ds be the element of the length of the required

curve, we have by similar triangles ds : dx = n\y. Therefore

hds = rjdx. Hence, if the area of the locus of the point (x, 77)

can be found, the first curve can be rectified. In this way
van Heuraet effected the rectification of the curve y

3 = ax2

;

and added that the rectification of the parabola y
2 = ax is

impossible since it requires the quadrature of the hyperbola.

The solutions given by Neil and Wallis are somewhat similar

to that given by van Heuraet, but no general rule is enunciated,

and the analysis is clumsy. A third method was suggested

by Fermat in 1660, but it is both inelegant and laborious.

In 1665 Wallis published the first systematic treatise on

analytical conic sections. I have already mentioned that the

Geometric of Descartes is both difficult and obscure, and to

many of his contemporaries, to whom the method was new, it

must have been incomprehensible. Wallis made the method

intelligible to all mathematicians. This is the earliest book in

which these curves are considered and defined as curves of the

second degree and not as sections of a cone on a circular base.

* On van Heuraet, see the Bibliotheca Mathematica, 1887, vol. i.,

pp. 7680.
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The theory of the collision of bodies was propounded by
the Royal Society in 1668 for the consideration of mathe

maticians. Wallis, Wren, and Huygens sent correct and

similar solutions, all depending on what is now called the

conservation of momentum
; but, while Wren and Huygens

confined their theory to perfectly elastic bodies, Wallis con

sidered also imperfectly elastic bodies. This was followed in

1669 by a work on statics (centres of gravity), and in 1670 by
one on dynamics : these provide a convenient synopsis of what

was then known on the subject.

In 1685 Wallis published an Algebra, preceded by a his

torical account of the development of the subject, which

contains a great deal of valuable information. The second

edition, issued in 1693 and forming the second volume of his

Opera, is considerably enlarged. This algebra is noteworthy
as containing the first systematic use of formulae. A given

magnitude is here represented by the numerical ratio which

it bears to the unit of the same kind of magnitude: thus, when
Wallis wants to compare two lengths he regards each as con

taining so many units of length. This perhaps will be made
clearer if I say that the relation between the space described

in any time by a particle moving with a uniform velocity would

be denoted by Wallis by the formula s = vt, where s is the

number representing the ratio of the space described to the

unit of length ;
while previous writers would have denoted the

same relation by stating what is equivalent to the proposition

*i
:S

2
= VJ\ : V

2*2
:

(
see e-9- Newton s Principia, bk. I. sect. I.

lemma 10 or 11). It is curious to note that Wallis rejected
as absurd the now usual idea of a negative number as being
less than nothing, but accepted the view that it is something

greater than infinity. The latter opinion may be right and

consistent with the former, but it is hardly a more simple one.

Fennat. While Descartes was laying the foundations of

analytical geometry, the same subject was occupying the

attention of another and hardly less distinguished Frenchman.

This was Fermat. Pierre de Fermat, who was born near
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Montauban in 1601, and died at Castres on Jan. 12, 1665,
was the son of a leather-merchant; he was educated at

home; in 1631 he obtained the post of councillor for the local

parliament at Toulouse, and he discharged the duties or the

office with scrupulous accuracy and fidelity. There, devoting
most of his leisure to mathematics, he spent the remainder of

his life a life which, but for a somewhat acrimonious dispute
with Descartes on the validity of analysis used by the latter,

was unruffled by any event which calls for special notice.

The dispute was due chiefly to the obscurity of Descartes,

but the tact and courtesy of Fermat brought it to a friendly

conclusion. Fermat was a good scholar and amused himself by

conjecturally restoring the work of Apollonius on plane loci.

Except a few isolated papers Fermat published nothing
in his lifetime, and gave no systematic exposition of his

methods. Some of the most striking of his results were found

after his death on loose sheets of paper or written in the

margins of works which he had read and annotated, and are

unaccompanied by any proof. It is thus somewhat difficult to

estimate the dates and originality of his work. After his death

his papers and correspondence were printed by his nephew
at Toulouse in two volumes, 1670 and 1679 : a summary of it

with notes was published by Brassine at Toulouse in 1853,

and a reprint of it was issued at Berlin in 1861 : anew edition

is now being issued by the French government, which will

include some letters on his discoveries and methods in the theory
of numbers recently found at Leyden by M. Charles Henry.
Fermat was constitutionally modest and retiring, and does not

seem to have intended his papers to be published. It is

probable that he revised his notes as occasion required, and

that his published works represent the final form of his

researches, and therefore cannot be dated much earlier than

1660. I shall consider separately (i)
his investigations in the

theory of numbers
; (ii) his use in geometry of analysis and

of infinitesimals
;

arid
(iii)

his method of treating questions of

probability.



FERMAT. 295

(i)
The theory of numbers appears to have been the

favourite study of Fermat. He prepared an edition of Dio-

phantus, and the notes and comments thereon contain numerous

theorems of considerable elegance : this forms the first of the two

volumes of his works. Most of the proofs of Fermat are lost,

and it is possible that some of them were nob rigorous an

induction by analogy and the intuition of genius sufficing to

lead him to correct results. The following examples will

illustrate these investigations.

(a) If p be a prime and a be prime to p, then ap
~

l - 1 is

divisible by p, that is, a
p
~

l -1 =
(mod. p). A proof of this,

first given by Euler, is well known. A more general theorem

is that a&amp;lt;M

w ) 1 = (mod. ri),
where a is prime to n and &amp;lt; (n)

is the number of integers less than n and prime to it.

(6) A prime (greater than 2) can be expressed as the

difference of two square integers in one and only one way.
Fermat s proof is as follows. Let n be the prime, and suppose
it equal to x2 - y

2

,
that is, to (x + y] (x-y). Now, by hypo

thesis, the only integral factors of n are n and unity, hence

x + y n and x y \. Solving these equations we get
x = ^ (n + 1

)
and y \ (n 1

).

(c)
He gave a proof of the statement made by Diophantus

(quoted above on p. Ill) that the sum of the squares of two

integers cannot be of the form n - 1
;
and he added a corollary

which I take to mean that it is impossible that the product
of a square and a prime of the form 4/i - 1 [even if mul

tiplied by a number prime to the latter], can be either a

square or the sum of two squares. For example, 44 is a

multiple of 11 (which is of the form 4x3-1) by 4, hence

it cannot be expressed as the sum of two squares. He also

stated that a number of the form 2 + 62
,
where a is prime

to by cannot be divided by a prime of the form 4n - 1.

(d) Every prime of the form 4n + 1 is expressible, and that

in one way only, as the sum of two squares. This problem was

first solved by Euler who shewed that a number of the form

2
m

(4/i + 1) can be always expressed as the sum of two squares.
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(e) If a, b, c be integers, such that a2 + 62 = c
2

,
then ab

cannot be a square. Lagrange gave a solution of this.

(/) The determination of a number x such that x2n + 1 may
be a square, where n is a given integer which is not a square.

(g) There is only one integral solution of the equation
x2 + 2 = y

3

;
and there are only two integral solutions of the

equation x2 + 4 = y
3

. The required solutions are evidently for

the first equation x = 5, and for the second equation x = 2 and

a? = 11. This question was issued as a challenge to the English
mathematicians Wallis and Digby.

(h) No integral values of x, y, z can be found to satisfy

the equation xn + y
n = z

n

,
if n be an integer greater than 2.

This proposition* has acquired extraordinary celebrity from

the fact that no general demonstration of it has been given,

but there is no reason to doubt that it is true.

Probably Fermat discovered its truth first for the case

n= 3, and then for the case n = 4. His proof for the former of

these cases is lost, but that for the latter is extant, and a

similar proof for the case of n 3 was given by Euler. These

proofs depend upon shewing that, if three integral values of

x, y, z can be found which satisfy the equation, then it will be

possible to find three other and smaller integers which also

satisfy it : in this way finally we shew that the equation must

be satisfied by three values which obviously do not satisfy it.

Thus no integral solution is possible. It would seem that this

method is inapplicable to any cases except those of n = 3 and

11=4.

Fermat s discovery of the general theorem was made later.

An easy demonstration can be given on the assumption that a

number can be resolved into prime (complex) factors in one

and only one way. The assumption has been made by some

writers, but it is not universally true. It is possible that

Fermat made some such supposition though it is perhaps more

likely that he discovered a rigorous demonstration.

* On this curious proposition, see my Mathematical Recreations and

Problems, pp. 2730.
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In 1823 Legeridre obtained a proof for the case of n = 5
,

in 1832 Lejeune Dirichlet gave one for n= 14, and in 1840

Lame and Lebesgue gave proofs for n = 7. The proposition

appears to be true universally, and in 1849 Kummer, by means

of ideal primes, proved it to be so for all numbers except those

(if any) which satisfy three conditions. It is not certain whether

any number can be found to satisfy these conditions, but there

is 110 number less than 100 which does so. The proof is com

plicated and difficult, and there can be no doubt is based on

considerations unknown to Fermat. I may add that, to prove
the truth of the proposition when n is greater than 4, it obvi

ously is sufficient to confine ourselves to cases where n is a

prime, and the first step in Rummer s demonstration is to

shew that in such cases one of the numbers #, y, z must be

divisible by n.

The following extracts, from a letter* now in the univer

sity library at Leyden, will give an idea of Fermat s methods
;

the letter is undated, but it would appear that, at the time

Fermat wrote it, he had proved the proposition (A) above

only for the case when n = 3.

Je ne m en servis au commencement que pour demontrer les propo
sitions negatives, comme par exemple, qu il n y a aucu nombre moindre
de I unit6 qu un multiple de 3 qui soit compost d un quarre et du triple
d un autre quarre. Qu il n y a aucun triangle rectangle de nombres dont
1 aire soit un nombre quarr6. La preuve se fait par a.Tra.yuyT)v rty ek
aduvarov en cette maniere. S il y auoit aucun triangle rectangle en

nombres entiers, qui eust son aire esgale & un quarrc*, il y auroit un
autre triangle moindre que celuy la qui auroit la mesme propriete. S il

y en auoit un second moindre que le premier qui eust la mesme pro
priete il y en auroit par un pareil raisonnement un troisieme moindre

que ce second qui auroit la mesme propriete et enfin un quatrieme, un

cinquieme etc. a 1 infini en descendant. Or est il qu estant donntS un
nombre il n y en a point infinis en descendant moindres que celuy la,

j entens parler tousjours des nombres entiers. D ou on conclud qu il est

done impossible qu il y ait aucun triangle rectangle dont 1 aire soit

quarre. Vide foliu post sequens....

* The letter is printed at length in Boncompagni s Bullettino di

bibliografia for 1879, pp. 737740.
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Je fus longtemps sans pouuoir appliquer ma methode aux questions

affirmatiues, parce que le tour et le biais pour y venir est beaucoup plus
malaise que celuy dont je me sers aux negatives. De sorte que lors qu il

me falut demonstrer que tout nombre premier qui surpasse de I unite un

multiple de 4, est compose de deux quarrez je me treuuay en belle peine.
Mais enfin une meditation diverses fois reiteree me donna les lumieres

qui me manquoient. Et les questions affirmatiues passerent par ma
methode a 1 ayde de quelques nouueaux principes qu il y fallust joindre

par necessity. Ce progres de mon raisonnement en ces questions affir

matives estoit tel. Si un nombre premier pris a discretion qui surpasse
de I unite un multiple de 4 n est point compose de deux quarrez il y aura
un nombre premier de mesme nature moindre que le donn6

;
et ensuite

un troisieme encore moindre, etc. en descendant a Finfini jusques a ce

que uous arriviez au nombre 5, qui est le moindre de tous ceux de cette

nature, lequel il s en suivroit n estre pas compose de deux quarrez, ce

qu il est pourtant d ou on doit inferer par la deduction a 1 impossible que
tous ceux de cette nature sont par consequent composez de 2 quarrez.
II y a infinies questions de cette espece.

Mais il y en a quelques autres qui demandent de nouveaux principes

pour y appliquer la descente, et la recherche en est quelques fois si mal

aistje, qu on n y peut venir qu auec une peine extreme. Telle est la ques
tion suiuante que Bachet sur Diophante avoiie n avoir jamais peu demon

strer, sur le suject de laquelle M.r Descartes fait dans une de ses lettres

la mesme declaration, jusques la qu il confesse qu il la juge si difficile,

qu il ne voit point de voye pour la resoudre. Tout nombre est quarre*,

ou compost de deux, de trois, ou de quatre quarrez. Je 1 ay enfin rang6e
sous ma methode et je demonstre que si un nombre donne n estoit point
de cette nature il y en auroit un moindre qui ne le seroit pas non plus,

puis un troisieme moindre que le second &c. a 1 infini, d ou Ton infere

que tous les nombres sont de cette nature....

J ay ensuite considere certaines questions qui bien que negatives ne

restent pas de receuoir tres-grande difficulte la methode pour y pratiquer
la descente estant tout a fait diuerse des precedentes comme il sera aise

d esprouuer. Telles sont les suiuantes. II n y a aucun cube diuisible

en deux cubes. II n y a qu un seul quarr6 en entiers qui augmente du
binaire fasse un cube ledit quarr6 est 25. II n y a que deux quarrez en

entiers lesquels augmentes de 4 fassent cube, lesdits quarrez sont 4

et 121....

Apr6s auoir couru toutes ces questions la pluspart de diuerses (sic)

nature et de differente facon de demonstrer, j ay passe a 1 inuention

des regies generales pour resoudre les equations simples et doubles de

Diophante. On propose par exemple 2 quarr. + 7967 esgaux a un quarre*

(hoc est 2## + 7967 x quadr.) J ay une regie generale pour resoudre

cette equation si elle est possible, ou decouvrir son impossibility Et
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ainsi en tons les cas et en tous nombres tant des quarrez que des unitez.

On propose cette equation double 2x + 3 et 3x + 5 esgaux chacun a un

quarre. Bachet se glorifie en ses commentaires sur Diophante d auoir

trouve une regie en deux cas particuliers. Je la donne generale en toute

sorte de cas. Et determine par regie si elle est possible ou non....

Voila sommairement le conte de mes recherches sur le suject des

nombres. Je ne 1 ay escrit que parce que j apprehende que le loisir

d estendre et de mettre au long toutes ces demonstrations et ces metliodes

me manquera. En tout cas cette indication seruira aux scauants pour
trouver d eux mesmes ce que je n estens point, principalement si M. r de

Carcaui et Fr6nicle leur font part de quelques demonstrations par la

descente que je leur ay enuoyees sur le suject de quelques propositions

negatiues. Et peut estre la posterite me scaura gre de luy avoir fait

connoistre que les anciens n ont pas tout sceu, et cette relation pourra

passer dans I esprit de ceux qui viendront apres moy pour traditio lam-

padis ad filios, comme parle le grand Chancelier d Angleterre, suiuant le

sentiment et la deuise duquel j adjousteray, multi pertransibunt et auge-

bitur scientia.

(ii)
I next proceed to mention Fermat s use in geometry

of analysis and of infinitesimals. It would seem from his

correspondence that he had thought out the principles of

analytical geometry for himself before reading Descartes s

Geometric and had realized that from the equation (or as he

calls it, the &quot;

specific property &quot;)

of a curve all its properties
could be deduced. His extant papers on geometry deal how
ever mainly with the application of infinitesimals, to the

determination of the tangents to curves, to the quadrature of

curves, and to questions of maxima and minima
; probably

these papers are a revision of his original manuscripts (which
he destroyed) and were written about 1663, but there is no
doubt that he was in possession of the general idea of his

method for finding maxima and minima as early as 1628 or

1629.

He obtained the subtangent to the ellipse, cycloid, cissoid,

conchoid, and quadratrix by making the ordinates of the curve

and a straight line the same for two points whose abscissae

were x and x - e
;
but there is nothing to indicate that he was

aware that the process was general, and, though in the course
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of his work he used the principle, it is probable that he never

separated it, so to speak, from the symbols of the particular

problem he was considering. The first definite statement of

the method was due to Barrow and was published in 1669

(see below, p. 312),

Fermat also obtained the areas of parabolas and hyperbolas
of any order, and determined the centre of mass of a few

simple curves and of a paraboloid of revolution. As an ex

ample of his method of solving these questions I will quote
his solution of the problem to find the area between the

parabola y^py^^ the axis of #, and the line x a. He says

that, if the several ordinates at the points for which x is

equal to a, a (1
-

e), a(l-e)
2
,

... be drawn, then the area

will be split into a number of little rectangles whose areas are

respectively

afl(pa )* ae(l
-
e){pa (l

-
) }*,

... .

The sum of these is p* a? e/{l -(I -
e)&quot;

8

); and by a subsidiary

proposition (for of course he was not acquainted with the

binomial theorem) he finds the limit of this when e vanishes

to be %p*a*. The theorems last mentioned were published

only after his death; and probably they were not written till

after he had read the works of Cavalieri and Wallis.

Kepler had remarked that the values of a function imme

diately adjacent to and on either side of a maximum (or

minimum) value must be equal. Fermat applied this principle

to a few examples. Thus, to find the maximum value of

x (a x), his method is essentially equivalent to taking a con

secutive value of x, namely x e where e is very small, and

putting x(a-x]-(x-e) (a x+e). Simplifying, and ultimately

putting e = 0, we get x = ^a. This value of x makes the given

expression a maximum.

(iii)
Fermat must share with Pascal the honour of having

founded the theory of probabilities. I have already mentioned

(see above, p. 286) the problem proposed to Pascal, and which

he communicated to Fermat, and have there given Pascal s
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solution. Fermat s solution depends on the theory of com

binations and will be sufficiently illustrated by the following

example the substance of which is taken from a letter dated

Aug. 24, 1654, which occurs in the correspondence with Pascal.

Fermat discusses the case of two players, and supposes that the

first wants two points to win and the second three points.

The game will be then certainly decided in the course of four

trials. Take the letters a and b and write down all the com

binations that can be formed of four letters. These combi

nations are the following, 16 in number :

Now let A denote the player who wants two points, and B the

player who wants three points. Then in these 16 combinations

every combination in which a occurs twice or oftener represents

a case favourable to A, and every combination in which b

occurs three times or oftener represents a case favourable to B.

Thus, on counting them, it will be found that there are 11 cases

favourable to A
,
and 5 cases favourable to B

; and, since these

cases are all equally likely, A s chance of winning the game is

to It s chances as 11 is to 5.

The only other problem on this subject which as far as

I know attracted the attention of Fermat was also proposed to

him by Pascal and was as follows. A person undertakes to

throw a six with a die in eight throws; supposing him to have

made three throws without success, what portion of the stake

should he be allowed to take on condition of giving up his

fourth throw? Fermat s reasoning is as follows. The chance

of success is
,
so that he should be allowed to take ^ of the

stake on condition of giving up his throw. But, if we wish to

estimate the value of the fourth throw before any throw is

made, then the first throw is worth of the stake
;
the second

is worth of what remains, that is, ^ of the stake
;
the third
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throw is worth i of what now remains, that is, ^yV ^ the

stake ;
the fourth throw is worth i of what now remains, that

is TV
2w f *ke stake.

Fermat does not seem to have carried the matter much

further, but his correspondence with Pascal shews that his

views on the fundamental principles of the subject were ac

curate : those of Pascal were not altogether correct.

Fermat s reputation is quite unique in the history of

science. The problems on numbers which he had proposed

long defied all efforts to solve them, and many of them yielded

only to the skill of Euler. One still remains unsolved. This

extraordinary achievement has overshadowed his other work,

but in fact it is all of the highest order of excellence, and we

can only regret that he thought fit to write so little.

Huygens*. Christian Huygens was born at the Hague
on April 14, 1629, and died in the same town on June 8, 1695.

He generally wrote his name as Hugens, but I follow the usual

custom in spelling it as above : it is also sometimes written

as Huyghens. His life was uneventful and is a mere record of

the dates of his various works.

In 1651 he published an essay in which he shewed the fallacy

in a system of quadratures proposed by Gregoire de Saint-

Vincent (see below, p. 309) who was well versed in the geo

metry of the Greeks but had not grasped the essential points

in the more modern methods. This essay was followed by tracts

on the quadrature of the conies and the approximate rectification

of the circle.

In 1654 his attention was directed to the improvement of

the telescope. In conjunction with his brother he devised

a new and better way of grinding and polishing lenses.

As a result of these improvements he was able during the

* The works of Huygens were collected and published in six volumes ;

four at Leyden in 1724 and two at Amsterdam in 1728 : a life by s Grave-

sande is prefixed to the first volume. His scientific correspondence was

published at the Hague in 1833. A new edition of all his works is now

being issued at the Hague.
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following two years, 1655 and 1656, to resolve numerous

astronomical questions ;
as for example the nature of Saturn s

appendage.
His astronomical observations required some exact means

of measuring time, and he was thus led in 1656 to invent

the pendulum clock, as described in his tract Horologium,
1658. The time-pieces previously in use had been balance-

clocks.

In the year, 1657, Huygens wrote a small work on the

calculus of probabilities founded on the correspondence of

Pascal and Fermat. He spent a couple of years in England
about this time. His reputation was now so great that

in 1665 Louis XIV. offered him a pension if he would

live in Paris, which accordingly then became his place of

residence.

In 1668 he sent to the Royal Society of London, in answer to

a problem they had proposed, a memoir in which (simultane

ously with Wallis and Wren) he proved by experiment that

the momentum in a certain direction before the collision of two

bodies is equal to the momentum in that direction after the

collision. This was one of the points in mechanics on which

Descartes had been mistaken.

The most important of Huygens s work was his Horolo-

gium Oscillatorium published at Paris in 1673. The first

chapter is devoted to pendulum clocks. The second chapter
contains a complete account of the descent of heavy bodies

under their own weights in a vacuum, either vertically down
or on smooth curves. Amongst other propositions he shews

that the cycloid is tautochronous. In the third chapter he

defines evolutes and involutes, proves some of their more

elementary properties, and illustrates his methods by finding
the evolutes of the cycloid and the parabola. These are the

earliest instances in which the envelope of a moving line was
determined. In the fourth chapter he solves the problem of

the compound pendulum, and shews that the centres of oscil

lation and suspension are interchangeable. In the fifth and
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last chapter he discusses again the theory of clocks, points out

that if the bob of the pendulum were made by means of cy-

cloidal checks to oscillate in a cycloid the oscillations would be

isochronous
;
and finishes by shewing that the centrifugal force

on a body which moves in a circle of radius r with a uniform

velocity v varies directly as v
2 and inversely as r. This work

contains the first attempt to apply dynamics to bodies of finite

size and not merely to particles.

In 1675 Huygens proposed to regulate the motion of

watches by the use of the balance spring, in the theory of

which he had been perhaps anticipated in a somewhat am

biguous and incomplete statement made by Hooke in 1G58.

Watches or portable clocks had been invented early in the

sixteenth century and by the end of that century were not

very uncommon, but they were clumsy and unreliable, being

driven by a main spring and regulated by a conical pulley and

verge escapement; moreover until 1687 they had only one hand.

The first watch whose motion was regulated by a balance spring

was made at Paris under Huygens s directions, and presented

by him to Louis XIV. The increasing intolerance of the

Catholics led to his return to Holland in 1681, and after

the revocation of the edict of Nantes he refused to hold any
further communication with France. He now devoted himself

to the construction of lenses of enormous focal length : of these

three of focal lengths 123ft., 180ft., and 210ft. were sub

sequently given by him to the Royal Society of London in

whose possession they still remain. It was about this time

that he discovered the achromatic eye-piece (for a telescope)

which is known by his name. In 1689 he came from Holland

to England in order to make the acquaintance of Newton
whose Principia had been published in 1687, the extraordinary

merits of which Huygens had at once recognized.

On his return in 1690 Huygens published his treatise on

light in which the undulatory theory was expounded and ex

plained. Most of this had been written as early as 1678.

The general idea of the theory had been suggested by Robert



HUYGENS. 305

Hooke in 1664, but he had not investigated its consequences

in any detail. This publication falls outside the years con

sidered in this chapter, but here it may be briefly said that

according to the wave or undulatory theory space is filled with

an extremely rare ether, and light is caused by a series of

waves or vibrations in this ether which are set in motion by
the pulsations of the luminous body. From this hypothesis

Huygens deduced the laws of reflexion and refraction, explained

the phenomena of double refraction, and gave a construction

for the extraordinary ray in biaxal crystals ;
while he found

by experiment the chief phenomena of polarization.

The immense reputation and unrivalled powers of Newton
led to disbelief in a theory which he rejected, and to the

general adoption of Newton s emission theory (see below,

p. 326) ;
but it should be noted that Huygens s explanation

of some phenomena, such as the colours of thin plates, was

inconsistent with the results of experiments, nor was it until

Young and Wollaston at the beginning of this century revived

the undulatory theory and modified some of its details and

Fresnel elaborated their views that its acceptance could be fully

justified.

Besides these works Hnygeus took part in most of the

controversies and challenges which then played so large a part
in the mathematical world, and wrote several minor tracts.

In one of these he investigated the form and properties of the

catenary. In another he stated in general terms the rule for

finding maxima and minima of which Fermat had made use,

and shewed that the subtangent of an algebraical curve

f (
x

&amp;gt; y)
= was equal to

#/],//*.,
wherefy

is the derived function

off fa y) regarded as a function of y. In some posthumous

works, issued at Leyden in 1703, he further shewed how from

the focal lengths of the component lenses the magnifying

power of a telescope could be determined
;
and explained some

of the phenomena connected with halos and parhelia.

I should add that almost all his demonstrations, like those

of Newton, are rigidly geometrical, and lie would seem to have

B. 20
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made no use of the differential or fluxional calculus, though he

admitted the validity of the methods used therein. Thus, even

when first written, his works were expressed in an archaic

language, and perhaps received less attention than their intrinsic

merits deserved.

I have now traced the development of mathematics for a

period which we may take roughly as dating from 1635 to

1675 under the influence of Descartes, Cavalieri, Pascal, Wallis,

Fermat, and Huygens. The life of Newton partly overlaps

this period: his works and influence are considered in the next

chapter.

I may dismiss the remaining mathematicians of this time

whom I desire to mention with comparatively slight notice. The

following is an alphabetical list of the more remarkable among
them : the dates given are those of the birth and death of the

mathematician to whose name they are appended. Backet,

1581 1638: Barrow, 1630 1677 : Brouncker, 16201684:

Collins, 1625 1683: Courtier, 16041692: de Beaune,

16011652: de Laloubere, 16001664: Frenicle, 1605

1670: Jas. Gregory, 16381675: Hooke, 16351703: Hudde,
16331704: Kinckkuysen, 16301679: Nich. Mercator, 1620

-1687: Mersenne, 1588 1648: Mydorge, 15851647:

Pell, 16101685: Ricci, 16191692: Roberval, 16021675 :

Roemer, 1644 1710: Saint- Vincent, 1584; 1667 : Sluze, 1622

1685: Torricelli, 1608 1647: Tsckirnkausen, 1631 1708:

van Schooten, died in 1661: and Wren, 1632 1723. In the

following notes I have arranged the above-mentioned mathe

maticians so that as far as possible their chief contributions

shall come in chronological order.

Bachet. Claude Gaspard Backet de Meziriac was born at

Bourg in 1581, and died in 1638. He wrote the ProUemes

plaisants, 1612, second and enlarged edition 1624, which con

tains an interesting collection of arithmetical tricks and ques

tions many of which are quoted in chapter i. of my Mathe

matical Recreations and Problems ;
also Les elements arith-
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metiques, which exists in manuscript ;
and a translation of the

Arithmetic of Diophantus. Bachet was the earliest writer who
discussed the solution of indeterminate equations by means

of continued fractions.

Mydorge. Claude Mydorge, born at Paris in 1585 and

died in 1647, belonged to a distinguished
&quot;

family of the
robe,&quot;

and was himself a councillor at Chatelet, and then treasurer

to the local parliament at Amiens. He published some works

on optics of which one, issued in 1631, is extant, and in

1641 a treatise on conic sections. He also left a manuscript

containing solutions of over a thousand geometrical problems,

many of which are. said to be ingenious : the enunciations

were published by M. Charles Henry in 1882.

Mersenne. Marin Mersenne, born in 1588 and died at Paris

in 1648, was a Franciscan friar, who made it his business to be

acquainted and correspond with the French mathematicians of

that date and many of their foreign contemporaries. In 1634

he published a translation of Galileo s mechanics
;
in 1644 he

issued his Cogitata Physico-Mathernatica, by which he is best

known, containing an account of some experiments in physics ;
he

also wrote a synopsis of mathematics, which was printed in 1664.

The preface to the Cogitata contains a statement (probably
due to Fermat), that in order that 2P 1 may be prime, the

only values of p, not greater than 257, which are possible are 1,

2, 3, 5, 7, 13, 17, 19, 31, 67, 127, and 257 : to which list Herr
Seelhoff has shewn we must add 61. With this addition, the

statement has been verified for all except twenty-three values

of p: namely, 67, 71, 89, 101, 103, 107, 109, 127, 137, 139,

149, 157, 163, 167, 173, 181, 193, 197, 199, 227, 229, 241,

and 257. Of these values, Mersenne asserted that p = 67,

p= 127, and /?=257 make 2P - 1 a prime, and that the other

.values make 2P 1 a composite number. It is most likely that

these results are particular cases of some general theorem
on the subject which remains to be discovered. The number
2

61 - 1 contains 19 digits, and is the highest number at present
known to be a prime : its value is 2,305843,009213,693951.

202
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The theory of perfect numbers depends directly on that of

Mersenne s numbers. It is probable that all perfect numbers

are included in the formula 2p
~

l

(2
P

1), where 2P - 1 is a prime.

Euclid proved that any number of this form is perfect;

Euler shewed that the formula includes all even perfect

numbers
;

and there is reason to believe though a rigid

demonstration is wanting that an odd number cannot be

perfect. If we assume that the last of these statements is

true, then every perfect number is of the above form. Thus,

if p = 2, 3, 5, 7, 13, 17, 19, 31, 61, then by Mersenne s rule

the corresponding values of 2^-1 are prime; they are 3, 7, 31,

127,8191, 131071,524287,2147483647,2305843009213693951 ;

and the corresponding perfect numbers are 6, 28, 496, 8128,

33550336, 8589869056, 137438691328,2305843008139952128,
and 2658455991569831744654692615953842176.

De Beaune. Florimond de Beaune, born at Blois in 1601

and died in 1652, wrote explanatory notes on the obscure and

difficult analytical geometry of Descartes. He also discussed

the superior and inferior limits to the roots of an equation ;

this was not published till 1659.

Roberval. Gilles Personier (de) Roberval, born at Roberval

in 1602 and died at Paris in 1675, described himself from the

place of his birth as de Roberval, a seignorial title to which he

had no right. He discussed the nature of the tangents to

curves (see above, p. 276), solved some of the easier questions

connected with the cycloid, generalized Archimedes s theorems

on the spiral, wrote on mechanics, and on the method of indi

visibles which he rendered more precise and logical. He was

a professor in the university of Paris, and in correspondence
with nearly all the leading mathematicians of his time. A
complete edition of his works was included in the old

Memoires of the Academy of Sciences published in 1693.

Van Schooten. Frans van Schooten, to whom we owe an

edition of Yieta s works, succeeded his father (who had taught

mathematics to Huygens, Hudde, and Sluze) as professor at

Leyden in 1646 : he brought out in 1659 a Latin translation
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of Descartes s Geometric ;
and in 1657 a collection of mathe

matical exercises in which he recommended the use of co

ordinates in space of three dimensions : he died in 1661.

Saint-Vincent. Gregoire de Saint- Vincent, a Jesuit, born at

Bruges in 1584 and died at Ghent in 1667, discovered the

expansion of log(l + x) in ascending powers of x. Although
a circle-squarer he is worthy of mention for the numerous

theorems of interest which he discovered in his search after

the impossible, and Montucla ingeniously remarks that &quot;no

one ever squared the circle with so much ability or (except for

his principal object) with so much success.&quot; He wrote two

books on the subject, one published in 1647 and the other in

1668, which cover some two or three thousand closely printed

pages : the fallacy in the quadrature was pointed out by

Huygens. In the former work he used indivisibles ; an earlier

work entitled Theoremata Mathematica published in 1624 con

tains a clear account of the method of exhaustions, which is

applied to several quadratures, notably that of the hyperbola.
For further details of Saint-Vincent s life and works, see

L. A. J. Quetelet s Histoire des sciences chez les Beiges, Brussels,

1866.

Torricelli. Evangelista Torricelli, born at Faenza on Oct.

15, 1608 and died at Florence in 1647, wrote on the quadra
ture of the cycloid and conies; the theory of the barometer;
the value of gravity found by observing the motion of two

weights connected by a string passing over a fixed pulley ;

the theory of projectiles ;
and the motion of fluids. His

mathematical writings were published in 1644.

Hudde. Jokann Hudde, burgomaster of Amsterdam, was

born there in 1633 and died in the same town in 1704. He
wrote two tracts in 1659 : one was on the reduction of equa
tions which have equal roots

;
in the other he stated what

is equivalent to the proposition that, \ff(x, y) =0 be the alge

braical equation of a curve, then the subtangent is -y I-
~

;

cyl ox

but being ignorant of the notation of the calculus his enuncia

tion is involved.
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Fre*nicle. Bernard Fr&nicle de Bessy, born in Paris circ.

1605 and died in 1670, wrote numerous papers on combina
tions and on the theory of numbers, also on magic squares.
It may be interesting to add that he challenged Huygens to

solve the following system of equations in integers, x2 + y
2 = z2

,

x* = u2 + v2
,
x y = u v: a solution was given by M. Pepin

in 1880. Frenicle s miscellaneous works, edited by De la

Hire, were published in the Memoires de VAcademie, vol. v,

1691.

De Laloubere* Antoine de Laloubere, a Jesuit, born in Laii-

guedoc in 1600 and died at Toulouse in 1664, is chiefly cele

brated for an incorrect solution of Pascal s problems on the

cycloid, which he gave in 1660, but he has a better claim

to distinction in having been the first mathematician to study
the properties of the helix.

Kinckhuysen. Gerard Kinckhuysen, born in Holland in

1630 and died in 1679, wrote in 1660 a text-book on analytical

conies, in 1661 an algebra, and in 1669 formed a collection of

geometrical problems solved by analytical geometry.

Courcier. Pierre Courcier^ a Jesuit, born at Troyes in 1604

and died at Auxerre in 1692, wrote on the curves of intersection

of a sphere with a cylinder or cone, also on spherical polygons :

the latter work was published in 1663.

Ricci. Michel-Ange Ricci, born in 1619, made a cardinal

in 1681, and died at Rome in 1692, wrote in 1666 a treatise

in which he solved by Greek geometry those problems on

maxima and minima and on tangents to curves which had been

considered by Descartes, Pascal, and Fermat.

N. Mercator. Nicholas Mercator (sometimes known as

Kauffmann) was born in Holstein about 1620, but resided

most of his life in England : he went to France in 1683,

where he designed and constructed the fountains at Versailles,

but when they were finished Louis XIV. refused to make him

the payment agreed on unless he would turn Catholic : he died

of vexation and poverty in Paris in 1687. He wrote a treatise

on logarithms entitled Logorithmotechnia published in 1668,
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and discovered the series

log(l +x)^x-x* + lx*-\x*+ ...;

he proved this by writing the equation of a hyperbola in the

formform

1 +x
to which Wallis s formula (see above, p. 290) could be applied.

The same series had been independently discovered by Saint-

Vincent. For further details see C. Button s Mathematical

Tracts.

Barrow. Isaac Barrow was born in London in 1630, and

died at Cambridge in 1677. He went to school first at

Charterhouse (where he was so troublesome that his father was

heard to pray that if it pleased God to take any of his children

he could best spare Isaac), and subsequently to Felstead. He

completed his education at Trinity College, Cambridge; after

taking his degree in 1648, he was elected to a fellowship in

1649, he then resided for a few years in college, but in 1655 he

was driven out by the persecution of the Independents. He

spent the next four years in the East of Europe, and after

many adventures returned to England in 1659. He was

ordained the next year, and appointed to the professorship of

Greek at Cambridge. In 1662, he was made professor of

geometry at Gresham College, and in 1663, was selected as the

first occupier of the Lucasian chair at Cambridge. He resigned

the latter to his pupil Newton in 1669 whose superior abilities

he recognized and frankly acknowledged. For the remainder

of his life he devoted himself to the study of divinity. He was

appointed master of Trinity College in 1672, and held the post

until his death.

He is described as &quot;low in stature, lean, and of a pale

complexion,&quot; slovenly in his dress, and an inveterate smoker.

He was noted for his strength and courage, and once when

travelling in the East he saved the ship by his own prowess
from capture by pirates. A ready and caustic wit made him a

favourite of Charles II., and induced the courtiers to respect
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even if they did not appreciate him. He wrote with a sus

tained and somewhat stately eloquence, and with his blameless

life and scrupulous conscientiousness was an impressive person

age of the time.

His earliest work was a complete edition of the Elements of

Euclid which he issued in 1655, he published an English
translation in 1660, and in 1657 an edition of the Data. His

lectures, delivered in 1664, 1665, and 1666, were published in

1683 under the title Lectiones Mathematicae: these are mostly
on the metaphysical basis for mathematical truths. His

lectures for 1667 were published in the same year, and suggest

the analysis by which Archimedes was led to his chief results.

In 1669 he issued his Lectiones Opticae et Geometricae; it is

said in the preface that Newton revised and corrected these

lectures adding matter of his own, but it seems probable from

Newton s remarks in the fluxional controversy that the

additions were confined to the parts which dealt with optics :

this, which is his most important work in mathematics, was

republished with a few minor alterations in 1674. In 1675

he published an edition with numerous comments on the first

four books of the Conies of Apollonius, and of the extant works

of Archimedes and Theodosius.

In the optical lectures many problems connected with the

reflexion and refraction of light are treated with great ingenuity.

The geometrical focus of a point seen by reflexion or refraction

is defined; and it is explained that the image of an object is the

locus of the geometrical foci of every point on it. Barrow also

worked out a few of the easier properties of thin lenses; and con

siderably simplified the Cartesian explanation of the rainbow.

The geometrical lectures contain some new ways of deter

mining the areas and tangents of curves. The most celebrated

of these is the method given for the determination of tangents

to curves, and this is sufficiently important to require a detailed

notice because it illustrates the way in which Barrow, Hudde,
and Sluze were working on the lines suggested by Fermat

towards the methods of the differential calculus. Fermat had
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observed that the tangent at a point P on a curve was detc

if one other point besides P on it were known
; hence, i.

length of the subtangent MT could be found (thus determim.

the point T\ then the line TP would be the required tangent.

Now Barrow remarked that if the abscissa and ordinate at a

point Q adjacent to P were drawn, he got a small triangle PQR
(which he called the differential triangle, because its sides PR
and PQ were the differences of the abscissas and ordinates of P
and (?), so that

TM : MP = QR : RP.

To find QR : RP he supposed that x, y were the coordinates of

P, and x e, y a those of Q (Barrow actually used p for x

and m for y but I alter these to agree with the modern practice).

Substituting the coordinates of Q in the equation of the curve,

and neglecting the squares and higher powers of e and a as

compared with their first powers, he obtained e : a. The ratio

a/6 was subsequently (in accordance with a suggestion made

by Sluze) termed the angular coefficient of the tangent at the

point.

Barrow applied this method to the curves
(i) o(&+jf)=l*jfi

(ii)
o;

3
-f ?/

3 -? 3

; (iii)
x3 + y

3 = rxy, called la galande ; (iv)

y=(r x) tan 7rx/2r, the quadratrix ;
and (v) y = r tan 7rx/2r.

It will be sufficient here if I take as an illustration the simpler
case of the parabola y

2 =
px. Using the notation given

above, we have for the point P, y*
= px 9

and for the point

Q, (y
- of = p (x e). Subtracting we get 2ay a2 =

pe. But,
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if a be an infinitesimal quantity, a2 must be infinitely smaller

and therefore may be neglected : hence e : a = 2y : p. There

fore TM : y = e : a = Zy : p. That is, TM = 2y
2

/p
= 2x. This

is exactly the procedure of the differential calculus, except that

we there have a rule by which we can get the ratio a/e or dyjdx

directly without the labour of going through a calculation similar

to the above for every separate case.

Brouncker. William, Viscount Brouncker, one of the

founders of the Royal Society of London, born in 1620 and

died on April 5, 1684, was among the most brilliant mathe

maticians of this time, and was in intimate relations with

Wallis, Fermat, and other leading mathematicians. I men
tioned on p. 155 his curious reproduction of Brahmagupta s

solution of a certain indeterminate equation. Brouncker

proved (Phil. Trans. 1668, No. 34) that the area enclosed

between the equilateral hyperbola xy = \, the axis of x, and

the ordinates x 1 and x = 2, is equal either to111 111
: + - + __+..., or to 1-- +o -

7 +....
1.2

T
3.4 5.6^ 234

He also worked out other similar expressions for different

areas bounded by the hyperbola and straight lines (Phil. Trans.

1672). He wrote on the rectification of the parabola (Phil.

Trans. 1673) and of the cycloid (Phil. Trans. 1678). It is

noticeable that he used infinite series to express quantities

whose values he could not otherwise determine. In answer to

a request of Wallis to attempt the quadrature of the circle he

shewed that the ratio of the area of a circle to the area of the

circumscribed square, that is, the ratio TT : 4 is equal to the ratio

i r 32 5
2 r

. 11+2+2 + 2+2 +...
:

Continued fractions* had been introduced by Cataldi in his

* On the history of continued fractions see papers by S. Giinther and

A. Favaro in Boncompagni s Bulletino di bibliografia, Rome, 1874, vol.

vii., pp. 213, 451, 533.
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treatise on finding the square roots of numbers published at

Bologna in 1613, but he treated them as common fractions

(see above, p. 239); Brouncker was the first writer who in

vestigated or made any use of their properties. For further

details see C. Hutton s Mathematical Dictionary.

James Gregory. James Gregory, born at Drumoak near

Aberdeen in 1638 and died at Edinburgh in October, 1675, was

successively professor at St Andrews and Edinburgh. In 1660

he published his Optica Promota in which the reflecting

telescope known by his name is described. In 1667 he issued

his Vera Circuli et Hyperbolae Quadratura in which he shewed

how the areas of the circle and hyperbola could be obtained in

the form of infinite convergent series, and here (I believe for

the first time) we find a distinction drawn between convergent

and divergent series. This work contains a remarkable geo

metrical proposition to the effect that the ratio of the area of

any arbitrary sector to that of the inscribed or circumscribed

regular polygons is not expressible by a finite number of alge

braical terms. Hence he inferred that the quadrature was

impossible : this was accepted by Montucla, but it is not con

clusive, for it is conceivable that some particular sector might
be squared, and this particular sector might be the whole circle.

This book contains also the earliest enunciation of the expansions
in series of sin

a;, cos#, sin&quot;
1

a;, and cos&quot;
1

x. It was reprinted

in 1668 with an appendix, Geometriae Pars, in which Gregory

explained how the volumes of solids of revolution could be

determined. In 1671, or perhaps earlier, he established the

theorem that

= tan -
$ tan3 + i- tan5 - ...

,

the result being true only if 6 lie between -%TT and JTT. This

is the theorem on which the work of most of the subsequent
calculation of approximations to the numerical value of TT has

been based. For further details see C. Hutton s Mathematical

Dictionary.

Wren. Sir Christopher Wren was born at Knoyle in



316 MATHEMATICS FROM DESCARTES TO HUYGENS.

1632, and died in London in 1723. Wren s reputation as a

mathematician has been overshadowed by his fame as an

architect, but he was Savilian professor of astronomy at

Oxford from 1661 to 1673, and for some time president of the

Royal Society. Together with Wallis and Huygens he in

vestigated the laws of collision of bodies (Phil. Trans. 1669);
he also discovered the two systems of generating lines on

the hyperboloid of one sheet, though it is probable that he

confined his attention to a hyperboloid of revolution (Phil.

Trans. 1669). Besides these he communicated papers on the

resistance of fluids, and the motion of the pendulum. He was a

friend of Newton and (like Huygens, Hooke, Halley, and

others) had made attempts to shew that the force under which

the planets move varies inversely as the square of the distance

from the sun.

Wallis, Brouncker, Wren, and Boyle (the last-named being
a chemist and physicist rather than a mathematician) were the

leading philosophers who founded the Royal Society of London.

The society arose from the self-styled &quot;indivisible
college&quot;

in

London in 1645; most of its members moved to Oxford during
the civil war, where Hooke, who was then an assistant in

Boyle s laboratory, joined in their meetings; the society was

formally constituted in London in 1660; and was incorporated
on July 15, 1662.

Hooke. Robert Hooke
,
born at Freshwater on July 18,

1635 and died in London on March 3, 1703, was educated at

Westminster, and Christ Church, Oxford, and in 1665 became

professor of geometry at Gresham College, a post which he

occupied till his death. He is still known by the law which

he discovered that the tension exerted by a stretched string is

(within certain limits) proportional to the extension, or as it

is better stated that the stress is proportional to the strain.

He invented and discussed the conical pendulum, and was the

first to state explicitly that the motions of the heavenly bodies

were merely dynamical problems. He was as jealous as he was

vain and irritable, and accused both Newton and Huygens of
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unfairly appropriating his results. Like Huygens, Wren, and

Halley he made efforts to find the law of force under which

the planets move about the sun, and he believed the law to be

that of the inverse square of the distance. He, like Huygens,
discovered that the small oscillations of a coiled spiral spring

were practically isochronous, and was thus led to recommend

(possibly in 1658) the use of the balance-spring in watches; he

had a watch of this kind made in London in 1675, it was

finished just three months later than the one made under the

directions of Huygens in Paris.

Collins. John Collins, born near Oxford on March 5, 1625

and died in London on Nov. 10, 1683, was a man of great

natural ability but of slight education. Being devoted to

mathematics he spent his spare time in correspondence with

the leading mathematicians of the time for whom he was

always ready to do anything in his power, and he has been

described not inaptly as the English Merseime. To him

we are indebted for much information on the details of the

discoveries of the period. See the Commercium Epistolicum,

and Rigaud s Correspondence of Scientific Men of the Seventeenth

Century.

Pell. Another mathematician who devoted a considerable

part of his time to making known the discoveries of others, and

to correspondence with leading mathematicians was John Pell.

Pell was born in Sussex on March 1, 1610, and died in London

on Dec. 10, 1685. He was educated at Trinity College,

Cambridge; he occupied in succession the mathematical chairs

at Amsterdam and Breda; he then entered the English

diplomatic service; but finally settled in 1661 in London where

he spent the last twenty years of his life. His chief works

were ah edition, with considerable new matter, of the Algebra

by Branker and Rhonius, London, 1668; and a table of square

numbers, London, 1672. For further details see my History

of Mathematics at Cambridge.
Sluze. Rene Francois Walther de Sluze (Slusius), canon of

Liege, born on July 7, 1622 and died on March 19, 1685, found
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for the subtangent of a curvef (x, y) an expression which is

equivalent to y ^- /
-

;
he wrote numerous tracts, and in par-

ByI dx

ticular discussed at some length spirals and points of inflexion.

Some of his papers were published by Le Paige in vol. xvn. of

Boncompagni s Bulletino di bibliografia, Rome, 1884.

Tschirnhausen. Ehrenfried Walther von Tschirnhausen

was born at Kislingswalde on April 10, 1631, and died at

Dresden on Oct. 11, 1708. In 1682 he worked out the theory
of caustics by reflexion, or as they were usually called cata-

caustics, and shewed that they were rectifiable. This was the

second case in which the envelope of a moving line was deter

mined (see above, p. 303). He constructed burning mirrors of

great power. The transformation by which he removed certain

intermediate terms from a given algebraical equation is well

known: it was published in the Acta Eruditorum for 1683.

Roemer. Olof Roemer, born at Aarhuus on Sept. 25, 1644

and died at Copenhagen on Sept. 19, 1710, was the first to

measure the velocity of light : this was done in 1675 by means

of the eclipses of Jupiter s satellites. He brought the transit

and mural circle into common use, the altazimuth having been

previously generally employed, and it was on his recommenda

tion that astronomical observations of stars were subsequently
made in general on the meridian. He was also the first to

introduce micrometers and reading microscopes into an observa

tory. He also deduced from the properties of epicycloids the

form of the teeth in toothed-wheels best fitted to secure a

uniform motion.
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CHAPTER XVI.

THE LIFE AND WORKS OF NEWTON*.

THE mathematicians considered in the last chapter com

menced the creation of those processes which distinguish

modern mathematics. The extraordinary abilities of Newton

enabled him within a few years to perfect the more elementary

of those processes, and to distinctly advance every branch of

mathematical science then studied, as well as to create some

new subjects. Newton was the contemporary and friend of

Wallis, Huygens, and others of those mentioned in the last

chapter, but, though most of his mathematical work was done

between the years 1665 and 1686, the bulk of it was not

printed at any rate in book-form till some years later.

I propose to discuss the works of Newton somewhat more

fully than those of other mathematicians, partly because of the

intrinsic importance of his discoveries, and partly because this

book is mainly intended for English readers and the develop

ment of mathematics in Great Britain was for a century

entirely in the hands of the Newtonian school.

Isaac Newton was born in Lincolnshire near Grantham on

Dec. 25, 1642, and died at Kensington, London, on March 20,

* Newton s life and works are discussed in The Memoirs of Newton, by
D. Brewster, 2 volumes, Edinburgh, second edition, 1860. An edition of

most of Newton s works was published by S. Horsley in 5 volumes,

London, 1779 85; and a bibliography of them was issued by G. J.

Gray, Cambridge, 1888. The larger portion of the Portsmouth Collec

tion of Newton s papers has been recently presented to the university of

Cambridge, a catalogue of this was published at Cambridge in 1888.
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1727. He was educated at Trinity College, Cambridge, and

lived there from 1661 till 1696 during which time he produced
the bulk of his work in mathematics

;
in 1696 he was appointed

to a valuable Government office, and moved to London where

he resided till his death.

His father, who had died shortly before Newton was born,

was a yeoman farmer, and it was intended that Newton should

carry on the paternal farm. He was sent to school at Grantham,
where his learning and mechanical proficiency excited some

attention; and as one instance of his ingenuity I may mention

that he constructed a clock worked by water which kept very
fair time. In 1656 he returned home to learn the business of

a farmer under the guidance of an old family servant. Newton

however spent most of his time solving problems, making

experiments, or devising mechanical models ; his mother

noticing this sensibly resolved to find some more congenial

occupation for him, and his uncle, having been himself

educated at Trinity College, Cambridge, recommended that

he should be sent there.

In 1661 Newton accordingly entered as a subsizar at Trinity

College, where for the first time he found himself among

surroundings which were likely to develope his powers. He
seems however to have had but little interest for general society

or for any pursuits save science and mathematics, and he

complained to his friends that he found the other under

graduates disorderly. Luckily he kept a diary, and we can

thus form a fair idea of the course of education of the most

advanced students at an English university at that time. He
had not read any mathematics before coming into residence,

but was acquainted with Sanderson s Logic, which was then

frequently read as preliminary to mathematics. At the be

ginning of his first October term he happened to stroll down
to Stourbridge Fair, and there picked up a book on astrology,

but could not understand it on account of the geometry and

trigonometry, He therefore bought a Euclid, and was sur

prised to find how obvious the propositions seemed. He
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thereupon read Oughtred s Clavis and Descartes s Geometrie,

the latter of which he managed to master by himself though
with some difficulty. The interest he felt in the subject led

him to take up mathematics rather than chemistry as a

serious study. His subsequent mathematical reading as an

undergraduate was founded on Kepler s Optics, the works of

Yieta, van Schooten s Miscellanies, Descartes s Geometric, and

Wallis s Arithmetica Infinitorum : he also attended Barrow s

lectures. At a later time on reading Euclid more carefully

he formed a high opinion of it as an instrument of education,

and he used to express his regret that he had not applied

himself to geometry before proceeding to algebraic analysis.

There is a manuscript of his, dated May 28, 1665, written

in the same year as that in which he took his B.A. degrep^-

which is the earliest documentary proof of his invention of

fluxions. It was about the same time that he discovered the

binomial theorem (see below, pp. 328
; 348). J^

On account of the plague the college was asai down in the

summer of 1665, and for a large part of the next year and a half

Newton lived at home. This period was crowded with brilliant

discoveries. He thought out the fundamental principles of his

theory of gravitation, namely, that every particle of matter

attracts every other particle, and he suspected that the attrac

tion varied as the product of their masses and inversely as the

square of the distance between them. He also worked out the

fluxional calculus tolerably completely : thus in a manuscript
dated Nov. 13, 1665, he used fluxions to find the tangent
and the radius of curvature at any point on a curve, and in

October, 1666, he applied them to several problems in the

theory of equations. Newton communicated these results to

his friends and pupils from and after 1669, but they were not

published in print till many years later. It was also while

staying at home at this time that he devised some instruments

for grinding lenses to particular forms other than spherical,

and perhaps hr decomposed solar light into different colours.

Leaving out details and taking round numbers only, his

B. 21
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reasoning at this time on the theory of gravitation seems

to have been as follows. He suspected that the force which

retained the moon in its orbit about the earth was the

same as terrestrial gravity, and to verify this hypothesis he

proceeded thus. He knew that, if a stone were allowed to

fall near the surface of the earth, the attraction of the

earth (that is, the weight of the stone) caused it to move

through 16 feet in one second. The moon s orbit relative too
the earth is nearly a circle

;
and as a rough approximation

taking it to be so, he knew the distance of the moon, and

therefore the length of its path ;
he also knew the time the

moon took to go once round it, namely, a month. Hence he

could easily find its velocity at any point such as M. He
could therefore find the distance MT through which it would

move in the next second if it were not pulled by the earth s

attraction. At the end of that second it was however at M ,

and therefore the earth must have pulled it through the dis

tance TM in one second (assuming the direction of the earth s

pull to be constant). Now he and several physicists of the

time had conjectured from Kepler s third law that the

attraction of the earth on a body would be found to decrease

as the body was removed further away from the earth in a

proportion inversely as the square of the distance from the
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centre of the earth*; if this were the actual law and gravity

were the sole force which retained the moon in its orbit, then

TM should be to 16 feet in a proportion which was inversely

as the square of the distance of the moon from the centre of

the earth to the square of the radius of the earth. In 1679,

when he repeated the investigation, TM was found to have the

value which was required by the hypothesis, and the verification

was complete; but in 1666 his estimate of the distance of the

moon was inaccurate, and when he made the calculation he

found that TM was about one-eighth less than it ought to

have been on his hypothesis.

This discrepancy does not seem to have shaken his faith in

the belief that gravity extended to the moon and varied in

versely as the square of the distance
; but, from Whiston s *

notes of a conversation with Newton, it would seem that

Newton inferred that some other force probably Descartes s

vortices acted on the moon as well as gravity. This state

ment is confirmed by Pemberton s account of the investigation.

It seems moreover that Newton already believed firmly in the

principle of universal gravitation, that is, that every particle

of matter attracts every other particle, and suspected that the

attraction varied as the product of their masses and inversely
as the square of the distance between them : but it is certain

that he did not then know what the attraction of a spherical

mass on any external point would be, and did not think it

likely that a particle would be attracted by the earth as if

the latter were concentrated into a single particle at its centre.

On his return to Cambridge in 1667 Newton was elected

to a fellowship at his college, and permanently took up his

residence there. In the early part of 1669, or perhaps in 1668,
he revised Barrow s lectures for him (see above, p. 312). The

* The argument was as follows. If v be the velocity of a planet,
r the radius of its orbit taken as a circle, and T its periodic time,
v= 2irr/T. But, if/ be the acceleration to the centre of the circle, we

have/=t7
2
/r. Therefore, substituting the above value of v, f=Tr2

rfT
2

.

Now by Kepler s third law /&quot;- v;iri&amp;lt;
i

&amp;lt;

a&amp;lt; r ;

; hence /varies inversely as r-.

212
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end of Lecture xiv. is known to have been written by Newton,
but how much of the rest is due to his suggestions cannot now
be determined. As soon as this was finished he was asked

by Barrow and Collins to edit and add notes to a translation

of Kinckhuysen s Algebra; which he consented to do, but on

condition that his name should not appear iu the matter. In

1670 he also began a systematic exposition of his analysis by
infinite series, the object of which was to express the ordinate

of a curve in an infinite algebraical series every term of which

could be integrated by Wallis s rule (see above, p. 290), his

results on this subject had been communicated to Barrow,

Collins, and others in 1669. This was never finished: the

fragment was published in 1711, but the substance of it had

been printed as an appendix to the Optics in 1704. These

works were only the fruit of Newton s leisure
;
most of his time

during these two years being given up to optical researches.

In October, 1669, Barrow resigned the Lucasian chair in
I O

favour of Newton. During his tenure of the professorship,

it was Newton s practice to lecture publicly once a week, for

from half-an-hour to an hour at a time, in one term of each

year, probably dictating his lectures as rapidly as they could

be taken down
;

and in the week following the lecture to

devote four hours to appointments which he gave to students

who wished to come to his rooms to discuss the results of the

previous lecture. He never repeated a course, which usually

consisted of nine or ten lectures, and generally the lectures of

one course began from tlie point at which the preceding course

had ended. The manuscripts of his lectures for seventeen out

of the first eighteen years of his tenure are extant.

When first appointed Newton chose optics for the subject

of his lectures and researches, and before the end of 1669 he

had worked out the details of his discovery of the decompo
sition of a ray of white light into rays of different colours by
means of a prism. The complete explanation of the theory of

the rainbow followed from this discovery. These discoveries

formed the subject-matter of the lectures which he delivered
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as Lucasian professor in the years 16G9, 1670, and 1671. The

chief new results were embodied in a paper communicated

to the Royal Society in February, 1672, and subsequently

published in the Philosophical Transactions. The manuscript

of his original lectures was printed in 1729 under the title

Lectiones Opticae. This work is divided into two books,

the first of which contains four sections and the second five.

The first section of the first book deals with the decomposition

of solar light by a prism in consequence of the unequal re-

frangibility of the rays that compose it, and a description

of his experiments is added. The second section contains an

account of the method which Newton invented for the deter

mining the coefficients of refraction of different bodies. This

is done by making a ray pass through a prism of the material

so that the deviation is a minimum
;
and he proves that, if the

angle of the prism be i and the deviation of the ray be 8, the

refractive index will be sin i (i
+ 8) cosec \ i. The third section

is on refractions at plane surfaces
;
he here shews that if a ray

pass through a prism with minimum deviation, the angle of

incidence is equal to the angle of emergence most of this

section is devoted to geometrical solutions of different problems.

The fourth section contains a discussion of refractions at curved

surfaces. The second book treats of his theory of colours and

of the rainbow.

By a curious chapter of accidents Newton failed to correct

the chromatic aberration of two colours by means of a couple

of prisms. He therefore abandoned the hope of making a

refracting telescope which should be achromatic, and instead

designed a reflecting telescope, probably on the model of a

small one which he had made in 1668. The form he used is that

still known by his name
;
the idea of it was naturally suggested

by Gregory s telescope. In 1672 he invented a reflecting

microscope, and some years later he invented the sextant

which was re-discovered by Hadley in 1731.

His professorial lectures from 1673 to 1683 were on algebra

and the theory of equations, and are described below; but much
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of his time during these years was occupied with other investi

gations, and I may remark that throughout his life Newton
must have devoted at least as much attention to chemistry and

theology as to mathematics, though his conclusions are not of

sufficient interest to require mention here. His theory of colours

and his deductions from his optical experiments were attacked

with considerable vehemence by Pardies in France, Linus and

Lucas at Liege, Hooke in England, and Huygens in Paris
;
but

his opponents were finally refuted. The correspondence which

this entailed on Newton occupied nearly all his leisure in the

years 1672 to 1675, and proved extremely distasteful to him.

Writing on Dec. 9, 1675, he says, &quot;I was so persecuted with

discussions arising out of iny theory of light, that I blamed my
own imprudence for parting with so substantial a blessing as

my quiet to run after a shadow.&quot; Again on Nov. 18, 1676, he

observes,
&quot; I see I have made myself a slave to philosophy ; but,

if I get rid of Mr Liims s business, I will resolutely bid adieu

to it eternally, excepting what I do for my private satisfaction,

or leave to come out after me
;

for I see a man must either

resolve to put out nothing new, or to become a slave to defend

it.&quot; The unreasonable dislike to have his conclusions doubted

or to be involved in any correspondence about them was a

prominent trait in Newton s character.

He next set himself to examine the problem as to how

light was really produced, and by the end of 1675 he had

worked out the corpuscular or emission theory a theory to

which he was perhaps led by his researches on the theories of

attraction. Only three ways have been suggested in which

light can be produced mechanically. Either the eye may be

supposed to send out something which, so to speak, feels the

object (as the Greeks believed) ;
or the object perceived may

send out something which hits or affects the eye (as assumed

in the emission theory) ;
or there may be some medium between

the eye and the object, and the object may cause some change
in the form or nature of this intervening medium and thus

affect the eye (as Hooke and Huygens supposed in the wave
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or undulatory theory). It will be enough here to say that on

either of the two latter theories all the obvious phenomena of

geometrical optics such as reflexion, refraction, &c., can be

accounted for. Within the present century crucial experiments

have been devised which give different results according as one

or the other theory is adopted ;
all these experiments agree

with the results of the undulatory theory and differ from the

results of the Newtonian theory : the latter is therefore un

tenable, but whether the former represents the whole truth and

nothing but the truth is still an open question. Until however

the theory of interference suggested by Young, was worked out

by Fresnel, the hypothesis of Huygens failed to account for all

the facts and was open to more objections than that of Newton.

It should be noted that Newton nowhere expresses an opinion

that the corpuscular theory is true, but always treats it as an

hypothesis from which, if true, certain results would follow : it

would moreover seem that he believed the wave theory to be

intrinsically more probable, and it was only the difficulty of

explaining diffraction on that theory that led him to reject

it. His remarks on other physical subjects shew a similar

caution.

Newton s corpuscular theory was expounded in memoirs

communicated to the Royal Society in December, 1675, which

are substantially reproduced in his Optics, published in 1704.

In the latter work he dealt in detail with his theory of fits of

easy reflexion and transmission, and the colours of thin plates

to which he added an explanation of the colours of thick plates

(bk. ii. part 4) and observations on the inflexion of light

(bk. in.).

Two letters written by Newton in the year 1676 are

sufficiently interesting to justify an allusion to them. Leibnitz,

who had been in London in 1673, had communicated some

results to the Royal Society which he had supposed to be new,
but which it was pointed out to him had been previously proved

by Mouton. This led to a correspondence with Oldenburg,
the secretary of the Society. In 1674 Leibnitz wrote saying
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that he possessed
&quot;

general analytical methods depending on

infinite series.&quot; Oldenburg in reply told him that Newton
and Gregory had used such series in their work. In answer

to a request for information Newton wrote on June 13, 1676,

giving a brief account of his method, but adding the expansions
of a binomial

(i.e.
the binomial theorem) and of sin&quot;

1

x\ from

the latter of which he deduced that of sin x, this seems to

be the earliest known instance of a reversion of series. He
also inserted an expression for the rectification of an elliptic

arc in an infinite series.

Leibnitz wrote oil Aug. 27 asking for fuller details
;
and

Newton in a long but interesting reply, dated Oct. 24, 1676,

and sent through Oldenburg, gives an account of the way in

which he had been led to some of his results.

In this letter, Newton begins by saying that altogether he

had used three methods for expansion in series. His first was

arrived at from the study of the method of interpolation by
which Wallis had found expressions for the area of a circle

and a hyperbola. Thus, by considering the series of expressions

(1- a?*)*, (1
- x2

)%, (1
-

x*y,..., he deduced by interpolations the

law which connects the successive coefficients in the expansions
1 3

of (1 x2

)&quot;, (1 a;
2

) ,... ;
and then by analogy obtained the ex

pression for the general term in the expansion of a binomial,

i.e. the binomial theorem. He says that he proceeded to test

this by forming the square of the expansion of (1 05
2

)

a which

reduced to 1 x2

;
and he proceeded in a similar way with

other expansions. He next tested the theorem in the case

of
(
1 x2

)

*

by extracting the square root of 1 a;
2

,
more

arithitietico. He also used the series to determine the areas of

the circle and the hyperbola in infinite series, and found that the

results were the same as those he had arrived at by other means.

Having established this result, he then discarded the

method of interpolation in series, and employed his binomial

theorem to express (when possible) the ordinate of a curve in

an infinite series in ascending powers of the abscissa, and thus
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by Wallis s method he obtained expressions in an infinite

series for the areas and arcs of curves in the manner described

in the appendix to his Optics and his De Analysi per Equationes

Numero Terminorum Infinitorum (see below, p. 348). He
states that he had employed this second method before the

plague in 1665 66, and goes on to say that he was then obliged

to leave Cambridge, and subsequently (i.e. presumably on his

return to Cambridge) he ceased to pursue these ideas as he

found that Nicholas Mercator had employed some of them in

his Loga/rith/rnotecJvnM^ published in 1668; and he supposed
that the remainder had been or would be found out before he

himself was likely to publish his discoveries.

Newton next explains that he had also a third method, of

which (he says) he had about 1669 sent an account to Barrow

and Collins, illustrated by applications to areas, rectification,

cubature, tkc. This was the method of fluxions
;
but Newton

gives no description of it here, though he adds some illustrations

of its use. The first illustration is on the quadrature of the

curve represented by the equation

y
- axm (b + cx&quot;)

p
,

which he says can be effected as a sum of (m+ l)/n terms if

(m+ l)/n be a positive integer, and which he thinks cannot

otherwise be effected except by an infinite series*. He also

gives a list of other forms, which are immediately integrable,

of which the chief are

xmn
~

l ajO+i)-i
&quot;

&amp;gt;

-

a + bx* + cx
2n a + bx

xmn
~

l

(a + btff*(c + &amp;lt;br)-\
xmn -&quot;- 1

(a + bx
n

)* (c + dx&quot;)~

*
;

where m is a positive integer and n is any number whatever.

Lastly he points out that the area of any curve can be easily

determined approximately by the method of interpolation
described below (see p. 349) in discussing his Metkodus Differ-
entialis.

* This is not so, the integration i-
p&amp;gt;ible if p + (m + l)ln be an

integer.
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At the end of his letter Newton alludes to the solution of

the &quot;inverse problem of
tangents,&quot; a subject on which Leibnitz

had asked for information. He gives formulae for reversing

any series, but says that besides these formulae he has two

methods for solving such questions which for the present he

will not describe except by an anagram which being read is

as follows,
&quot; Una methodus consistit in extractione fluentis

quailtitatis ex aequatione simul involvente fluxioiiem ejus :

altera tantum in assumption e seriei pro quantitate qualibet

incognita ex qua caetera commode derivari possunt, et in

collatione terminorum homologorum aequationis resultantis, ad

eruendos terminos assumptae seriei.&quot;

He implies in this letter that he is worried by the questions

he is asked and the controversies raised about every new

matter which he produces, which shew his rashness in publishing
&quot;

quod umbram captando eatenus perdideram quietem meam,
rern prorsus substantialem.&quot;

Leibnitz did not reply to this letter till June 21, 1677. In

his answer he explains his method of drawing tangents to

curves, which he says proceeds &quot;not by fluxions of lines but

by the differences of numbers&quot;; and he introduces his notation

^f dx and dy for the infinitesimal differences between the co

ordinates of two consecutive points on a curve. He also gives

a solution of the problem to find a curve whose subtangent

is constant, which shews that he could integrate.

In 1679 Hooke, at the request of the Royal Society, wrote

to Newton expressing a hope that he would make further com

munications to the Society and informing him of various facts

then recently discovered. Newton replied saying that he had

abandoned the study of philosophy, but he added that the

earth s diurnal motion might be proved by the experiment of

observing the deviation from the perpendicular of a stone

dropped from a height to the ground an experiment which

was subsequently made by the Society and succeeded. Hooke

in his letter mentioned Picard s geodetical researches
;

in

these Picard used a value of the radius of the earth which is
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substantially correct. This led Newton to repeat, with Picard s

data, his calculations of 1666 on the lunar orbit, and he

found the verification of his view was complete. He then

proceeded to the general theory of motion under a centripetal

force, and demonstrated (i) the equable description of areas,

(ii)
that if an ellipse were described about a focus under a

centripetal force the law was that of the inverse square of the

distance, (iii) and conversely, that the orbit of a particle pro

jected under the influence of such a force was a conic (or, it

may be, he thought only an ellipse). Obeying his rule to

publish nothing which could land him in a scientific contro

versy these results were locked up in his note-books, and it

was only a specific question addressed to him five years later

that led to their publication.

The Universal Arithmetic, which is on algebra, theory of

equations, and miscellaneous problems, contains the substance

of Newton s lectures during the years 1673 to 1683. His

manuscript of it is still extant
;
Whiston * extracted a some

what reluctant permission from Newton to print it, and it was

published in 1707. Amongst several new theorems on various

points in algebra and the theory of equations Newton here

enunciated the following important results. He explained that

the equation whose roots are the solution of a given problem
will have as many roots as there are different possible cases

;

and he considered how it happened that the equation to which

a problem led might contain roots which did not satisfy the

original question. He extended Descartes s rule of signs to

give limits to the number of imaginary roots. He used the

* William Whi^tnn^ born in Leicestershire 011 Dec. 9, 1607, educated

at Clare College, Cambridge, of which society he was a fellow, and died

in London on Aug. 22, 17-VJ, wrote several works on astronomy. He
acted as Newton s deputy in the Lucasian chair from 1690, and in 1703

succeeded hirn as professor, but he was expelled in 1711, mainly for

theological reasons. He was succeeded by Nicholas Saunderson, the

blind mathematician, who was born in Yorkshire in 1682 and died at

Christ s College, Cambridge, on April 19, 1739.
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principle of continuity to explain how two real and unequal
roots might become imaginary in passing through equality,

and illustrated this by geometrical considerations ; thence

he shewed that imaginary roots must occur in pairs. Newton
also here gave rules to find a superior limit to the positive

roots of a numerical equation, and to determine the approxi
mate values of the numerical roots. He further enunciated

the theorem known by his name for finding the sum of the

nth powers of the roots of an equation, and laid the foundation

of the theory of symmetrical functions of the roots of an

equation.

The most interesting theorem contained in the work is

his attempt to find a rule (analogous to that of Descartes for

real roots) by which the number of imaginary roots of an

equation can be determined. He knew that the result which

he obtained was not universally true, but he gave no proof and

did not explain what were the exceptions to the rule. His

theorem is as follows. Suppose the equation to be of the nth

degree arranged in descending powers of x (the coefficient of

xn

being positive), and suppose the n + I fractions

n 2 n-I 3 n p+l p+ I 2 n
1 n^l P n~2 2

&quot;

~~r^-~p p
9

&quot;

In-l

to be formed and written below the corresponding terms of

the equation, then, if the square of any term when multiplied

by the corresponding fraction be greater than the product
of the terms on each side of it, put a plus sign above it : other

wise put a minus sign above it, and put a plus sign above

the first and last terms. Now consider any two consecutive

terms in the original equation, and the two symbols written

above them. Then we may have any one of the four following

cases : (a) the terms of the same sign and the symbols of the

same sign ; (/?)
the terms of the same sign and the symbols of

opposite signs ; (y) the terms of opposite signs and the symbols
of the same sign; (S) the terms of opposite signs and the symbols
of opposite signs. Then it has been shewn that the number of
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negative roots will not exceed the number of cases (a), and the

number of positive roots will not exceed the number of cases (y);

and therefore the number of imaginary roots is not less than

the number of cases (/3) and (8). In other words the number

of changes of signs in the row of symbols written above the

equation is an inferior limit to the number of imaginary roots.

Newton however asserted that
&quot;you may almost know how

many roots are impossible&quot; by counting the changes of sign

in the series of symbols formed as above. That is to say

he thought that in general the actual number of positive,

negative arid imaginary roots could be got by the rule and

not merely superior or inferior limits to these numbers. But

though he knew that the rule was not universal he couldo

not find what were the exceptions to it : this theorem was

subsequently discussed by Campbell, Maclaurin, Euler, and

other writers
;

at last in 1865 Sylvester succeeded in proving
the general result*.

In August 1684, Halley came to Cambridge in order to

consult Newton about the law of gravitation. Hooke, Huygens,

Halley, and Wren had all conjectured that the force of the

attraction of the sun or earth on an external particle varied

inversely as the square of the distance. These writers seem to

have independently shewn that, if Kepler s conclusions were

rigorously true, as to which they were uot quite certain, the

law of attraction must be that of the inverse square, but they
could not deduce from the law the orbits of the planets.

Halley explained that their investigations were stopped by
their inability to solve this problem, and asked Newton if he

could find out what the orbit of a planet would be if the law

of attraction were that of the inverse square. Newton imme

diately replied that it was an ellipse, and promised to send or

write out afresh the demonstration of it which he had found

in 1679. This was sent in November, 1684.

Instigated by Halley, Newton now returned to the problem
* See the Proceedings of the London Mathematical Society, 1865,

vol. i., no. 2.
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of gravitation; and before the autumn of 1684, he had worked

out the substance of propositions 1 19, 21, 30, 32 35 in the

first book of the Principia. These, together with notes on the

laws of motion and various lemmas, were read for his lectures

in the Michaelmas Term, 1684.

In November Halley received Newton s promised com

munication, which probably consisted of the substance of props.

1, 11, and either 17 or Cor. 1 of 13; and thereupon he again
went to Cambridge where he saw &quot;a curious treatise, De Motu,
drawn up since August.&quot; Most likely this contained Newton s

manuscript notes of the lectures above alluded to : these notes

are now in the University Library and are headed u De Motu

Corporum&quot; Halley begged that the results might be pub

lished, and finally secured a promise that they shou!4 be sent

to the Royal Society: they were accordingly communicated to

the Society not later than February, 1685, in the paper De

Motu^ which contains the substance of the following propo
sitions in the Principia, book i., props. 1, 4, 6, 7, 10, 11, 15,

17, 32
;
book n., props. 2, 3, 4.

It seems also to have been due to the influence and tact of

Halley at this visit in November, 1684, that Newton under

took to attack the whole problem of gravitation, and practically

pledged himself to publish his results. As yet Newton had

not determined the attraction of a spherical body on an ex

ternal point, nor had he calculated the details of the planetary

motions even if the members of the solar system could be re

garded as points. The first problem was solved in 1685,

probably either in January or February. &quot;No sooner,&quot; to

quote from Dr Glaisher s address on the bicentenary of the

publication of the Principia, &quot;had Newton proved this superb
theorem and we know from his own words that he had no

expectation of so beautiful a result till it emerged from his

mathematical investigation than all the mechanism of the

universe at once lay spread before him. When he discovered

the theorems that form the first three sections of book i.,

when he gave them in his lectures of 1684, he was unaware
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that the sun and earth exerted their attractions as if they

were but points. How different must these propositions have

seemed to Newton s eyes when he realized that these results,

which he had believed to be only approximately true when

applied to the solar system, were really exact ! Hitherto they

had been true only in so far as he could regard the sun as

a point compared to the distance of the planets, or the earth

as a point compared to the distance of the moon a distance

amounting to only about sixty times the earth s radius but

now they were mathematically true, excepting only for the

slight deviation from a perfectly spherical form of the sun,

earth and planets. We can imagine the effect of this sudden

transition from approximation to exactitude in stimulating

Newton s mind to still greater efforts. It was now in his

power to apply mathematical analysis with absolute precision

to the actual problems of astronomy.&quot;

Of the three fundamental principles applied in the Principia

we may say that the idea that every particle attracts every

other particle in the universe was formed at least as early as

1666
;
the law of equable description of areas, its consequences,

and the fact that if the law of attraction were that of the

inverse square the orbit of a particle about a centre of force

would be a conic were proved in 1679
;
and lastly the discovery

that a sphere, whose density at any point depends only on the

distance from the centre, attracts an external point as if the

whole mass were collected at its centre was made in 1685.

It was this last discovery that enabled him to apply the first

two principles to the phenomena of bodies of finite size.

The draft of the first book of the Principia was finished

before the summer of 1685, but the corrections and additions

took some time, and the book was not presented to the Royal

Society until April 28, 1686. This book is given up to the

consideration of the motion of particles or bodies in free space
either in known orbits, or under the action of known forces,

or under their mutual attraction. In it Newton generalizes
the law of attraction into a statement that every particle of
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matter in the universe attracts every other particle with a

force which varies directly as the product of their masses and

inversely as the square of the distance between them
;
and he

thence deduces the law of attraction for spherical shells of

constant density. The book is prefaced by an introduction on

the science of dynamics.
The second book of the Principia was completed by the

summer of 1686. This book treats of motion in a resisting

medium, and of hydrostatics and hydrodynamics, with special

applications to waves, tides, and acoustics. He concludes it

by shewing that the Cartesian theory of vortices was incon

sistent both with the known facts and with the laws of motion.

The next nine or ten months were devoted to the third

book. Probably for this he had originally no materials ready.

In it the theorems obtained in the first book are applied to the

chief phenomena of the solar system, the masses and distances

of the planets and (whenever sufficient data existed) of their

satellites are determined. In particular the motion of the

moon, the various inequalities therein, and the theory of the

tides are worked out in detail. He also investigates the

theory of comets, shews that th^y belong to the solar system,

explains how from three observations the orbit can be de

termined, and illustrates his results by considering certain

special comets. The third book as we have it is but little more

than a sketch of what Newton had finally proposed to himself

to accomplish ;
his original scheme is among the &quot; Portsmouth

papers,
7 and his notes shew that he continued to work at it

for some years after the publication of the first edition of the

Principia : the most interesting of his memoranda are those

in which by means of fluxions he has carried his results beyond
the point at which he was able to translate them into

geometry*.

*
I take this opportunity of saying that I hope shortly to publish a

memoir on the history and compilation of the Principia. The following

brief summary of the contents of the work will give the reader a general

idea of its arrangement. The Principia is preceded by a preface in which



THE PRINCIPIA. 337

The demonstrations throughout the work are geometrical,

but to readers of ordinary ability are rendered unnecessarily

difficult by the absence of illustrations and explanations, and

by the fact that no clue is given to the method by which

Newton says that his object is to apply mathematics to the phenomena of

nature. Among these phenomena motion is one of the most important.

Now motion is the effect of force, and, though he does not know what is

the nature or origin of force, still many of its effects can be measured ;

and it is these that form the subject-matter of the work. The work begins

therefore naturally with an introduction on dynamics or the science of

motion. This commences with eight definitions of various terms such as

mass, momentum, &c. Newton then lays down three laws of motion

which are incapable of exact proof, but are confirmed partly by direct

experiments, partly by the agreement with observation of the deductions

from them. From these he deduces six fundamental principles of

mechanics, and addsan^ apporirHy nn the_motiorL..of..falling

projectiles, oscill^ti^s^nj^iiLct^-aiid
4he fimtu&i attractions oJLtwo bodies.

The most important deduction is that of the parallelogram of velocities,

accelerations, and forces.

The first book of the Principia is on the motion of bodies in free

space, and is divided into fourteen sections.

The first section consists of eleven preliminary lemmas treated by the

method of prime and ultimate ratios, and not by that of indivisibles.

The second section commences by shewing that, if a body (such as a

planet) revolve in an orbit subject to a force tending to a fixed point

(such as the sun), the areas swept^o.uJLJtyJ^dii -drawja.4foca -fee-body-t

the pom^rejrj^pjia-plaiie and are p/ojgortional to the times_of jles

them
; and conversely, if the areas be proportional to the times, the force

acting on the body musf be directed: ttr the point. Newton then shews

how, if the orbit be known and the centre of force be given, the law of

force can be determined
;
and he finds the law for various curves.

In the third section he applies these propositions to a body which
describes a conic section about a focus, and proves that the force must

vary inversely as the square of the distance, and that Kepler s third law

would necessarily be true of such a system. Conversely he proves that,

if a body were projected in any way and subject to a central force

which varied according to this law, then it must move in a conic section

having tue centre of force in a focus. He concludes (prop. 17, cors. 3

and 4) with a suggestion as to how the effects of disturbing forces

should be calculated : this was first done by the brilliant investigations
of Laplace and Lagrange ; and Laplace says (Mccaniqne celeste, book xv.,

chap, i.) that Lagrange s paper in the Berlin memoirs for 1786 on which

B. 22
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Newton arrived at his results. The reason why it was pre
sented in a geometrical form appears to have been that the

the modern treatment of the subject is founded was suggested by these

remarks of Newton.

The fourth and fifth sections are devoted to the geometry of conic

sections, especially to the construction of conies which satisfy five con

ditions. In section four one of the conditions is that the focus is given ;

this includes the problem of finding the path of a comet from three

observations which Newton says he found the most difficult problem of

any which he had to solve : curiously enough he gave a second solution

of this problem in book in. prop. 41, which he recommended as more

simple but which is inapplicable in practice.

The sixth section is devoted to determining what at any given time is

the velocity and what is the position of a body which is describing a

given conic about a centre of attraction in a focus : together with various

converse problems. To effect this Newton had to find the area of a

sector of a conic. This is easily done for the parabola. He then

endeavours to shew that exact quadrature of any closed oval curve

having no infinite branches (such as the ellipse) is impossible : the proof
is not correct as it stands, since the result is not true for ovals of the

form yi =
(2n)

2mxt2m(2n-V
(a?

n -x2n
), where m and n are positive inte

gers ; Newton seems himself to have felt some doubt about inserting it,

though he believed the result to be true. An exact quadrature being

impossible, he proceeds to give three ways, two arithmetical and one

geometrical, of approximating to the sectorial area of an ellipse as closely
as is desired.

The seventh section is given up to the discussion of motion in a

straight line under a force which varies inversely as the square of the

distance, and its comparison with motion in a conic under the same
force. He concludes by giving a general solution for all the problems
considered in this section for any law of force. He here determines

geometrically what is equivalent to finding the integral of x (ax
- x2

)-?.

The eighth section contains general solutions for any orbit described

under any central force of some of the problems previously considered. In

proposition 40 he states that the kinetic energy acquired by a body in

moving from one point to another point is equal to the total work done

by the force between those two points.
In the ninth section he discusses the case where the orbit is in

motion in its own plane round the centre of force, and treats in detail of

the motion of the apse-line, and the forces by which a given motion
would be produced. Newton applied this reasoning (prop. 45, cor. 2) to

the case of the moon, but the resulting motion of the apses only came out
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infinitesimal calculus was then unknown, and, had Newton

used it to demonstrate results which were in themselves

about one-half of the actual amount. The approximation was in fact not

carried to a sufficiently high order. Newton was aware of the discrepancy,

and as he explained the similar difficulty in the case of the nodes it had

been long suspected (ex. (jr. Godfray s Lunar Theory, 2nd edition, art. 68)

that the scholium in the first edition to book in. prop. 35 meant that he

had found the explanation. Nowhere in the Principia does he however

give any hint as to how this was effected, and the true explanation of a

difference which had long formed an obstacle to the universal acceptance

of the Newtonian system was first given by Clairaut in 1752. The

Portsmouth papers contain Newton s original work, and shew that he

had obtained the true value by carrying the approximation to a sufficiently

high order. It also seems clear from these papers that Newton gave the

corollary to book i. prop. 45 as a mere illustration of the motion of the

apses in orbits which are nearly circular and did not mean it to apply to

the moon, but by an inadvertence in the .second and third editions a

reference to it as an authority for a result connected with the moon was

added which would naturally deceive any reader. Newton left most of the

revision of the second edition to Gotes and it is probable that the mistake

is due to a blunder of the editor. Other questions connected with lunar

and planetary irregularities are also discussed in this proposition, but the

extreme conciseness of Newton misled all the early commentators, and

even Laplace in his Systeme du nwnde published in 1796 speaks of Newton
as having only roughly sketched out this part of the subject, leaving it to

be completed when the calculus should be further perfected ;
but in the

last volume of his Mecanique celeste published in 1825 he says that on
more careful reading he has no hesitation in regarding it as among the

most profound parts of the work.

The tenth section is devoted to the consideration of the motion of

bodies along given surfaces, but not in planes passing through the centre
of force

;
with special reference to the vibration of pendulums, and the

determination of the accelerating effect of gravity. In connection with
the latter problem Newton investigates the chief geometrical properties
of cycloids, epicycloids, and hypocycloids.

In the eleventh section are considered the problems connected with
motion in orbits where the centre of force is disturbed, or where the

moving body is disturbed by other forces. Until the calculus of variations

was invented by Lagrange in 1755 it was impossible to do more than
sketch out the principles on which the problem should be solved, and

Laplace in his Mecanique celeste was the first to work out most of the

questions in any detail. Newton commences by considering the dis-

99 9ttft *
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opposed to the prevalent philosophy of the time, the contro

versy as to the truth of his results would have been hampered

tnrbance produced by the mutual action of two bodies revolving round

one another. He then proceeds to consider the problem of three or more
bodies which mutually attract one another. He first solves the question

completely if the force of attraction varies directly as the distance. He
next takes the case of three bodies moving under their mutual attractions

as in nature. This problem has not been yet solved generally, but in

Newton s day it was beyond any analysis of which he had the command :

he contrived however to work out roughly the chief effects of the dis

turbing action of the sun on the motion of the moon (prop. 66) : this

proposition was singled out by Lagrange as the most striking single

illustration of the genius of Newton. To this proposition twenty-two
corollaries are appended in which it is applied to determine the motion

in longitude, in latitude, the annual equation, the motion of the apse

line, and of the nodes, the evection, the change of inclination of the

plane of the lunar orbit, the precession of the equinoxes, and the theory
of the tides. The greater part of the third book consists of the numerical

application of these principles to the case of the moon and the earth.

Lastly Newton shewed how from the motion of the nodes the interior

constitution of the body could be roughly determined.

Up to this point Newton had generally treated the bodies with which

he dealt as if they were particles. He now proceeds in section twelve to

consider the attractions of spherical masses which are either of uniform

density, or whose density at any point is a single-valued function of the

distance of the point from the centre of the sphere. These are worked

out for any law of attraction.

In section thirteen he gives some general theorems 011 the theory of

attractions and some propositions dealing with the attractions of solids

of revolution, but these problems are almost insoluble without the aid of

the infinitesimal calculus, and the Newtonian account of them is in

complete.
The fourteenth section contains a statement of some theories and

experiments in physical optics ;
and a solution by geometry of some

problems in geometrical optics, particularly on the form of aplanatic

refracting surfaces of revolution.

The second book of the Principia is concerned with hydromechanics,
and especially with motion in a resisting medium. These questions are

not worked out so completely as those treated in the first book
; and,

though this book provided the basis on which much of the subsequent

work of Daniel Bernoulli, Clairaut, D Alembert, Euler, and Laplace was

erected, it is not of the same epoch-making character as the first book.
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by a dispute concerning the validity of the methods used

in proving them. He therefore cast the whole reasoning

This book is divided into nine sections. The motion of bodies in a

medium where the resistance varies directly as the velocity is considered

in the first section. The motion where the resistance varies as the

square of the velocity is discussed in the second section. The motion

where the resistance can be expressed as the sum of two terms, one of

which varies as the velocity and the other as the square of the velocity,

is dealt with in the third section. The second section contains (prop. 25)

a construction for the shape of the solid of least resistance. No proof is

given and it had been long somewhat of a mystery to know how
Newton had contrived to solve the problem without the use of the

calculus of variations. Newton s demonstrations (there are two of them)
have been recently discovered in the Portsmouth collection.

The fourth section is devoted to spiral motion in a resisting medium.

The fifth to the theory of hydrostatics and elastic fluids. The sixth to

the motion of pendulums in a resisting medium. The seventh to hydro

dynamics, and especially to the motion of projectiles in air and other

fluids. The eighth to the theory of waves, including the principles from

which the chief effects of the wave hypotheses in light and sound are

calculated, and in particular the velocity of sound is determined.

In the ninth section Newton discusses the Cartesian theory of vortices

(see above, p. 278). He begins by shewing that, if there were no internal

friction, the motion would be impossible. He must therefore assume

some law of friction, and as a working hypothesis he supposes that &quot;the

resistance arising from want of lubricity in the parts of a fluid is,

cateris paribus, proportional to the velocity with which the parts of the

fluid are separated from each other.&quot; This hypothesis, as he himself

remarks, is probably not altogether correct, but he thinks that it will

give a general idea of the motion. He next proves that on this hypo
thesis the motion would be unstable. He must therefore suppose that

some constraining force prevents this catastrophe, and he then shews

that in that case Kepler s third law could not be true. Lastly he shews

by independent reasoning that the hypothesis must lead to results which

are inconsistent with Kepler s other two laws, and that both the vortices

and the motion of the planets would be necessarily unstable. Several

continental mathematicians made attempts to modify the Cartesian

hypothesis so as to avoid these conclusions, but they could never

explain one phenomenon without introducing fresh difficulties. It may
be taken that by 1750 the Cartesian theory was finally abandoned.

The third book is headed On the system of the world and is concerned

chiefly with the application of the results of the first book to the solar

system. It is introduced by certain rules of philosophizing, and a list of
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into a geometrical shape which, if somewhat longer, can at

any rate be made intelligible to all mathematical students. So

closely did he follow the lines of Greek geometry that he con-

certain data obtained from astronomical observations. The rules are

(i)
we may only assume as the possible causes of phenomena such causes

as are sufficient to explain them and are also verae causae, a vera

causa being one which is capable of detection and such that its con

nection with the phenomenon can be ultimately shewn by independent
evidence

; (ii)
effects of a similar kind must have similar causes;

(iii) whatever properties of bodies are found by experience to be in

variable should be assumed to be so in places where direct experiments
cannot be made.

Newton commences by illustrating the universality of the law of

gravitation, and sketches out the principles which lead him to think that

the solar system is necessarily stable : he determines the mass of the

moon, the masses of the planets, their distances from the sun, and their

figures. In the first edition he estimated (prop. 37) that the ratio of the

mass of the moon to that of the earth was approximately that of 1 : 26,

in the second and third editions this was altered to a ratio which is

nearly that of 1 : 40
;
but except for the mass of the moon he approximates

to the results now known with astonishing closeness. He finds the

disturbing force exerted by the sun on the moon, and considers the five

chief irregularities in the orbit of the moon. He next discusses the solar

and lunar tides
;
determines the precession of the equinoxes ;

and finally

shews how the elements of a comet can be determined by three obser

vations, and applies his results to certain comets : before this time it had

been commonly believed that comets had nothing to do with the solar

system, though in 1681 Dorffel had shewn that the path of the great

comet of 1680 was a parabola having the sun at its focus.

Lastly the Principia is concluded by a general scholium containing

reflections on the constitution of the universe, and on &quot;the eternal, the

infinite, and perfect Being&quot; by whom it is governed.

The chief alterations in the second edition, published in 1713, were

the substitution of simpler proofs for some of the propositions in the

second section of the first book; a more full and accurate investigation

(founded on some fresh experiments made by Newton about the year

1690) of the resistance of fluids in the seventh section of the second

book; and the addition of a detailed examination of the causes of

the precession of the equinoxes and the theory of comets in the third book.

The chief alterations in the third edition, published in 1726, were in

the scholium on fluxions
; and the addition of a new scholium on the

motion of the moon s nodes (book in., prop. 53).



THE PRINCIPIA. 343

stantly used graphical methods, and represented forces, velocities,

and other magnitudes in the Euclidean way by straight lines

(ex. gr. book I., lemma 10), and not by a certain number of units.

The latter and modern method had been introduced by Wallis,

and must have been familiar to Newton. The effect of his

confining himself rigorously to classical geometry is that the

Principia is written in a language which is archaic, even if

not unfamiliar.

The adoption of geometrical methods in the Principia for

purposes of demonstration does not indicate a preference on

Newton s part for geometry over analysis as an instrument /

of research, for it is known now that Newton used the fluxioriaf^

calculus in the first instance in finding some of the theorems,

especially those towards the end of book I. and in book n. ;

and in fact one of the most important uses of that calculus-

is stated in book n., lemma 2. But it is only just to remark

that, at the time of its publication and for nearly a century

afterwards, the differential and fluxional calculus were not fully-

developed and did not possess the same superiority over the

method he adopted which they do now
;
and it is a matter for

astonishment that when Newton did employ the calculus he

was able to use it to so good an effect. The ability shewn in

the translation in a few months of theorems so numerous and

of so great complexity into the language of the geometry of

Archimedes and Apollonius is I suppose unparalleled in the

history of mathematics.

The printing of the work was slow and it was not finally

published till the summer of 1687. The whole cost was borne

by Halley who also corrected the proofs and even put his own
researches on one side to press the printing forward. The

conciseness, absence of illustrations, and synthetical character

of the book restricted the numbers of those who were able to

appreciate its value
; and, though nearly all competent critics

admitted the validity of the conclusions, some little time

elapsed before it affected the current beliefs of educated men.

I should be inclined to say (but on this point opinions differ
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widely) that within ten years of its publication it was gene

rally accepted in Britain as giving a correct account of the

laws of the universe; it was similarly accepted within about

twenty years on the continent, except in France where the

Cartesian hypothesis held its ground until Voltaire in 1738

took up the advocacy of the Newtonian theory.

The manuscript of the Principia was finished by 1686.

Newton devoted the remainder of that year to his paper on

physical optics, the greater part of which is given up to the

subject of diffraction (see above, p. 327).

In 1687 James II. having tried to force the university to

admit as a master of arts a Roman Catholic priest who refused

to take the oaths of supremacy and allegiance, Newton took

a prominent part in resisting the illegal interference of the

king, and was one of the deputation sent to London to protect

the rights of the university. The active part taken by
Newton in this affair led to his being in 1689 elected member

for the university. This parliament only lasted thirteen months,

and on its dissolution he gave up his seat. He was subse

quently returned in 1701, but he never took any prominent

part in politics.

On his coining back to Cambridge in 1690 he resumed his

mathematical studies and correspondence. If he lectured at

this time (which is doubtful), it was on the subject-matter of

the Principia. The two letters to Wallis, in which he explained

his method of fluxions and fluents, were written in 1692 and

published in 1693. Towards the close of 1692 and throughout

the two following years Newton had a long illness, suffering

from insomnia and general nervous irritability. Perhaps he

never quite regained his elasticity of mind, and, though after

his recovery he shewed the same power in solving any question

propounded to him, he ceased thenceforward to do original

work on his own initiative, and it was somewhat difficult to

stir him to activity in new subjects.

In 1694 Newton began to collect data connected with the

irregularities of the moon s motion with the view of revising
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the part of the Principia which dealt with that subject. To

render the observations more accurate he forwarded to Flam-

steed* a table of corrections for refraction which he had

previously made. This was not published till 1721, when

Halley communicated it to the Royal Society. The original

calculations of Newton and the papers connected with it are

in the Portsmouth collection, and shew that Newton obtained

it by finding the path of a ray by means of quadratures in a

manner equivalent to the solution of a differential equation.
As an illustration of Newton s genius I may mention that even

as late as 1754 Euler failed to solve the same problem. In

1782 Laplace gave a rule for constructing such a table, and

his results agree substantially with those of Newton.

I do not suppose that Newton would in any case have

produced much more original work after his illness
;
but his

appointment in 1696 as warden, and his promotion in 1699

to the mastership of the Mint at a salary of 1 500 a year,

brought his scientific investigations to an end, though it was

only after this that many of his previous investigations were

published in the form of books. In 1696 he moved to London,
in 1701 he resigned the Lucasian chair, and in 1703 he was

elected president of the Royal Society.

In 1704 Newton published his Optics which contains the

results of the papers already mentioned (see above, p. 327).
To the first edition of this book were appended two minor
works which have no special connection with optics ;

one being
on cubic curves, the other on the quadrature of curves and on
fluxions. Both of them were old manuscripts with which

* John Flamsteed, born at Derby in 1646 and died at Greenwich in

1719, was one of the most distinguished astronomers of this age, and
the first astronomer-royal. Besides much valuable work in astronomy
he invented the system (published in 1680) of drawing maps by pro
jecting the surface of the sphere on an enveloping cone, which can then
be unwrapped. His life by B. F. Baily was published in London in

1835, but various statements in it should be read side by side with
those in Brewster s life of Newton. Flamsteed was succeeded as as

tronomer-royal by Edmund Halley (see below, p. 387).
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his friends and pupils were familiar, but they were here pub
lished urbi et orbi for the first time.

The first of these appendices is entitled jBnumeratio Linea-

rum Tertii Ordinis*
,
the object seems to be to illustrate the

use of analytical geometry, and as the application to conies was

well known Newton selected the theory of cubics.

He begins with some general theorems, and classifies

curves according as to whether their equations are alge

braical or transcendental : the former being cut by a straight

line in a number of points (real or imaginary) equal to the

degree of the curve, the latter being cut by a straight line in

an infinite number of points. Newton then shews that many
of the most important properties of conies have their analogues

in the theory of cubics, and he discusses the theory of asymp
totes and curvilinear diameters.

After these general theorems he commences his detailed

examination of cubics by pointing out that a cubic must have

at least one real point at infinity. If the asymptote or tangent

at this point be at a finite distance, it may be taken for the axis

of y. This asymptote will cut the curve in three points alto

gether, of which at least two are at infinity. If the third

point be at a finite distance, then (by one of his general theorems

on asymptotes) the equation can be written in the form

xy* + hy = ax?l + bx
2
4- ex + d,

where the axes of x and y are the asymptotes of the hyperbola

which is the locus of the middle points of all chords drawn

parallel to the axis of y ; while, if the third point in which

this asymptote cuts the curve be also at infinity, the equation

can be written in the form

xy - ax3 + bx* + ex + d.

Next he takes the case where the tangent at the real point

at infinity is not at a finite distance. A line parallel to the

* On this work and its bibliography, see my memoir in the Transactions

of the London Mathematical Society, 1891, vol. xxn., pp. 104143.
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direction in which the curve goes to infinity may be taken

as the axis of y. Any such line will cut the curve in three

points altogether, of which one is by hypothesis at infinity, and

one is necessarily at a finite distance. He then shews that, if

the remaining point in which this line cuts the curve be at a

finite distance, the equation can be written in the form,

y*
= ax3 + bx* + ex + d

;

while, if it be at an infinite distance, the equation can be written

in the form

y = ax3 + bx2 + cx + d.

Any cubic is therefore reducible to one of four charac

teristic forms. Each of these forms is then discussed in detail,

and the possibility of the existence of double points, isolated

ovals, &c. is worked out. The final result is that in all there

are seventy-eight possible forms which a cubic may take. Of
these Newton enumerated only seventy-two ;

four of the re

mainder were mentioned by Stirling in 1717, one by Nicole

in 1731, and one by Nicholas Bernoulli about the same time.

In the course of the work Newton states the remarkable

theorem that, just as the shadow of a circle (cast by a luminous

point on a plane) gives rise to all the conies, so the shadows of

the curves represented by the equation y
2 = ax3 + bx

2 + cx + d

give rise to all the cubics. This remained an unsolved puzzle
until 1731, when Nicole and Clairaut gave demonstrations of

it : a better proof is that given by Murdoch in 1740, which

depends on the classification of these curves into five species

according as to whether their points of intersection with the

axis of x are real and unequal, real and two of them equal (two

cases), real and all equal, or finally two imaginary and one

real.

In this tract Newton also discusses double points in the

plane and at infinity, the description of curves satisfying given

conditions, and the graphical solution of problems by the use

of curves.

The second appendix to the Ojifir* is entitled De Qundrn-
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tura Curvarum. Most of it had been communicated to Barrow
in 1668 or 1669, and probably was familiar to Newton s pupils
and friends from that time onwards. It consists of two parts.

The bulk of the first part is a statement of Newton s

method of effecting the quadrature and rectification of curves

~~by means of infinite series (see above, p. 329) : it is noticeable

as containing the earliest use in print of literal indices, and also

the first printed statement of the binomial theorem, but these

are introduced only incidentally. The main object is to give

rules for developing a function of a? in a series in ascending

powers of x, so as to enable mathematicians to effect the

quadrature of any curve in which the ordinate y can be ex

pressed as an explicit algebraical function of the abscissa x.

Wallis had shewn how this quadrature could be found when y
was given as a sum of a number of multiples of powers of x,

and Newton s rules of expansion here established rendered

possible the similar quadrature of any curve whose ordinate

can be expressed as the sum of an infinite number of such

terms. In this way he effects the quadrature of the curves

but the results are of course expressed as infinite series. He
then proceeds to curves whose ordinate is given as an implicit

function of the abscissa
;
and he gives a method by which y

can be expressed as an infinite series in ascending powers of 05,

but the application of the rule to any curve demands in general

such complicated numerical calculations as to render it of little

value. He concludes this part by shewing that the rectification

of a curve can be effected in a somewhat similar way. His

process is equivalent to finding the integral with regard to x

of (l+y
2

)*
in the form of an infinite series. I should add

that Newton indicates the importance of determining whether

the series are convergent an observation far in advance of

his time but he knew of no general test for the purpose ;

and in fact it was not until Gauss and Cauchy took up the
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question that the necessity of such limitations were commonly

recognized.

The part of the appendix which I have just described is

practically the same as Newton s manuscript De Analysi per

Equationes Numero Terminorum InfinitaSj which was subse

quently printed in 1711. It is said that this was originally

intended to form an appendix to Kinckhuysen s Algebra (see

above, p. 324). The substance of it was communicated to

Barrow, and by him to Collins, in letters of July 31 and Aug.

12, 1669; and a summary of part of it was included in the

letter of Oct. 24, 1676, sent to Leibnitz.

It should be read in connection with Newton s Metliodus

Differentialis, published in 1736. Some additional theorems

are there given, and he discusses his method of interpolation,

which had been briefly described in the letter of Oct. 24, 1676.

The principle is this. If y = &amp;lt;$&amp;gt; (x) be a function of x and if

when x is successively put equal to a
1? ,..., the values of y

be known and be b
l9

62,..., then a parabola whose equation is

y = p + qx + rx2 + . . . can be drawn through the points (a 1? &,),

(a2,
6
2 ), ..., and the ordinate of this parabola may be taken as

an approximation to the ordinate of the curve. The degree
of the parabola will of course be one less than the number of

given points. Newton points out that in this way the areas

of any curves can be approximately determined.

The second part of this appendix to the Optics contained a

description of Newton s method of fluxions. This is best con

sidered in connection with Newton s manuscript on the same

subject which was published by John Colsoii in 1736, and of

which it is a summary.
The fiuxional calculus is one form of the infinitesimal

calculus expressed in a certain notation, just as the differential

calculus is another aspect of the same calculus expressed in a

different notation. Newton assumed that all geometrical mag
nitudes might be conceived as generated by continuous motion;
thus a line may be considered as generated by the motion of a

point, a surface by that of a line, a solid by that of a surface,
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fc

a plane angle by the rotation of a line, and so on. The quantity
thus generated was denned by him as the fluent or flowing

quantity. The velocity of the moving magnitude was denned

the fluxion of the fluent. This seems to be the earliest

definite recognition of the idea of a continuous function, though
it had been foreshadowed in some of Napier s papers.

The following is a summary of Newton s treatment of

fluxions. There are two kinds of problems. The object of the

first is to find the fluxion of a given quantity, or more generally

&quot;the relation of the fluents being given, to find the relation of

their fluxions.^ This is equivalent to differentiation. The object

of the second or inverse method of fluxions is from the fluxion

or some relations involving it to determine the fluent, or more

generally
&quot; an equation being proposed exhibiting the relation

of the fluxions of quantities, to find the relations of those quan

tities, or fluents, to one another*.
&quot;

This is equivalent either to

integration which Newton termed the method of quadrature,
or to the solution of a differential equation which was called

by Newton the inverse method of tangents. The methods

for solving these problems are discussed at considerable length.

Newton then went on to apply these results to questions

connected with the maxima and minima of quantities, the

method of drawing tangents to curves, and the curvature of

curves (namely, the determination of the centre of curvature,

the radius of curvature, and the rate at which the radius of

curvature increases). He next considered the quadrature of

curves, and the rectification of curvesf. In finding the maxi

mum and minimum of functions of one variable we regard

the change of sign of the difference between two consecutive

values of the function as the true criterion : but his argument
is that when a quantity increasing has attained its maximum
it can have no further increment, or when decreasing it has

attained its minimum it can have no further decrement ;
conse

quently the fluxion must be equal to nothing.

* Colson s edition of Newton s manuscript, pp. xxi. xxii.

f Ibid., pp. xxii. xxiii.
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It has been remarked that neither Newton nor Leibnitz

produced a calculus, that is a classified collection of rules
;
and *

that the problems they discussed were treated from first prin

ciples. That no doubt is the usual sequence in the history of

such discoveries, though the fact is frequently forgotten by

subsequent writers. In this case I think the statement, so far

as Newton s treatment of the differential or fluxional part of

the calculus is concerned, is incorrect, as the foregoing account

sufficiently shews.

If a flowing quantity or fluent were represented by x,

Newton denoted its fluxion by x, the fluxion
&amp;lt;t&amp;gt;f

x or second

fluxion of x by x, and so on. Similarly the fluentbf x was de

noted by [ccj,
or sometimes by x or []. The infinitely small

part by which a fluent such as x increased in a small interval of

time measured by o was called the moment of the fluent
;
and

its value was shewn * to be xo. Newton adds the important
remark that thus we may in any problem neglect the terms

multiplied by the second and higher powers of o, and we can

always find an equation between the coordinates x, y of a

point on a curve and their fluxions x, y. It is an application of

this principle which constitutes one of the chief values of the

calculus
;

for if we desire to find the effect produced by
several causes on a system, then, if we can find the effect pro
duced by each cause when acting alone in a very small time,

the total effect produced in that time will be equal to the sum
of the separate effects. I should here note the fact that Vince

and other English writers in the eighteenth century used x to

denote the increment of x and not the velocity with which it

increased ;
that is, x in their writings stands for what Newton

would have expressed by xo and what Leibnitz would have

written as dx.

I need not discuss in detail the manner in which Newton
treated the problems above mentioned. I will only add that,

in spite of the form of his definition, the introduction into

* Colson s edition of Newton s manuscript, p. 24.
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geometry of the idea of time was evaded by supposing that

some quantity (e.g. the abscissa of a point on a curve) increased

equably; and the required results then depend on the rate at

which other quantities (e.g. the ordinate or radius of curvature)
increase relatively to the one so chosen*. The fluent so chosen

is what we now call the independent variable
;

its fluxion was

termed the
&quot;principal fluxion;&quot; and of course, if it were denoted

by x, then x was constant, and consequently x = 0.

There is no question that Newton used the method of

fluxions in 1666, and it is practically certain that accounts of it

were communicated in manuscript to friends and pupils from

and after 1669. The manuscript, from which most of the

above summary has been taken, is believed to have been written

between 1671 and 1677, and to have been in circulation at

Cambridge from that time onwards. It was unfortunate that

it was not published at once. Strangers at a distance naturally

judged of the method by the letter to Wallis in 1692, or by the

Tractatus de Quadratures Curvarum, and were not aware that

it had been so completely developed at an earlier date. This

was the cause of numerous misunderstandings.
At the same time it must be added that all mathematical

analysis was leading up to the ideas and methods of the infi

nitesimal calculus. Foreshadowings of the principles and

even of the language of that calculus can be found in the

writings of Napier, Kepler, Cavalieri, Pascal, Fermat, Wallis,

and Barrow. It was Newton s good luck to come at a time

when everything was ripe for the discovery, and his ability

_enabled him to construct almost at once a complete calculus.

The notation of the fluxional calculus is for most purposes
less convenient than that of the differential calculus. The

latter was invented by Leibnitz in 1675, and published in

1684 some nine years before the earliest printed account of

Newton s method of fluxions. But the question whether the

general idea of the calculus expressed in that notation was

obtained by Leibnitz from Newton or whether it was invented

* Colson s edition of Newton s manuscript, p. 20.
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independently gave rise to a long and bitter controversy. The

leading facts are given in the next chapter. The question is

one of considerable difficulty, but I will here only say that

from what I have read of the voluminous literature on the

question, I think on the whole it points to the fact that

Leibnitz obtained the idea of the differential calculus from a

manuscript of Newton s which he saw in 1675. I believe how
ever that the prevalent opinion is that the inventions were

independent.
The remaining events of Newton s life require little or no

comment. In 1705 he was knighted. From this time onwards

he devoted much of his leisure to theology, and wrote at great

length on prophecies and predictions, subjects which had always
been of interest to him. His Universal Arithmetic was pub
lished by Whiston in 1707, and his Analysis by Infinite Series

in 1711
;
but Newton had nothing to do with the preparation

of either of these for the press. His evidence before the House
of Commons in 1714 on the determination of longitude at sea

marks an important epoch in the history of navigation.
The dispute with Leibnitz as to whether he had derived

the ideas of the differential calculus from Newton or invented

it independently originated about 1708, and occupied much of

Newton s time, especially between the years 1709 and 1716.

In 1709 Newton was persuaded to allow Cotes to prepare
the long-talked-of second edition of the Principia : it was
issued in March 1713. A third edition was published in 1726
under the direction of Henry Pemberton. In 1725 Newton s

health began to fail. He died on March 20, 1727, and eight

days later was buried with great state in Westminster Abbey.
His chief works, taking them in their order of publication,

are the Principia, published in 1687
;
the Optics (with appen

dices on cubic curves, the quadrature and rectification of curves

by tJie use of infinite series, and the method of fluxions),

published in 1704; the Universal Arithmetic, published in

1707; the Analysis per Series, Flaxiones, &c., published in

1711; the Lectiones Opticae, published in 1729; the Method

B. 23
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of Fluxions, &c.
(i.e.

Newton s manuscript on fluxions), trans

lated by J. Colson and published in 1736; and the Methodus

Differentials, also published in 1736.

In appearance Newton was short, and towards the close of

his life rather stout, but well set, with a square lower jaw,
brown eyes, a very broad forehead, and rather sharp features.

His hair turned grey before he was thirty, and remained thick

and white as silver till his death.

As to his manners, he dressed slovenly, was rather languid,
and was often so absorbed in his own thoughts as to be

anything but a lively companion. Many anecdotes of his

extreme absence of mind when engaged in any investigation

have been preserved. Thus once when riding home from

Grantham he dismounted to lead his horse up a steep hill,

when he turned at the top to remount he found that he had

the bridle in his hand, while his horse had slipped it and gone

away. Again on the few occasions when he sacrificed his time

to entertain his friends, if he left them to get more wine or for

any similar reason, he would as often as not be found after the

lapse of some time working out a problem, oblivious alike of

his expectant guests and of his errand. He took no exercise,

indulged in no amusements, and worked incessantly, often

spending eighteen or nineteen hours out of the twenty-four in

writing.

In character he was religious and conscientious, with an

exceptionally high standard of morality, having, as Bishop
Burnet said, &quot;the whitest soul&quot; he ever knew. Newton was

always perfectly straightforward and honest, but in his con

troversies with Leibnitz, Hooke, and others, though scrupulously

just, he was not generous; and it would seem that he frequently

took offence at a chance expression when none was intended.

He modestly attributed his discoveries largely to the admirable

work done by his predecessors ;
and once explained that, if he

had seen farther than other men, it was only because he had

stood on the shoulders of giants. He summed up his own

estimate of his work in the sentence,
&quot; I do not know what I
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may appear to the world; but to myself I seem to have been

only like a boy, playing on the sea-shore, and diverting myself,

in now and then finding a smoother pebble, or a prettier shell

than ordinary, whilst the great ocean of truth lay all undis

covered before me.&quot; He was morbidly sensitive to being in

volved in any discussions. I believe that, with the exception of

his papers on optics, every one of his works was published only
under pressure from his friends and against his own wishes.

There are several instances of his communicating papers and

results on condition that his name should not be published :

thus when in 1669 he had at Collins s request solved some

problems on harmonic series and on annuities which had

previously baffled investigation, he only gave permission that

his results should be published
&quot; so it

be,&quot;
as he says,

&quot; without

my name to it : for I see not what there is desirable in public

esteem, were I able to acquire and maintain it : it would

perhaps increase my acquaintance, the thing which I chiefly

study to decline.&quot;

In intellect he has never been surpassed and probably never

been equalled. Of this his extant works are the only proper
test. Perhaps the most wonderful single illustration of his

powers was the composition in seven months of the first book

of the Principia.

As specific illustrations of his ability I may mention his so

lutions of the problem of Pappus, of John Bernoulli s challenge,

and of the question of orthogonal trajectories. The problem
of Pappus is to find the locus of a point such that the rectangle
under its distances from two given straight lines shall be in a

given ratio to the rectangle under its distances from two other

given straight lines. Many geometricians from the time of

Apollonius had tried to find a geometrical solution and had

failed, but what had proved insuperable to his predecessors
seems to have presented little difficulty to Newton who gave
an elegant demonstration that the locus was a conic. Geometry,
said Lagrange when recommending the study of analysis to

his pupils, is a strong bow, but it is one which only a Newton

232
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can fully utilize. As another example I may mention that in

1696 John Bernoulli challenged mathematicians
(i)

to deter

mine the brachistochrone, and
(ii) to find a curve such that

if any line drawn from a fixed point cut it in P and Q
then OPn

+ OQ
n would be constant. Leibnitz solved the first

of these questions after an interval of rather more than six

months, and then suggested they should be sent as a challenge
to Newton and others. Newton received the problems on

Jan. 29, 1697, and the next day gave the complete solutions

of both, at the same time generalizing the second question.

An almost exactly similar case occurred in 1716 when Newton
was asked to find the orthogonal trajectory of a family of

curves. In five hours Newton solved the problem in the form

in which it was propounded to him and laid down the prin

ciples for finding trajectories.

It is almost impossible to describe the effect of Newton s

writings without being suspected of exaggeration. But, if

the state of mathematical knowledge in 1669 or at the death

of Pascal or Fermat be compared with what was known
in 1687, it will be seen how immense was the advance. In

fact we may say that it took mathematicians half a century or

more before they were able to assimilate the work which

Newton had produced in those twenty years.

In pure geometry, Newton did not establish any new

methods, but no modern writer has shewn the same power
in using those of classical geometry. In algebra and the

theory of equations, he introduced the system of literal

indices, established the binomial theorem, and created no in

considerable part of the theory of equations : one rule which

he enunciated in this subject remained till a few years ago as

an unsolved riddle which had overtaxed the resources of

succeeding mathematicians. In analytical geometry, he intro

duced the modern classification of curves into algebraical and

transcendental ;
and established many of the fundamental

properties of asymptotes, multiple points, and isolated loops,

illustrated by a discussion of cubic curves. The fluxional or
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infinitesimal calculus was invented by Newton in or before

the year 1666, and circulated in manuscript amongst his

friends in and after the year 1669, though no account of the

method was printed till 1693. The fact that the results are

now-a-days expressed in a different notation has led to Newton s

investigations on this subject being somewhat overlooked.

Newton further was the first to place dynamics on a

satisfactory basis, and from dynamics he deduced the theory of

statics : this was in the introduction to the Principia pub
lished in 1687. The theory of attractions, the application of

the principles of mechanics to the solar system, the creation of

physical astronomy, and the establishment of the law of

universal gravitation are wholly due to him and were first

published in the same work. The particular questions con

nected with the motion of the earth and moon were worked

out as fully as was then possible. The theory of hydro

dynamics was created in the second book of the Principia,

and he added considerably to the theory of hydrostatics which

may be said to have been first discussed by Pascal. The

theory of the propagation of waves, and in particular the

application to determine the velocity of sound, is due to

Newton and was published in 1687. In geometrical optics,

he explained amongst other things the decomposition of light

and the theory of the rainbow
;
he invented the reflecting

telescope known by his name, and the sextant. In physical

optics, he suggested and elaborated the emission theory of light.

The above list does not exhaust the subjects he investigated,
but it will serve to illustrate how marked was his influence on

the history of mathematics. On his writings and on their

effects, it will be enough to quote the remarks of two or three

of those who were subsequently concerned with the subject-
matter of the Principia. Lagrange described the Principia as

the greatest production of the human mind, and said he felt

dazed at such an illustration of what man s intellect might be

capable. In describing the effect of his own writings and

those of Laplace it was a favourite remark of his that Newton
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was not only the greatest genius that had ever existed but he

was also the most fortunate, for as there is but one universe, it

can happen but to one man in the world s history to be the

interpreter of its laws. Laplace, who is in general very sparing

of his praise, makes of Newton the one exception, and the

words in which he enumerates the causes which &quot;will always
assure to the Principia a pre-eminence above all the other pro

ductions of the human intellect&quot; have been often quoted. Not

less remarkable is the homage rendered by Gauss : for other

great mathematicians or philosophers, he used the epithets

magnus, or clarus, or clarissimus
;
for Newton alone he kept

the prefix summus. Finally Biot, who had made a special

study of Newton s works, sums up his remarks by saying,
&quot; comme geometre et comme experimentateur Newton est sans

egal ; par la reunion de ces deux genres de genies a leur plus

haut degre, il est sans exemple.&quot;



CHAPTER XVII.

LEIBNITZ AND THE MATHEMATICIANS OF THE FIRST

HALF OF THE EIGHTEENTH CENTURY.

I HAVE briefly traced in the last chapter the nature and

extent of Newton s contributions to science. Modern analysis

is however derived directly from the works of Leibnitz and the

elder Bernoullis
;
and it is immaterial to us whether the funda

mental ideas of it were obtained by them from Newton, or

discovered independently. The English mathematicians of the

years considered in this chapter continued to use the language
and notation of Newton : they are thus somewhat distinct from

their continental contemporaries, and I have therefore grouped
them together in a section by themselves.

Leibnitz and the Bernoullis.

Leibnitz*. Gottfried Willvelrti Leibnitz (or Leibniz) was

born at Leipzig on June 21 (O. S.), 1646, and died at Hanover

on Nov. 14, 1716. His father died before he was six, and the

teaching at the school to which he was then sent was ineffi

cient, but his industry triumphed over all difficulties
; by the

time he was twelve he had taught himself to read Latin easily,

and had begun Greek
;
and before he was twenty he had

* See the life of Leibnitz by G. E. Guhrauer, 2 volumes and a supple

ment, Breslau, 1842 and 1846. Leibnitz s mathematical papers have

been collected and edited by C. J. Gerhardt in 7 volumes, Berlin

and Halle, 184963.
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mastered the ordinary text-books on mathematics, philo

sophy, theology, and law. Refused the degree of doctor of

laws at Leipzig by those who were jealous of his youth and

learning, he moved to Nuremberg. An essay which he there

wrote on the study of law was dedicated to the elector of

Mainz, and led to his appointment by the elector on a commis

sion for the revision of some statutes, from which he was

subsequently promoted to the diplomatic service. In the

latter capacity he supported (unsuccessfully) the claims of the

German candidate for the crown of Poland. The violent

seizure of various small places in Alsace in 1670 excited

universal alarm in Germany as to the designs of Louis XIY.
;

and Leibnitz drew up a scheme by which it was proposed to

offer German co-operation, if France liked to take Egypt and

use the possession of that country as a basis for attack against

Holland in Asia, on the condition that Germany was to be

left undisturbed by France. This bears a curious resemblance

to the similar plan by which Napoleon I. proposed to attack

England. In 1672 Leibnitz went to Paris on the invitation

of the French government to explain the details of the scheme,

but nothing came of it.

At Paris he met Huygens who was then residing there,

and their conversation led him to study geometry, which he

described as opening a new world to him, though he had as a

matter of fact previously written some tracts on various minor

points in mathematics
;
the most important of them being a

paper on combinations written in 1668, and a description of a

new calculating machine. In January, 1673, he was sent on a

political mission to London, where he stopped some months

and made the acquaintance of Oldenburg, Collins, and others :

it was at this time that he communicated the memoir to the

Royal Society in which he was found to have been forestalled

by Mouton, (see above, p. 327).

In 1673 the elector of Mainz died, and in the following year

Leibnitz entered the service of the Brunswick family; in 1676

he again visited London, and then moved to Hanover, where
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till his death he occupied the well-paid post of librarian in

the ducal library. His pen was thenceforth employed in all the

political matters which affected the Hanoverian family, and his

services were recognized by honours and distinctions of various

kinds : his memoranda on the various political, historical, and

theological questions which concerned the dynasty during the

forty years from 1673 to 1713 form a valuable contribution to

the history of that time. His appointment in the Hanoverian

service gave him increased leisure for his favourite pursuits.

Leibnitz used to assert that as the first-fruit of his increased

leisure he invented the differential and integral calculus in 1674,
*

but the earliest traces of the use of it in his extant note-books

do not occur till 1675, and it was not till 1677 that we
find it developed into a consistent system : it was not pub
lished till 1634. Nearly all his mathematical papers were

produced within the ten years from 1682 to 1692, and most of

them in a journal, called the Acta Eruditorum, which he and

Otto Mencke had founded in 1682, and which had a wide

circulation on the continent.

Leibnitz occupies at least as large a place in the history of

philosophy as he does in the history of mathematics. Most of

his philosophical writings were composed in the last twenty or

twenty-five years of his life
; and the point as to whether his

views were original or whether they were appropriated from

Spinoza, whom he visited in 1676, is still in question among
philosophers, though the evidence seems to point to the origin

ality of Leibnitz. As to Leibnitz s system of philosophy it will

be enough to say that he regarded the ultimate elements of the

universe as individual percipient beings whom he called monads.

According to him the monads are centres of force, and substance

is force, while space, matter, and motion are merely pheno
menal : finally the existence of God is inferred from the existing

harmony among the monads. His services to literature were
almost as considerable as those to philosophy; in particular
I may single out his overthrow of the then prevalent belief

that Hebrew was the primaeval language of the human race.
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In 1700 the Academy of Berlin was created on his advice,
and he drew up the first body of statutes for it. On the

accession in 1714 of his master George I. to the throne of

England, Leibnitz was practically thrown aside as a useless

tool
;

he was forbidden to come to England ;
and the last

two years of his life were spent in neglect and dishonour.

He died at Hanover in 1716. He was overfond of money
and personal distinctions; was unscrupulous, as might be

expected of a professional diplomatist of that time; but pos
sessed singularly attractive manners, and all who once came
under the charm of his personal presence remained sincerely
attached to him. His mathematical reputation was largely aug
mented by the eminent position that he occupied in diplomacy,

philosophy, and literature; and the power thence derived was

considerably increased by his influence in the management
of the A eta Eruditorum which I believe was the only private
scientific journal of the time.

The last years of his life from 1709 to 1716 were em
bittered by the long controversy with John Keill, Newton,
and others as to whether he had discovered the differential

calculus independently of Newton s previous investigations or

whether he had derived the fundamental idea from Newton
and merely invented another notation for it. The controversy*

occupies a place in the scientific history of the early years of

the eighteenth century quite disproportionate to its true

importance, but it so materially affected the history of mathe

matics in western Europe, that I feel obliged to give the

* The case in favour of the independent invention by Leibnitz is

stated in Gerhardt s Leibnizens mathematische Schriften, and in Biot and

Lefort s edition of the Commercium Epistolicum, Paris, 1856. The

arguments on the other side are given in H. Slornan s Leibnitzens

Anspruch auf die Erfindung der Differenzialreclmung, Leipzig, 1857,

of which an English translation, with additions by Dr Slomau, was

published at Cambridge in 1860. The history of the invention of the

Jculus is given in an article on it in the ninth edition of the Encyclo

paedia Britannica, and in P. Mansion s Esquisse de Vhistoire du calcul

infinitesimal, Gand, 1887.
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leading facts, though I am reluctant to take up so much space
with questions of a personal character.

The ideas of the infinitesimal calculus can be expressed
either in the notation of fluxions or in that of differentials.

The former was used by Newton in 1666, and communicated

in manuscript to his friends and pupils from 1669 onwards,
but no distinct account of it was printed till 1693. The
earliest use of the latter in the note-books of Leibnitz is dated

1675, it was employed in the letter sent to Newton in 1677,
and an account of it was printed in the memoir of 1684

described below. There is no question that the differential

notation is due to Leibnitz, and the sole question is as to

whether the general idea of the calculus was taken from

Newton or discovered independently.
The case in favour of the independent invention by

Leibnitz rests on the ground that he published a description of

his method some years before Newton printed anything on

fluxions, that he always alluded to the discovery as being his

own invention, and that for many years this statement was

unchallenged ;
while of course there must be a strong pre

sumption that he acted in good faith. To rebut this case it is

necessary to shew
(i) that he saw some of Newton s papers on

the subject in or before 1675 or at least 1677, and (ii) that he

thence derived the fundamental ideas of the calculus. The
fact that his claim was unchallenged for some years is in my
opinion in the particular circumstances of the case immaterial.

That Leibnitz saw some of Newton s manuscripts was

always intrinsically probable; but when, in 1849, C. J.

Gerhardt* examined Leibnitz s papers he found among them
a manuscript copy, the existence of which had been previously

unsuspected, in Leibnitz s handwriting of extracts from

Newton s De Analysi per Equationes Numero Terminorum

Infinitas (which was printed in the De Quadratura Curvarum
in 1704, see above, p. 348), together with notes on their

*
Gerhardt, Leibnizem mathematischc Schriften, vol. i., p. 7.
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expression in the differential notation. The question of the

date at which these extracts were made is therefore all

important. It is known that a copy of Newton s manuscript
had been sent to Tschirnhausen in May, 1675, and as in that

year he and Leibnitz were engaged together on a piece of

work, it is not impossible that these extracts were made then*.

It is also possible that they may have been made in 1676, for

Leibnitz discussed the question of analysis by infinite series

with Collins and Oldenburg in that year, and it is a priori

probable that they would have then shewn him the manuscript
of Newton on that subject, a copy of which was possessed by
one or both of them. On the other hand it may be supposed
that Leibnitz made the extracts from the printed copy in or

after 1704. Leibnitz shortly before his death admitted in a

letter to Conti that in 1676 Collins had shewn him some

Newtonian papers, but implied that they were of little or no

value presumably he referred to Newton s letters of June 13

and Oct. 24, 1676, and to the letter of Dec. 10, 1672 on the

method of tangents, extracts from which accompanied f the

letter of June 13 but it is curious that, on the receipt of

these letters, Leibnitz should have made no further inquiries,

unless he was already aware from other sources of the method

followed by Newton.

Whether Leibnitz made no use of the manuscript from

which he had copied extracts, or whether he had previously

invented the calculus are questions on which at this distance

of time no direct evidence is available. It is however worth

noting that the unpublished Portsmouth papers shew that,

when, in 1711, Newton went carefully into the whole dispute,

he picked out this manuscript as the one which had probably

somehow fallen into the hands of Leibnitz J. At that time

there was no direct evidence that Leibnitz had seen this

manuscript before it was printed in 1704, and accordingly

*
Sloman, English translation, p. 34.

t Gerhardt, vol. i., p. 91.

J Catalogue of Portsmouth papers, pp. xvi, xvii, 7, 8.
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Newton s conjecture was not published ;
but Gerhardt s dis

covery of the copy made by Leibnitz tends to confirm the

accuracy of Newton s judgment in the matter. It is said by
some that to a man of Leibnitz s ability the manuscript,

especially if supplemented by the letter of Dec. 10, 1672,

would supply sufficient hints to give him a clue to the methods

of the calculus, though as the fluxional notation is not em

ployed in it anyone who used it would have to invent a

notation; but this is denied by others.

There was at first no reason to suspect the good faith of

Leibnitz; and it was not until the appearance in 1704 of an

anonymous review of Newton s tract on quadrature, in which

it was implied that Newton had borrowed the idea of the

fluxional calculus from Leibnitz, that any responsible mathe

matician* questioned the statement that Leibnitz had invented

the calculus independently of Newton. It is universally
admitted that there was no justification or authority for the

statements made in this review, which was rightly attributed

to Leibnitz. But the subsequent discussion led to a critical

examination of the whole question, and doubt was expressed
as to whether Leibnitz had not derived the fundamental idea

from Newton. The case against Leibnitz as it appeared to

Newton s friends was summed up in the Commercium Episto-
licum issued in 1712. The evidence there collected may be

inconclusive, but at any rate detailed references are given for

all the facts mentioned.

No such summary (with facts, dates, and references) of

the case for Leibnitz was issued by his friends; but John
Bernoulli attempted to indirectly weaken the evidence by
attacking the personal character of Newton : this was in a

letter dated June 7, 1713. The charges were false, and,
when pressed for an explanation of them, Bernoulli most

solemnly denied having written the letter. In accepting the

* In 1699 Duillier had accused Leibnitz of plagiarism from Newton,
hut Duillier was not a person of much importance.
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denial Newton added in a private letter to him the following
remarks which are interesting as giving Newton s account of

why he was at last induced to take any part in the con

troversy. &quot;I have never,&quot; said he, &quot;grasped at fame among

foreign nations, but I am very desirous to preserve my cha

racter for honesty, which the author of that epistle, as if by
the authority of a great judge, had endeavoured to wrest from

me. Now that I am old, I have little pleasure in mathematical

studies, and I have never tried to propagate my opinions over

the world, but have rather taken care not to involve myself
in disputes on account of them.&quot;

Leibnitz s defence or explanation of his silence is given in

the following letter, dated April 9, 1716, from him to Conti.

&quot;Pour repondre de point en point a Pouvrage public centre

moi, il falloit un autre ouvrage aussi grand pour le moins que
celui-la : il falloit entrer dans un grand detail de quantite de

minuties passees il y a trente a quarante ans, dont je ne me
souvenois guere : il me falloit chercher mes vieilles lettres,

dont plusieurs se sont perdues, outre que le plus souvent je

n ai point garde les minutes des miennes : et les autres sont

ensevelies dans un grand tas de papiers, que je ne pouvois

debrouiller qu avec du temps et de la patience ;
mais je n en

avois guere le loisir, etant charge presentement d occupations

d une toute autre nature.&quot;

The death of Leibnitz in 1716 only put a temporary stop

to the controversy which was bitterly debated for many years

later. The question is one of great difficulty ;
the evidence is

conflicting and circumstantial
;
and every one must form for

themselves the opinion which seems most probable. I think

the majority of modern writers would accept the view that

probably Leibnitz s invention of the calculus was independent
of that of Newton, and everyone will hope that they are right.

For myself I cannot however but think it probable that

Leibnitz read Newton s manuscript De Analysi before 1677,

and was materially assisted by it. His unacknowledged

possession of a copy of part of one of Newton s manuscripts
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may be explicable, but the admitted fact that on more than

one occasion he deliberately altered or added to important

documents (ex. gr. the letter of June 7, 1713, in the Charta

Volans, and that of April 8, 1716, in the Acta Eruditorum)
before publishing them seems to me to make his own testimony

of little value. In mitigation of his conduct I can only say

that it must be recollected that what he is alleged to have

received was rather a series of hints than an account of the

calculus
;
and it seems to me that the facts that he did not

publish his results of 1677 until 1684, and that the notation

and subsequent development of it were all of his own invention

may have led him thirty years later to minimize any assistance

which he obtained originally and finally consider that it was

immaterial.

If we must confine ourselves to one system of notation

then there can be no doubt that that which was invented by
Leibnitz is better fitted for most of the purposes to which the

&quot;

infinitesimal calculus is applied than that of fluxions, and

for some (such as the calculus of variations) it is indeed

almost essential. It should be remembered however that at

the beginning of the eighteenth century the methods of the

infinitesimal calculus had not been systematized, and either

notation was equally good. The development of that calculus

was the main work of the mathematicians of the first half of

the eighteenth century. The differential form was adopted by
continental mathematicians. The application of it by Euler.

Lagrange, and Laplace to the principles of mechanics laid

down in the Principia was the great achievement of the last

half of that century, and finally demonstrated the superiority
of the differential to the fluxional calculus. The translation of

the Principia into the language of modern analysis and the

filling in of the details of the Newtonian theory by the aid of

that analysis were effected by Laplace.
The controversy with Leibnitz was regarded in England as

an attempt by foreigners to defraud Newton of the credit of

his invention, and the question was complicated on both sides
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by national jealousies. It was therefore natural though it was

unfortunate that in England the geometrical and fluxional

methods as used by Newton were alone studied and employed.
For more than a century the English school was thus out

of touch with continental mathematicians. The consequence
was that, in spite of the brilliant band of scholars formed by

Newton, the improvements in the methods of analysis gradually
effected on the continent were almost unknown in Britain.

It was not until 1820 that the value of analytical methods was

fully recognized in England, and that Newton s countrymen

again took any large share in the development of mathematics.

Leaving now this long controversy I come to the discussion

of the mathematical papers produced by Leibnitz, all the more

important of which were published in the Acta Eruditorum.

They are mainly concerned with applications of the infinitesimal

calculus and with various questions on mechanics.

The only papers of first-rate importance which he produced
are those on the differential calculus. The earliest of these

was one published in the Acta Eruditorum for October, 1684,

in which he enunciated a general method for finding maxima

and minima, and for drawing tangents to curves. One in

verse problem, namely, to find the curve whose subtangent
is constant, was also discussed. The notation is the same as

that with which we are familiar, and the differential co

efficients of xn and of products and quotients are determined.

In 1686 he wrote a paper on the principles of the new
calculus. In both of these papers the principle of continuity

is explicitly assumed, while his treatment of the subject is

based on the use of infinitesimals and not on that of the

limiting value of ratios. In answer to some objections which

were raised in 1694 by Bernard Nieuwentyt who asserted that

dyjdx stood for an unmeaning quantity like 0/0, Leibnitz

explained, in the same way as Barrow had previously done,

that the value of dyjdx in geometry could be expressed as the

ratio of two finite quantities. I think that Leibnitz s statement

of the objects and methods of the infinitesimal calculus as
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contained in these papers, which are the three most important

memoirs on it that he produced, is somewhat obscure, and his

attempt to place the subject on a metaphysical basis did not

tend to clearness; but the notation he introduced is superior

to that of Newton, and the fact that all the results of modern

mathematics are expressed in the language invented by Leib

nitz has proved the best monument of his work.

In 1686 and 1692 he wrote papers on osculating curves.

These however contain some bad blunders
; as, for example,

the assertion that an osculating circle will necessarily cut

a curve in four consecutive points : this error was pointed

out by John Bernoulli, but in his article of 1692 Leibnitz

defended his original assertion, and insisted that a circle could

never cross a curve where it touched it.

In 1692 Leibnitz wrote a memoir in which he laid the

foundation of the theory of envelopes. This was further

developed in another paper in 1694, in which he introduced

for the first time the terms &quot;

coordinates&quot; and &quot;axes of co

ordinates.&quot;

Leibnitz also published a good many papers on mechanical

subjects ;
but some of them contain mistakes which shew

that he did not understand the principles of the subject.

Thus, in 1685, he wrote a memoir to find the pressure exerted

by a sphere of weight W placed between two inclined planes
of complementary inclinations, placed so that the lines of

greatest slope are perpendicular to the line of the intersection

of the planes. He asserted that the pressure on each plane
must consist of two components,

&quot; unum quo decliviter de-

scendere tendit, alterum quo planum declive
premit.&quot;

He
further said that for metaphysical reasons the sum of the two

pressures must be equal to W. Hence, if R and R be the

required pressures, and a and
-J-?r

a the inclinations of the

planes, he finds that

R -
^ W(\- sin a + cos a) and R = W (1

- cos a + sin a).

The true values are R = W cos a and R - W sin a. Never-

B. 24
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theless some of his papers on mechanics are valuable. Of these

the most important were two, in 1689 and 1694, in which he

solved the problem of finding an isochronous curve; one, in

1697, on the curve of quickest descent (this was the problem
sent as a challenge to Newton); and two, in 1691 and 1692, in

which he stated the intrinsic equation of the curve assumed by
a flexible rope suspended from two points, i.e. the catenary, but

gave no proof. This last problem had been originally proposed

by Galileo.

In 1689, that is, two years after the Principia had been

published, he wrote on the movements of the planets which

he stated were produced by a motion of the ether. Not only

were the equations of motion which he obtained wrong, but

his deductions from them were not even in accordance with

his own axioms. In another memoir in 1706, that is, nearly

twenty years after the Principia had been written, he admitted

that he had made some mistakes in his former paper but

adhered to his previous conclusions, and summed the matter

up by saying &quot;it is certain that gravitation generates a

new force at each instant to the centre, but the centrifugal

force also generates another away from the centre. . . . The

centrifugal force may be considered in two aspects according

as the movement is treated as along the tangent to the curve

or as along the arc of the circle itself.&quot; It seems clear from

this paper that he did not really understand the manner in

which Newton had reduced dynamics to an exact science. It

is hardly necessary to consider his work on dynamics in further

detail. Much of it is vitiated by a constant confusion between

momentum and kinetic energy: when the force is
&quot;

passive&quot;

he uses the first, which he calls the vis mortua, as the

measure of a force
;
when the force is

&quot; active
&quot; he uses the

latter, the double of which he calls the vis viva.

The series quoted by Leibnitz comprise those for e?, log (1 +x),
sin

a?, verso;, and tan&quot;
1

^; all of these had been previously

published, and he rarely, if ever, added any demonstrations.

Leibnitz (like Newton) recognized the importance of James
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Gregory s remarks on the necessity of examining whether

infinite series are convergent or divergent, and proposed a test

to distinguish series whose terms are alternately positive and

negative. In 1693 he explained the method of expansion by
indeterminate coefficients, though his applications were not

free from error.

To sum the matter up briefly, it seems to me that Leibnitz s

work exhibits great skill in analysis, but much of it is un

finished, and when he leaves his symbols and attempts to

interpret his results he frequently commits blunders. No
doubt the demands of politics, philosophy, and literature on his

time may have prevented him from elaborating any scientific

subject completely or writing any systematic exposition of his

views, though they are no excuse for the mistakes of principle

which occur so frequently in his papers. Some of his memoirs

contain suggestions of methods which have now become valu

able means of analysis, such as the use of determinants and of

indeterminate coefficients : but when a writer of manifold

interests like Leibnitz throws out innumerable suggestions,

some of them are likely to turn out valuable
;
and to enumerate

these (which he never worked out) without reckoning the others,

which are wrong, gives a false impression of the value of his

work. But in spite of this, his title to fame rests on a sure

basis, for it was he who brought the differential calculus into

general use, and his name is inseparably connected with one of

the chief instruments of analysis, just as that of Descartes

another philosopher is with analytical geometry.
Leibnitz was only one amongst several continental writer*

whose papers in the Ada Eruditorum familiarized mathe
maticians with the use of the differential calculus. The most

important of these were James and John Bernoulli, both of

whom were warm friends and admirers of Leibnitz, and to

their devoted advocacy his reputation is largely due. Not

only did they take a prominent part in nearly every mathe
matical question then discussed, but nearly all the leading
mathematicians on the continent for the first half of the
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eighteenth century caine directly or indirectly under the

influence of one or both of them.

The Bernoullis (or as they are sometimes, and perhaps
more correctly, called the Bernouillis) were a family of Dutch

origin, who were driven from Holland by the Spanish persecu

tions, and finally settled at Bale in Switzerland. The first

member of the family who attained any marked distinction in

mathematics was James.

James Bernoulli*. Jacob or James Bernoulli was born at

Bale on Dec. 27, 1654; in 1687 he was appointed to a chair

of mathematics in the university there
; and occupied it until

his death on Aug. 16, 1705.

He was one of the earliest to realize how powerful as an

instrument of analysis was the infinitesimal calculus, and he

applied it to several problems, but he did not himself invent

any new processes. His great influence was uniformly and

successfully exerted in favour of the use of the differential cal

culus, and his lessons on it, which were written in the form

of two essays in 1691 and are published in volume n. of his

works, shew how completely he had even then grasped the

principles of the new analysis. These lectures, which contain

the earliest use of the term integral, were the first published

attempt to construct an integral calculus
;
for Leibnitz had

- treated each problem by itself, and had not laid down any

general rules on the subject.

The most important discoveries of James Bernoulli were

his solution of the problem to find an isochronous curve; his

proof that the construction for the catenary which had been

given by Leibnitz was correct, and his extension of this to

strings of variable density and under a central force
;

his de

termination of the form taken by an elastic rod fixed at one

end and acted on by a given force at the other, the elastica
\

* See the eloge by B. de Fontenelle, Paris, 1766 ;
also Montucla s

Histoire, vol. n. A collected edition of the works of James Bernoulli was

published in two volumes at Geneva in 1744, and an account of his life

is prefixed to the first volume.
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also of a flexible rectangular sheet with two sides fixed hori

zontally and filled with a heavy liquid, the lintearia ;
and

lastly of a sail filled with wind, the velaria. In 1696 he offered

a reward for the general solution of isoperimetrical figures, i.e.

the determination of a figure of a given species which should

include a maximum area, its perimeter being given : his own

solution, published in 1701, is correct as far it goes. In 1698

he published an essay on the differential calculus and its applica

tions to geometry. He here investigated the chief properties

of the equiangular spiral, and especially noticed the manner in

which various curves deduced from it reproduced the original

curve : struck by this fact he begged that, in imitation of

Archimedes, an equiangular spiral should be engraved on his

tombstone with the inscription eadem numero mutata resurgo.

He also brought out in 1695 an edition of Descartes s

Geometric. In. his Ars Conjectandi, published in 1713, he

established the fundamental principles of the calculus of pro
babilities

;
in the course of the work he defined the numbers

known by his name* and explained their use, he also gave
some theorems on finite differences. His higher lectures were

mostly on the theory of series; these were published by
Nicholas Bernoulli in 1713.

John Bernoulli t. Johann Bernoulli, the brother of James

Bernoulli, was born at Bale on Aug. 7, 1667, and died

there on Jan. 1, 1748. He occupied the chair of mathe

matics at Groningen from 1695 to 1705
;
and at Bale, where

he succeeded his brother, from 1705 to 1748. To all who
did not acknowledge his merits in a manner commensurate

with his own view of their importance he behaved most un-

* A bibliography of Bernoulli s Numbers has been given by G. S. Ely,
in the American Journal of Mathematics, 1882, vol. v., pp. 228 235.

t D Alembert wrote a eulogistic eloge on the work and influence of

John Bernoulli, but he explicitly refused to deal with his private life or

quarrels ;
see also Montucla s Histoire, vol. n. A collected edition of the

works of John Bernoulli was published at Geneva in four volumes in 1742,
and his correspondence with Leibnitz was published in two volumes at

the same place in 1745.
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justly : as an illustration of his character it may be mentioned

that he attempted to substitute for an incorrect solution of his

own on isoperimetrical curves another stolen from his brother

James, while he expelled his son Daniel from his house for

obtaining a prize from the French Academy which he had

expected to receive himself. After the deaths of Leibnitz and

THospital he claimed the merit of some of their discoveries
;

these claims are now known to be false. He was however the

most successful teacher of his age, arid had the faculty of

inspiring his pupils with almost as passionate a zeal for mathe

matics as he felt himself. The general adoption on the conti

nent of the differential rather than the fluxional notation was

largely due to his influence.

Leaving out of account his innumerable controversies, the

chief discoveries of John Bernoulli were the exponential cal

culus, the treatment of trigonometry as a branch of analysis,

the conditions for a geodesic, the determination of orthogonal

trajectories, the solution of the brachistochrone, the statement

that a ray of light traversed such a path that ^ds was a

minimum, and the enunciation of the principle of virtual work.

I believe that he was the first to denote the accelerating effect

of gravity by an algebraical sign g, and he thus arrived at the

formula v
2

2gh : the same result would have been previously

expressed by the proportion v* : v
2

2 = h
l

: h
2

. The notation

&amp;lt;(&amp;gt;x

to indicate a function of x was introduced by him in 1718,

and displaced the notation X or proposed by him in 1698 :

but the general adoption of symbols like f, F, &amp;lt;, \f/,
. . . to

represent functions, seems to be mainly due to Euler and

Lagrange.
Several members of the same family, but of a younger

generation, enriched mathematics by their teaching and writings.

The most important of these were the three sons of John
;

namely, Nicholas, Daniel, and John the younger ;
and the two

sons of John the younger, who bore the names of John and

James. To make the account complete I add here their respec

tive dates. Nicholas Bernoulli, the eldest of the three sons of
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John, was born on Jan. 27, 1695, and was drowned at St

Petersburg where he was professor on July 26, 1726. Daniel

Bernoulli, the second son of John, was born on Feb. 9, 1700,

and died on March 17, 1782
;

he was professor first at St

Petersburg and afterwards at Bale, and shares with Euler the

unique distinction of having gained the prize proposed annually

by the French Academy no less than ten times : I refer to

him again a few pages later. John Bernoulli, the younger, a

brother of Nicholas and Daniel, was born on May 18, 1710,

and died in 1790; he also was a professor at Bale. He left

two sons, John and James : of these, the former, who was born

on Dec. 4, 1744, and died on July 10, 1807, was astronomer

royal and director of mathematical studies at Berlin
;
while the

latter, who was born on Oct. 17, 1759, and died in July 1789,

was successively professor at Bale, Verona, and St Petersburg.

The development of analysis on the continent.

u
Leaving for a moment the English mathematicians of the

first half of the eighteenth century we come next to a number of

continental writers who barely escape mediocrity, and to whom
it will be necessary to devote but few words. Their writings
mark the steps by which analytical geometry and the diffe

rential and integral calculus were perfected and made familiar

to mathematicians. Nearly all of them were pupils of one

or other of the two elder Bernoullis, and they were so nearly

contemporaries that it is difficult to arrange them chrono

logically. The most eminent of them are Cramer, de Qua,
de Montmort, Fagnano, I

9

Hospital, Nicole, Parent, Riccati,

Saurin, and Varignon.

L Hospital. Guillaume Francois Antoine VHospital, Mar

quis de St-Mesme, born at Paris in 1661, and died there on

Feb. 2, 1704, was among the earliest pupils of John Bernoulli,

who, in 1691, spent some months at FHospitaPs house in

Paris for the purpose of teaching him the new calculus. It

seems strange but it is substantially true that a knowledge of
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the infinitesimal calculus and the power of using it was then

confined to Newton, Leibnitz, and the two elder Bernoullis

and it will be noticed that they were the only mathematicians

who solved the more difficult problems then proposed as chal

lenges. There was at that time no text-book on the subject,

and the credit of putting together the first treatise which

explained the principles and use of the method is due to

1 Hospital : it was published in 1696 under the title Analyse des

infiniment petits. This contains a partial investigation of

the limiting value of the ratio of functions which for a certain

value of the variable take the indeterminate form : 0, a

problem solved by John Bernoulli in 1704. This work had

a wide circulation, it brought the differential notation into

universal use in France, and helped to make it generally known

in Europe. A supplement, containing a similar treatment of

the integral calculus, together with additions to the differential

calculus which had been made in the following half century,

was published at Paris, 1754 6, by L. A. de Bougainville.

L Hospital took part in most of the challenges issued

by Leibnitz, the Bernoullis, and other continental mathe

maticians of the time; in particular he gave a solution of

the brachistochrone, and investigated the form of the solid

of least resistance of which Newton in the Principia had

stated the result. He also wrote a treatise on analytical

conies which was published in 1707, and for nearly a century

deemed a standard work on the subject.

Varignon. Pierre Varignon, born at Caen in 1654, and

in Paris on Dec. 22, 1722, was an intimate friend of

Newton, Leibnitz, and the Bernoullis, and, after 1 Hospital, was

the earliest and most powerful advocate in France of the use of

the differential calculus. He realized the necessity of obtaining

a test for examining the convergency of series, but the

analytical difficulties were beyond his powers. He simplified

the proofs of many of the leading propositions in mechanics,

and in 1687 recast the treatment of the subject, basing it on

the composition of forces (see above, p. 249). His works were
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published at Paris in 1725. For further details see the eloge

by B. de Fontenelle, Paris, 1766.

De Montmort, Pierre Raymond de Montmort, born at Paris

on Oct. 27, 1678, and died there on Oct. 7, 1719, was

interested in the subject of finite differences. He determined

in 1713 the sum of n terms of a finite series of the form

n(n-\) . n(n-l)(n-2) .

tia+
-iT2&quot;

Aa+
ITSrhr Aa+-

;

a theorem which seems to have been independently re-discovered

by Chr. Goldbach in 1718.

Nicole. Franqois Nicole, who was born at Paris on Dec. 23,

1683, and died there on Jan. 18, 1758, was the first to publish a

systematic treatise on finite differences. Taylor had regarded

the differential coefficient, i.e. the ratio of two infinitesimal

differences, as the limiting value of the ratio of two finite

differences, a method which is still used by many English

writers though it has been generally abandoned on the con

tinent, and thus had been led to give a sketch of the subject in

his Methodus published in 1715 (see below, p. 389). Nicole s

Traite du calcul des differences finies was published in 1717 :

it is a well-arranged book, and contains rules both for forming
differences and for effecting the summation of given series.

Besides this, in 1706, he wrote a work on roulettes, especially

spherical epicycloids: and in 1729 and 1731 he published
memoirs on Newton s essay on curves of the third degree.

Parent. Antoine Parent, born at Paris on Sept. 16, 1666,

and died there on Sept. 26, 1716, wrote in 1700 on analytical

geometry of three dimensions. His works were collected and

published in three volumes at Paris in 1713.

Saurin. Joseph Saurin, born at Courtaison in 1659, and

died at Paris on Dec. 29, 1737, was the first to shew how the

tangents at the multiple points of curves could be deter

mined by analysis.

De G-ua. Jean Paul de Gua de Malves, was born at Car

cassonne in 1713, and died at Paris on June 2, 1785. He
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published in 1740 a work on analytical geometry in which he

applied it, without the aid of the differential calculus, to find

the tangents, asymptotes, and various singular points of an

algebraical curve
;
and he further shewed how singular points

and isolated loops were affected by conical projection. He

gave the proof of Descartes s rule of signs which is to be

found in most modern works : it is not clear whether Descartes

ever proved it strictly, and Newton seems to have regarded it

as obvious.

Cramer. Gabriel Cramer, born at Geneva in 1704, and

died at Bagnols in 1752, was professor at Geneva. The work

by which he is best known is his treatise on algebraic

curves, published in 1750, which, as far as it goes, is fairly

complete ;
it contains the earliest demonstration that a curve

of the -H/th degree is in general determined if ^n (n + 3) points

on it be given :\ this work is still sometimes read^)
Besides

this, he edited the works of the two elder Bernoullis
;
and

wrote on the physical cause of the spheroidal shape of the

planets and the motion of their apses (1730), and on Newton s

treatment of cubic curves (1746).

Riccati. Jacopo Francesco, Count Riccati, born at Venice

on May 28, 1676, and died at Treves on April 15, 1754, did a

great deal to disseminate a knowledge of the Newtonian

philosophy in Italy. Besides the equation known by his

name, certain cases of which he succeeded in integrating, he

discussed the question of the possibility of lowering the order

of a given differential equation. His works were published at

Treves in four volumes in 1758. He had two sons who wrote

on several minor points connected with the integral calculus

and differential equations, and applied the calculus to several

mechanical questions : these were Vincenzo, who was born in

1707 and died in 1775, and Giordano, who was born in 1709

and died in 1790.

Fagnano. Giulio Carlo, Count Fagnano, and Marquis de

Toschi, born at Sinigaglia on Dec. 6, 1682, and died on Sept. 26,

1766, may be said to have been the first writer who directed
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attention to the theory of elliptic functions. Failing to rectify

the ellipse or hyperbola, Fagnano attempted to determine arcs

whose difference should be rectifiable. He also pointed out

the remarkable analogy existing between the integrals which

represent the arc of a circle and the arc of a lemniscate.

Finally he proved the formula

,r = 2tlog{(l-i)/(l+t)}

where i stands for v 1. His works were collected and

published in two volumes at Pesaro in 1750.

It was inevitable that some mathematicians should object

to methods of analysis founded on the infinitesimal calculus.

The most prominent of these were Viviani, De la Hire, and

Rolle. Chronologically they come here but they flourished

half a century after the date to which their writings properly

belong.

Viviani. Vincenzo Viviani, a pupil of Galileo and Tor-

ricelli, born at Florence on April 5, 1622, and died there on

Sept. 22, 1703, brought out in 1659 a restoration of the lost

book of Apollonius on conic sections; and in 1701 a restoration

of the work of Aristseus. He explained in 1677 how an

angle could be trisected by the aid of the equilateral hyperbola
or the conchoid. In 1692 he proposed the problem to con

struct four windows in a hemispherical vault so that the

remainder of the surface can be accurately determined : a

celebrated problem of which analytical solutions were given by
Wallis, Leibnitz, David Gregory, and James Bernoulli.

De la Hire. Philippe De la Hire (or Lahire), born in Paris

on March 18, 1640, and died there on April 21, 1719, wrote on

graphical methods, 1673; on the conic sections, 1685; a trea

tise on epicycloids, 1694; one on roulettes, 1702; and lastly

another on conchoids, 1708. His works on conic sections and

epicycloids were founded on the teaching of Desargues, whose

favourite pupil he was. He also translated the essay of

Moschopulus on magic squares, and collected many of the

theorems on them which were previously known : this was

published in 1705.
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Rolle. Michel Rolle, born at Ambert on April 21, 1652,
and died in Paris on Nov. 8, 1719, wrote an algebra in 1689
which contains the theorem on the position of the roots of an

equation which is known by his name. He published in 1696
a treatise on the solution of equations, whether determinate or

indeterminate, and he produced several other minor works.

He taught that the differential calculus was nothing but a

collection of ingenious fallacies.

So far no one of the school of Leibnitz and the two elder

Bernoullis had shewn any exceptional ability, but by the action

of a number of second-rate writers the methods and language
of analytical geometry and the differential calculus had become

well known by about 1740. The close of this school is

marked by the appearance of Clairaut, D Alembert, and Daniel

Bernoulli. Their lives overlap the period considered in the

next chapter, but, though it is difficult to draw a sharp dividing
line which shall separate by a definite date the mathematicians

there considered from those whose writings are discussed in

this chapter, I think that on the whole the works of these three

writers are best treated here.

Clairaut. Alexis Claude Clairaut was born at Paris on

May 13, 1713, and died there on May 17, 1765. He belongs

to the small group of children who, though of exceptional

precocity, survive and maintain their powers when grown up.

As early as the age of twelve he wrote a memoir on four

geometrical curves, but his first important work was a

treatise on tortuous curves published when he was eighteen

a work which procured for him immediate admission to the

French Academy. In 1731 he gave a demonstration of the

fact noted by Newton that all curves of the third order were

projections of one of five parabolas.

In 1741 Clairaut went on a scientific expedition to measure

the length of a meridian degree on the earth s surface, and

on his return in 1743 he published his Theorie de la figure

de la terre. This is founded on a paper by Maclaurin, where
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it had been shewn that a mass of homogeneous fluid set in

rotation about a line through its centre of mass would, under

the mutual attraction of its particles, take the form of a

spheroid. This work of Clairaut treated of heterogeneous

spheroids and contains the proof of his formula for the accele

rating effect of gravity in a place of latitude /, namely,

where G is the value of equatorial gravity, m the ratio of the

centrifugal force to gravity at the equator, and c the ellipticity

of a meridian section of the earth. In 1849 Prof. Stokes*

shewed that the same result was true whatever was the in

terior constitution or density of the earth provided the surface

was a spheroid of equilibrium of small ellipticity.

Impressed by the power of geometry as shewn in the writ

ings of Newton and Maclaurin, Clairaut abandoned analysis,

and his next work, the Theorie de la lune, published in 1752,

is strictly Newtonian in character. This contains the expla

nation of the motion of the apse which had previously puzzled

astronomers (see above, p. 339), and which Clairaut had at first

deemed so inexplicable that he was on the point of publishing
a new hypothesis as to the law of attraction when it occurred

to him to carry the approximation to the third order, and he

thereupon found that the result was in accordance with the

observations. This was followed in 1754 by some lunar tables;

Clairaut subsequently wrote various papers on the orbit of

the moon, and on the motion of comets as affected by the

perturbation of the planets, particularly on the path of Halley s

comet.

His growing popularity in society hindered his scientific

work :

&quot;

engage/
7

says Bossut,
&quot; a des soupers, a des veilles,

entraine par un gout vif pour les femmes, voulant allier le

plaisir a ses travaux ordinaires, il perdit le repos, la sante,

enfin la vie a 1 age de cinquante-deux ans.&quot;

* See Cambridge Philosophical Transactions, vol. vin. pp. 672 695.
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D Alembert*. Jean-le-Rond D Alembert, was born at Paris

on Nov. 16, 1717, and died there on Oct. 29, 1783. He was

the illegitimate child of the chevalier Destouches. Being
abandoned by his mother on the steps of the little church of

St Jean-le-Rond which then nestled under the great porch of

Notre Dame, he was taken to the parish commissary, who,

following the usual practice in such cases, gave him the

Christian name of Jean-le-Rond : I do not know by what title

he subsequently assumed the right to prefix de to his name.

He was boarded out by the parish with the wife of a glazier

in a small way of business who lived near the cathedral, and

here he seems to have found a real home though a very
humble one. His father appears to have looked after him,
and paid for his going to a school where he obtained a fair

mathematical education. An essay written in 1738 on the

integral calculus, and another in 1740 on &quot; ducks and drakes&quot;

or ricochets attracted some attention, and in the same year
he was elected a member of the French Academy; this

was probably due to the influence of his father. It is to

his credit that he absolutely refused to leave his adopted
mother with whom he continued to live until her death in

1757. It cannot be said that she sympathized with his

success for, at the height of his fame, she remonstrated

with him for wasting his talents on such work: &quot;vous ne

serez jamais qu un philosophe,&quot; said she, &quot;et qu est-ce qu un

philosophe ? c est un fou qui se tourmente pendant sa vie, pour

qu on parle de lui lorsqu il n y sera
plus.&quot;

Nearly all his mathematical works were produced within

the years 1743 to 1754. The first of these was his Traite de

dynamique, published in 1743, in which he enunciates the

principle known by his name, namely, that the &quot; internal

forces of inertia
7

(i.e. the forces which resist acceleration) must

* Condorcet and J. Bastien have left sketches jdi D Alembert s life:

his literary works have been published, but there is no complete edition

of his scientific writings. Some papers and letters recently discovered

were published by C. Henry at Paris in 1887.
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be equal and opposite to the forces which produce the accelera

tion. This is a particular case of Newton s second reading of

his third law of motion, but the full consequence of it had not

been realized previously. The application of this principle

enables us to obtain the differential equations of motion of any

rigid system.
In 1744 D Alembert published his Traite de I equilibre

et du mouvement des fluides, in which he applies his principle

to fluids : this led to partial differential equations which he

was then unable to solve. In 1745 he developed that part

of the subject which dealt with the motion of air in his

Theorie generate des vents, and this again led him to partial

differential equations : a second edition of this in 1746 was

dedicated to Frederick the Great of Prussia, and procured an

invitation to Berlin and the offer of a pension; he declined the

former, but subsequently, after some pressing, pocketed his

pride and the latter. In 1747 he applied the differential cal

culus to the problem of a vibrating string, and again arrived at

a partial differential equation.
His analysis had three times brought him to an equation

of the form

and he now succeeded in shewing that it was satisfied by

u =
&amp;lt;/&amp;gt;

(x 4-
1)
+

\l/ (x t),

where &amp;lt; and ^ are arbitrary functions. It may be interesting
to give his solution which was published in the transactions

of the Berlin Academy for 1747. He begins by saying that, if

- be denoted by p and r- by a. then
dx ot

J ^

But, by the given equation,
-j-

= i-
,
and therefore pdt + qdx is

also an exact differential : denote it by dv.
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Therefore dv=pdt + qdx.

Hence du + dv = (pdx + qdt) + (pdt + qdx) = (p + q) (dx + dt),

and du-dv = (pdx + qdt)
-
(pdt + qdx) = (p-q) (dx

-
dt).

Thus u + v must be a function of x + 1, and M v must be a

function of # t. We may therefore put

u + v -
2&amp;lt;/&amp;gt; (x -t-

),

and u v
%\l/ (x-t).

Hence M =
(sc

+ 2) + ^ (a;
-

2).

D Alembert added that the conditions of the physical

problem of a vibrating string demand that, when x - 0, u should

vanish for all values of t. Hence identically

*(t) + *(-*)-0.

Assuming that both functions can be expanded in integral

powers of
t, this requires that they should contain only odd

powers. Hence

* (-0=-* ()=*(-&amp;lt;)

Therefore u =
&amp;lt;f&amp;gt; (x + t)

+ &amp;lt; (# ).

Euler now took the matter up and shewed that the equation

of the form of the string was -= - a2
^ ,

and that the general
dt

2
dx2

integral was u =
&amp;lt;f&amp;gt; (x at)+\l/ (x + at), where

&amp;lt;^&amp;gt;

and
\j/

are

arbitrary functions.

The chief remaining contributions of D Alembert to mathe

matics were on physical astronomy ; especially on the pre

cession of the equinoxes, and on variations in the obliquity of

the ecliptic. These were collected in his Systeme du monde

published in three volumes in 1754.

During the latter part of his life he was mainly occupied
with the great French encyclopaedia. For this he wrote the

introduction, and numerous philosophical and mathematical

articles : the best are those on geometry arid on probabilities.
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His style is brilliant, but not polished, and faithfully reflects

his character which was bold, honest, and frank. He defended

a severe criticism which he had offered on some mediocre work

by the remark, &quot;j
aime mieux etre incivil qu ennuye&quot;; and

with his dislike of sycophants and bores it is not surprising
that during his life he had more enemies than friends.

Daniel Bernoulli*. Daniel Bernoulli, whose name I men
tioned above, and who was by far the ablest of the younger

&quot;Bernoullis, was a contemporary and intimate friend of Euler,

whose works are mentioned in the next chapter. Daniel

Bernoulli was born on Feb. 9, 1700, and died at Bale, where

he was professor of natural philosophy, on March 17, 1782.

He went to St Petersburgh in 1724 as professor of mathe

matics, but the roughness of the social life was distasteful to

him, and he was not sorry when a temporary illness in 1733

allowed him to plead his health as an excuse for leaving. He
then returned to Bale, and held successively chairs of medicine,

metaphysics, and natural philosophy there.

His earliest mathematical work was the Eocercitationes

published in 1724 : these contain a theory of the oscillations

of rigid bodies, and a solution of the differential equation pro

posed by Riccati. Two years later he pointed out for the first

time the frequent desirability of resolving a compound motion

into motions of translation and motions of rotation. His chief

work is his Hydrodynamique published in 1738 : it resembles

* The only account of Daniel Bernoulli s life with which I am
acquainted is the eloge by his friend Condorcet. Marie Jean Antoinc

Nicolas Caritat, Marquis de Condorcet, was born in Picardy on Sept. 17,

17 i3, and fell a victim to the republican terrorists on March 28, 1794.

He was secretary to the Academy and is the author of numerous eloges.

He is perhaps more celebrated for his studies in philosophy, literature,

and politics than iii mathematics, but his mathematical treatment of

probabilities, and his discussion of differential equations and finite dif

ferences, shew an ability which might have put him in the first rank if he

had concentrated his attention on mathematics. He sacrificed himself

in a vain effort to guide the revolutionary torrent into a constitutional

channel.

B. 25



386 MATHEMATICIANS OF THE ENGLISH SCHOOL.

Lagrange s Mecanique analytique in being arranged so that all

the results are consequences of a single principle, namely, in

this case, the conservation of energy. This was followed by a

memoir on the theory of the tides to which, conjointly with

memoirs by Euler and Maclaurin, a prize was awarded by the

French Academy : these three memoirs contain all that was

done on this subject between the publication of Newton s

Principia and the investigations of Laplace. Bernoulli also

wrote a large number of papers on various mechanical ques

tions, especially on problems connected with vibrating strings,

and the solutions given by Taylor and by D Alembert. He is

the earliest writer who attempted to formulate a kinetic theory
of gases, and he applied the idea to explain the law associated

with the names of Boyle and Mariotte.

The English mathematicians of the eighteenth century.

I have reserved a notice of the English mathematicians

who succeeded Newton in order that the members of the

English school may be all treated together. It was almost a

matter of course that the English should at first have adopted
the notation of Newton in the infinitesimal calculus in pre
ference to that of Leibnitz, and the English school would

consequently in any case have developed on somewhat different

lines to that on the continent where a knowledge of the in

finitesimal calculus was derived solely from Leibnitz and the

Bernoullis. But this separation into two distinct schools

became very marked owing to the action of Leibnitz and

John Bernoulli, which was naturally resented by Newton s

friends : and so for forty or fifty years, to the mutual disad

vantage of both sides, the quarrel raged. The leading members

of the English school were Cotes, Demoivre, Ditton, David

Gregory, Halley, Maclaurin, Simjjson, and Taylor. I may
however again remind my readers that as we approach modern

times the number of capable mathematicians in Britain,

France, Germany, and Italy becomes very considerable, but
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that in a popular sketch like this book it is only the leading
men whom I propose to mention.

To David Gregory, Halley, and Ditton I need devote but

few words.

David Gregory. David Gregory, the nephew of the James

Gregory mentioned above on p. 315, born at Aberdeen on

June 24, 1661, and died at Maidenhead on Oct. 10, 1708, was

appointed professor at Edinburgh in 1684, and in 1691 was on

Newton s recommendation elected Savilian professor at Oxford.

His chief works are one on geometry, issued in 1684
;
one on

optics, published in 1695, which contains [p. 98] the earliest

suggestion of the possibility of making an achromatic combina

tion of lenses
;
and one on the Newtonian geometry, physics,

and astronomy, issued in 1702.

Halley. Edmund Halley, born in London in 1656, and

died at Greenwich in 1742, was educated at St Paul s School,

London, and Queen s College, Oxford, in 1703 succeeded Wallis

as Savilian professor, and subsequently in 1720 was appointed
astronomer royal in succession to Flamsteed (see above, p. 345)
whose Historia Coelestis Britannica he edited in 1712 (first

and imperfect edition). Halley s name will be recollected for

the generous manner in. which he secured the immediate

publication of Newton s Principia in 1687. Most of his

original work was on astronomy and allied subjects, and lies

outside the limits of this book
;

it may be however said that

the work is of excellent quality, and both Lalande and Mairan

speak of it in the highest terms. Halley conjecturally restored

the eighth and lost book of the conies of Apollonius, and in

1710 brought out a magnificent edition of the whole work:

he also edited the works of Serenus, those of Menelaus, and

some of the minor works of Apollonius. He was in his turn

succeeded at Greenwich as astronomer royal by Bradley*.

* James Bradley, born in Gloucestershire in 1692, and died in 1762,

was the most distinguished astronomer of the first half of the eighteenth

century. Among his more important discoveries were the explanation
of astronomical aberration (1729), the cause of nutation (1748), and his

252
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Ditton. Humphry Ditton was born at Salisbury on May 29,

1675, and died in London in 1715 at Christ s Hospital where

he was mathematical master. He does not seem to have paid
much attention to mathematics until he came to London about

1705, and his early death was a distinct loss to English science.

He published in 1706 a text-book on fluxions; this and

another similar work by William Jones which was issued in

1711 occupied in England much the same place that [ Hospital s

treatise did in France; in 1709 Ditton issued an algebra; and

in 1712 a treatise on perspective. He also wrote numerous

papers in the Philosophical Transactions
;
he was the earliest

writer to attempt to explain the phenomenon of capillarity on

mathematical principles ;
and he invented a method for finding

the longitude which has been since used on various occasions.

Taylor*. Brook Taylor, born at Edmonton on Aug. 18,

1685, and died in London on Dec. 29, 1731, was educated at

St John s College, Cambridge, and was among the most en

thusiastic of Newton s admirers. From the year 1712 onwards

he wrote numerous papers in the Philosophical Transactions in

which, among other things, he discussed the motion of pro

jectiles, the centre of oscillation, and the forms of liquids

raised by capillarity. In. 1719 he resigned the secretaryship

of the Royal Society and abandoned the study of mathematics.

His earliest work, and that by which he is generally known,
is his Methodus Incrementorum Directa et Inversa published
in London, in 1715. This contains [prop. 7] a proof of the

well-known theorem

/ (x + h) =/ (x) + hf (x) + ^f (x) + .,.,

by which any function of a single variable can be expanded

empirical formula for corrections for refraction. It is perhaps not too

much to say that he was the first astronomer who made the art of observ

ing part of a methodical science.
* An account of his life by Sir William Young is prefixed to the

Contemplatio Philosophica : this was printed at London in 1793 for private

circulation and is now extremely rare.
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in powers of it. He does not consider the convergency

of the series, and the proof which involves numerous assump
tions is not worth reproducing. The work also includes

several theorems on interpolation. Taylor was the earliest

writer to deal with theorems on the change of the inde

pendent variable
;

he was perhaps the first to realize the

possibility of a calculus of operation, and just as he denotes

the nth differential coefficient of y by yn ,
so he uses y_ l

to

represent the integral of y\ lastly he is usually recognized

as the creator of the theory of finite differences.

The applications of the calculus to various questions given
in the Methodus have hardly received that attention they
deserve. The most important of them is the theory of the

transverse vibrations of strings, a problem which had baffled

previous investigators. In this investigation Taylor shews

that the number of half-vibrations executed in a second is

/DP
&quot;V LN&amp;gt;

where L is the length of the string, N its weight, P the weight
which stretches it, and D the length of a seconds pendulum.
This is correct, but in arriving at it he assumes that every

point of the string will pass through its position of equili

brium at the same instant, a restriction which D Alembert

subsequently shewed to be unnecessary. Taylor also found

the form which the string assumes at any instant. This work
also contains the earliest determination of the differential

equation of the path of a ray of light when traversing a

heterogeneous medium
; and, assuming that the density of the

air depends only on its distance from the earth s surface,

Taylor obtained by means of quadratures the approximate form

of the curve. The form of the catenary and the determination

of the centres of oscillation and percussion are also discussed.

A treatise on perspective, published in 1719, contains the

earliest general enunciation of the principle of vanishing

points ; though the idea of vanishing points for horizontal and
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parallel linns in a picture hung in a vortical plane had been

enunciated by (Juido Ubaldi in his l^rxprMivac, Libri, Pi
,;i,

1600, and by Htevinus in his Sciayraphia, Loyden, 1G08.

Cotes*. Roger Cotes was born near Leicester on July 10,

If&amp;gt;H2,
and died at Cambridge on June 5, 1710. Hi; was

educated at Trinity College, Cambridge, of which society he

was a fellow, and in 1700 was elected to the nowly-created
Plumian chair of astronomy in the university of Cambridge.
From 1709 to 1713 his time was mainly occupied in editing
the second edition of the 1 riitcipia. Tin- remark of Newton

that if only Cotes had lived &quot; we should have learnt some

thing&quot; indicates the opinion of his abilities held by most of

his contemporaries.
Colon s writings were collected and published in 1722

under the titles Ha/nn&nMi Af&nsurci/rufn and Opera MisceL-

latifia. His lectures on hydrostatics were published in 1738.

A largr part &amp;lt;&amp;gt;f I IK- //armonid Mvnxti/t drn/m is givrn up
to UK; decomposition and integration of rational algebraical

expressions : that part which deals with the theory of partial

fractions was left unfmished, but was completed by Domoivro.

Cotes s theorem in trigonometry, which depends on forming the

quadratic factors of , *:&quot;- I, is well known. The proposition that

&quot;if from a fixed point a line bo drawn cutting a curve; in

Qn Qvi . . . ,Q ,
mid a point / be, taken on tin; line so that the

reciprocal of 1* is the arithmetic mean of the reciprocals of ()Cj t ,

OQ.29 ...
t OQut

then the locus of 1* will be a straight lino&quot; is also

due to Cotes. The title of the book was derived from the

latter theorem. The Opera MisCGllcMMd contains a paper on

the method for determining the most probable result from a

number of observations : this was the earliest attempt to

frame a theory of errors. It also contains essays on Newton s

Methodux Differentially, on the construction of tables by the

method of differences, on the descent of a body under gravity,

on the cycloidal pendulum, and on projectiles.

* Boo my Hinton/ of tin* Nhnly of Mtttlwrnatics (it CamWdye, Cain

es IHH&amp;lt;), p. HH.
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Demoivre. Abraluim Demoivre (more correctly written

as de Moivre) was born at Vitry on May 20, 1667, and

died in London on Nov. 27, 1754. His parents came to

England when he was a boy, and his education and friends

were alike English. His interest in the higher mathematics

is said to have originated in his coming by chance across a

copy of Newton s Princijna. From the eloye on him de

livered in 1754 before the French Academy it would seem

that as a young fellow his work as a teacher of mathe

matics had led him to the house of the Earl of Devonshire at

the instant when Newton, who had asked permission to present

a copy of his work to the earl, was coming out. Faking up
the book, and charmed by the far-reaching conclusions and

the apparent simplicity of the reasoning, Demoivre thought

nothing would be easier than to master the subject, but to his

surprise found that to follow the argument overtaxed his

powers. He however bought a copy, and as he had but little

leisure he tore out the pages in order to carry one or two

of them loose in his pocket so that he could study them in the

intervals of his work as a teacher. Subsequently he joined

the Royal Society, and became intimately connected with

Newton, Haliey, and other mathematicians of the English

school. The manner of his death has a curious interest for

psychologists. Shortly before it, he declared that it was

necessary for him to sleep some ten minutes or a quarter of an

hour longer each day than the preceding one : the day after he

had thus reached a total of something over twenty-three hours

he slept up to the limit of twenty-four hours, and then died in

his sleep.

He is best known for having, together with Lambert,

created that part of trigonometry which deals with imaginary

quantities. Two theorems on this part of the subject aiv .-.till

connected with his name, namely, that which asserts tl.al

sin nx + i cos nx is one of the values of (sin x + icos
#)&quot;,

and

that which gives the various quadratic larlurs of u?n 2px* + 1

His chief works, other than numerous papers in the /V//A/
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sopkical Transactions, were The Doctrine of Chances published
in 1718, and the Miscellanea Analytica published in 1730. In

the former the theory of recurring series was first given, and

the theory of partial fractions which Cotes s premature death

had left unfinished was completed, while the rule for finding

the probability of a compound event was enunciated. The

latter, besides the trigonometrical propositions mentioned above,
contains some theorems in astronomy but they are treated as

problems in analysis.

Maclaurin.* Colin Maclaurin, who was born at Kilmodan

in Argyllshire in February 1698, and died at York on June 14,

1746, was educated at the university of Glasgow; in 1717,

he was elected, at the early age of nineteen, professor of

mathematics at Aberdeen; and in 1725, he was appointed the

deputy of the mathematical professor at Edinburgh, and ulti

mately succeeded him: there was some difficulty in securing a

stipend for a deputy, and Newton privately wrote offering to

bear the cost so as to enable the university to secure the

services of Maclaurin. Maclaurin took an active part in

opposing the advance of the Young Pretender in 1745 : on the

approach of the Highlanders he fled to York, but the exposure
in the trenches at Edinburgh and the privations he endured in

his escape proved fatal to him.

His chief works are his Geometria Organica, London, 1719;
his De Linearum Geometricarum Proprietatibus, London, 1720;
his Treatise on Fluxions, Edinburgh, 1742; his Algebra,

London, 1748; and his Account of Newton s Discoveries,

London, 1748.

The Geometria Organica is on the extension of a theorem

given by Newton. Newton had shewn that, if two angles
bounded by straight lines turn round their respective summits

so that the point of intersection of two of these lines moves

along a straight line, the other point of intersection will

describe a conic
; and, if the first point move along a conic, the

* A sketch of Maclaurin s life is prefixed to his posthumous account

of Newton s discoveries, London, 1748.
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second will describe a quartic. Maclaurin gave an analytical

discussion of the general theorem, and shewed how by this

method various curves could be practically traced. This work

contains an elaborate discussion on curves and their pedals,

a branch of geometry which he had created in two papers

published in the Philosophical Transactions for 1718 and 1719.

In the following year, 1720, Maclaurin issued a supplement
which is practically the same as his De Linearum Geometri-

carum Proprietatibus. It is divided into three sections and an

appendix. The first section contains a proof of Cotes s theorem

above alluded to
;
and also the analogous theorem (discovered

by himself) that, if a straight line OP^^... drawn through a

fixed point cut a curve of the nth degree in n points

Plt P3 ,...,
and if the tangents at Plt P^,..- cut a fixed line Ox

in points A ly A 2 ,..., then the sum of the reciprocals of the

distances OA lt OA 2y ... is constant for all positions of the

line 0/VPo.... These two theorems are generalizations of

those given by Newton on diameters and asymptotes. Either

is deducible from the other. In the second section these

theorems are applied to conies
; most of the harmonic pro

perties connected with an inscribed quadrilateral are deter

mined
;
and in particular the theorem on an inscribed hexagon

which is known by the name of Pascal is deduced. Pascal s

essay was not published till 1779, and the earliest printed
enunciation of his theorem was that given by Maclaurin. In

the third section these theorems are applied to cubic curves.

Amongst other propositions he here shews that, if a quadri
lateral be inscribed in a cubic, and if the points of intersection

of the opposite sides also lie on the curve, then the tangents to

the cubic at any two opposite angles of the quadrilateral will

meet on the curve. The appendix contains some general
theorems. One of these (which includes Pascal s as a

particular case) is that if a polygon be deformed so that while

each of its sides passes through a fixed point, its angles (save

one) describe respectively curves of the
?&amp;gt;ith, wth, /&amp;gt;th, degrees,

then shall the remaining angle describe a curve of the degree
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2mnp . .
; but, if the given points be collinear, the resulting

curve will be only of the degree mnp ____ This essay was re

printed with additions in the Philosophical Transactions for

1735.

The Treatise of Fluxions published in 1742 was the first

logical and systematic exposition of the method of fluxions.

The cause of its publication was an attack by Berkeley on the

principles of the infinitesimal calculus. In it
[art. 751, p. 610]

Maclaurin gave a proof of the theorem that

This was obtained in the manner given in many modern text

books by assuming that f (x) can be expanded in a form

like

/ (x)
= A + A& + A#? +...,

then on differentiating and putting x = Q in the successive

results, the values of A
Q ,
A 1J ... are obtained: but he did

not investigate the convergency of the series. The result had

been previously given in 1730 by James Stirling in his

Methodus Differentialis [p. 102], and of course is at once

deducible from Taylor s theorem on which the proofs by

Stirling and Maclaurin are admittedly founded. Maclaurin

also here enunciated [art. 350, p. 289] the important theorem

that, if &amp;lt; (x) be positive and decrease as x increases from x = a to

x oo
,
then the series

&amp;lt; () +
&amp;lt;/&amp;gt; (a+ 1) + &amp;lt; (a + 2)+ ...

roc

is convergent or divergent as / &amp;lt; (x) dx is finite or infinite.
J a

He also gave the correct theory of maxima and minima, and

rules for finding and discriminating multiple points.

This treatise is however especially valuable for the solu

tions it contains of numerous problems in geometry, statics,

the theory of attractions, and astronomy. To solve these he

reverted to classical methods, and so powerful did these pro

cesses seem, when used by him, that Olairaut after reading the
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work abandoned analysis, and attacked the problem of the

6gure of the earth again by pure geometry. At a later time

this part of the book was described by Lagrange as the &quot; chef-

d oeuvre de geometric qu on peut comparer a tout ce qu Archi-

mede nous a laisse* de plus beau et de plus ingdnieux.&quot;

Maclaurin also determined the attraction of a homogeneous

ellipsoid at an internal point, and gave some theorems on its

attraction at an external point ;
in effecting this he introduced

the conception of level surfaces, i.e. surfaces at every point of

which the resultant attraction is perpendicular to the surface.

No further advance in the theory of attractions was made

until Lagrange in 1773 introduced the idea of the potential

(see below, p. 412). Maclaurin also shewed that a spheroid

was a possible form of equilibrium of a mass of homogeneous

liquid rotating about an axis passing through its centre of

mass. Finally he discussed the tides : this part had been

previously published (in 1740) and had received a prize from

the French Academy.

Among Maclaurin s minor works is his Algebra, published
in 1748, and founded on Newton s Universal Arithmetic. It

contains the results of some early papers of Maclaurin
; notably

of two, written in 172G and 1729, on the number of imaginary
roots of an equation, suggested by Newton s theorem (see above,

p. 332); and of one, written in 1729, containing the well-known

rule for finding equal roots by means of the derived equation.
To this a treatise, entitled De Linearum Geomeiricarum Pro-

prietatibus Generalibus, was added as an appendix ;
besides

the paper of 1720 above alluded to, it contains some additional

and elegant theorems. Maclaurin also produced in 1728 an

exposition of the Newtonian philosophy, which is incorporated
in the posthumous work printed in 1748. Almost the last

paper he wrote was one printed in the Philosophical Trans

actions for 1743 in which he discussed from a mathematical

point of view the form of a bee s cell.

Maclaurin was succeeded in his chair at Edinburgh by his

pupil Matthew Stewart, born at Rothsay in 1717 and died at
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Edinburgh on Jan. 23, 1785, a mathematician of considerable

power, to whom I allude in passing for his theorems on the

problem of three bodies and for his discussion, treated by
transversals and involution, of the properties of the circle and

straight line.

Maclaurin was one of the most able mathematicians of the

eighteenth century, but his influence on the progress of British

mathematics was on the whole unfortunate. By himself

abandoning the use both of analysis and of the infinitesimal

calculus he induced Newton s countrymen to confine them

selves to Newton s methods, and as I remarked before it was

riot until about 1820, when the differential calculus was

introduced into the Cambridge curriculum, that English
mathematicians made any general use of the more powerful
methods of modern analysis.

Simpson*. The last member of the English school whom
I need mention here is Thomas Simpson, who was born in

Leicestershire on Aug. 20, 1710, and died on May 14, 1761.

His father was a weaver and he owed his education to his

own efforts. His mathematical interests were first aroused by
the solar eclipse which took place in 1724, and with the aid

of a fortune-telling pedler he mastered Cocker s Arithmetic and

the elements of algebra. He then gave up his weaving, and

became an usher at a school, and by constant and laborious

efforts improved his mathematical education so that by 1735

he was able to solve several questions involving the infini

tesimal calculus, which had been recently proposed. He next

moved to London, and in 1743 was appointed professor of

mathematics at Woolwich, a post which he continued to occupy
till his death.

The works published by Simpson prove him to have been

a man of extraordinary natural genius and extreme industry.

The most important of them are his Fluxions, 1737 and 1750,

with numerous applications to physics and astronomy ;
his

* A life of Simpson, with a bibliography of his writings, by Bevis and

Hutton was published in London in 1764.
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Laws of Chance and his Essays, 1740 ;
his theory of Annuities

and Reversions (a branch of mathematics that is due to James

Dodson, 1597 1657, who was a master at Christ s Hospital,

London), with tables of the value of lives, 1742; his Dis

sertations, 1743, in which the figure of the earth, the force

of attraction at the surface of a nearly spherical body, the

theory of the tides, and the law of astronomical refraction

are discussed; his Algebra, 1745; his Geometry, 1747; his

Trigonometry, 1748, in which he introduced the current ab

breviations for the trigonometrical functions
;
his Select Exer

cises, 1752, containing the solutions of numerous problems

and a theory of gunnery ;
and lastly, his Miscellaneous Tracts,

1754. The last consists of eight memoirs and these contain

his best known investigations. The first three papers are on

various problems in astronomy ;
the fourth is on the theory of

mean observations
;
the fifth and sixth on problems in fluxions

and algebra ;
the seventh contains a general solution of the

isoperimetrical problem ;
the eighth contains a discussion of

the third and ninth sections of the Principia, and their appli

cation to the lunar orbit. In this last memoir Simpson
obtained a differential equation for the motion of the apse of

the lunar orbit similar to that arrived at by Clairaut, but

instead of solving it by successive approximations he deduced

a general solution by indeterminate coefficients. The result

agrees with that given by Clairaut. Simpson first solved

this problem in 1747, two years later than the publication of

Clairaut s memoir, but the solution was discovered independently
of Clairaut s researches of which Simpson first heard in 1748.



398

CHAPTER XVIII.

LAGRANGE, LAPLACE, AND THEIR CONTEMPORARIES.

CIRC. 17401830.

THE last chapter contains the history of two separate

schools the continental and the British. In the early years

of the eighteenth century the English school appeared vigorous

and fruitful, but decadence rapidly set in, and after the deaths

of Maclaurin and Simpson no British mathematician appeared
who is at all comparable to the continental mathematicians of

the latter half of the eighteenth century. This fact is partly

explicable by the isolation of the school, partly by its tendency
to rely too exclusively on geometrical and fiuxioiial methods.

Some attention was however given to practical science, but,

except for a few remarks on English physicists, I do not think

it necessary to discuss, English mathematics further, until

about 1820 when analytical methods again came into vogue.

On the continent under the influence of John Bernoulli

the calculus had become an instrument of great analytical power

expressed in an admirable notation and for practical applica

tions it is impossible to over-estimate the value of a good

notation. The subject of mechanics remained however in much

the condition in which Newton had left it, until D Alembert,

in putting Newton s results into the language of the differential

calculus, did something to extend it. Universal gravitation as

enunciated in the Principia was accepted as an established fact,

but the geometrical methods adopted in proving it were diffi

cult to follow or to use in analogous problems ; Maclaurin,

Simpson, and Clairaut may be regarded as the last mathe-
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maticians of distinction who employed them. Lastly the

Newtonian theory of light was generally received as correct.

The leading mathematicians of the era on which we are

now entering are Euler, Lagrange, Laplace, and Legendre.

Briefly we may say that Euler extended, summed up, and com

pleted the work of his predecessors ;
while Lagrange with

almost unrivalled skill developed the infinitesimal calculus

and theoretical mechanics into the form in which we now

know them. At the same time Laplace made some additions

to the infinitesimal calculus, and applied that calculus to the

theory of universal gravitation ;
he also created a calculus of

probabilities. Legendre invented spherical harmonic analysis

and elliptic integrals, and added to the theory of numbers.

The works of these writers are still standard authorities and

are hardly yet the subject-matter of history. I shall therefore

content myself with a mere sketch of their chief discoveries,

referring anyone who wishes to know more to the works

themselves. Lagrange, Laplace, and Legendre created a

French school of mathematics of which the younger members

are divided into two groups ; one (including Poisson and

Fourier) began to apply mathematical analysis to physics, and

the other (including Monge, Carnot, and Poncelet) created

modern geometry. Strictly speaking some of the great mathe

maticians of recent times, such as Gauss and Abel, were con

temporaries of the mathematicians last named
; but, except for

this remark, I think it convenient to defer any consideration

of them to the next chapter.

The development of analysis and mechanics.

Euler *. Leonliard Euler was bom at Bale on April 15,

* The chief facts in Euler s life are given by Fuss, and a list of

Eulcr s writings is prefixed to his Corrt tpnnth ncc., 2 vols, St Petersburg,

1843. Nicholas Fuss born at Bale in 1755, and died at St Petersburg
in 1826, was a pupil of Daniel Bernoulli, and subsequently was appointed
assistant to Euler : Fuss wrote on spherical conies and on lines of

curvature. No complete edition of Euler s writings has been published,

though the work has been begun twice.



400 LAGRANGE, LAPLACE, AND THEIR CONTEMPORARIES.

1707, and died at St Petersburg on Sept. 7, 1783. He was

the son of a Lutheran minister who had settled at Bale, and

was educated in his native town under the direction of John

Bernoulli, with whose sons Daniel and Nicholas he formed a

life-long friendship. When, in 1725, the younger Bernoullis

went to Russia, on the invitation of the empress, they pro
cured a place there for Euler, which in 1733 he exchanged for

the chair of mathematics then vacated by Daniel Bernoulli.

The severity of the climate affected his eyesight, and in 1735

he lost the use of one eye completely. In 1741 he moved to

Berlin at the request, or rather command, of Frederick the

Great
;
here he stayed till 1766, when he returned to Russia,

and was succeeded at Berlin by Lagrange. Within two or

three years of his going back to St Petersburg he became

blind
;
but in spite of this, and although his house together

with many of his papers were burnt in 1771, he recast and

improved most of his earlier works. He died of apoplexy in

1783. He was married twice.

I think we may sum up Euler s work by saying that he

created analysis, and revised almost all the branches of pure
mathematics which were then known, filling up the details,

adding proofs, and arranging the whole in a consistent form.

Such work is very important, and it is fortunate for science

when it falls into hands as competent as those of Euler.

Euler wrote an immense number of memoirs on all kinds

of mathematical subjects. His chief works, in which many
of the results of earlier memoirs are embodied, are as fol

lows.

In the first place, he wrote in 1748 his Introductio in

Analysin Infinitorum, which was intended to serve as an

introduction to pure analytical mathematics. This is divided

into two parts.

The first part of the Analysis Infinitorum contains the

bulk of the matter which is to be found in modern text-books

on algebra, theory of equations, and trigonometry. In the

algebra he paid particular attention to the expansion of various
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functions in series, and to the summation of given series; and

pointed out explicitly that an infinite series cannot be safely

employed unless it is convergent. In the trigonometry, much

of which is founded on F. C. Mayer s Arithmetic of Sines which

had been published in 1727, Euler developed the idea of John

Bernoulli that the subject was a branch of analysis and not a

mere appendage of astronomy or geometry : he also introduced

(contemporaneously with Simpson) the current abbreviations

for the trigonometrical functions, and shewed that the trigo

nometrical and exponential functions were connected by the

relation cos + i sin = eie.

Here too [pp. 85, 90, 93] we meet the symbol e used to de

note the base of the Napierian logarithms, namely, the incom

mensurable number 271828..., and the symbol TT used to

denote the incommensurable number 3-14159.... The use of a

single symbol to denote the number 2*71828... seems to be due

to Cotes who denoted it by M. Newton was (as far as I know)
the first to employ the literal exponential notation, and Euler,

using the form a2
,
had taken a as the base of any system of

logarithms : it is probable that the choice of e for a particular

base was determined by its being the vowel consecutive to a.

The use of a single symbol to denote the number 3*14159...

appears to have been introduced by John Bernoulli who repre
sented it by c; Euler in 1734 denoted it by /?, and in a letter

of 1736 (in which he enunciated the theorem that the sum of

the squares of the reciprocals of the natural numbers is ^TT*)

he used the letter c; Chr. Goldbach in 1742 used TT; and after

the publication of Euler s Analysis the symbol TT was generally

employed.
The numbers e and TT would enter into mathematical analysis

from whatever side the subject was approached. The latter

represents among other things the ratio of the circumfer

ence of a circle to its diameter, but it is a mere accident

that that is taken for its definition. De Morgan in the Budget

of Paradoxes tells an anecdote which illustrates how little the

usual definition suggests its real use. He was explaining to

B. 26
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an actuary what was the chance that at the end of a given
time a certain proportion of some group of people would be

alive
;
and quoted the actuarial formu]a involving TT,

which in

answer to a question he explained stood for the ratio of the

circumference of a circle to its diameter. His acquaintance
who had so far listened to the explanation with interest inter

rupted him and explained,
&quot; My dear friend, that must be a

delusion
;
what can a circle have to do with the number of

people alive at the end of a given time ?
&quot;

The second part of the Analysis Infinitorum is on ana

lytical geometry. Euler commenced this part by dividing

curves into algebraical and transcendental, and established a

variety of propositions which are true for all algebraical curves.

He then applied these to the general equation of the second

degree in two dimensions, shewed that it represents the various

conic sections, and deduced most of their properties from the

general equation. He also considered the classification of

cubic, quartic, and other algebraical curves. He next dis

cussed the question as to what surfaces are represented by the

general equation of the second degree in three dimensions, and

how they may be discriminated one from the other : some of

these surfaces had not been previously investigated. In the

course of this analysis he laid down the rules for the transfor

mation of coordinates in space. Here also we find the earliest

attempt to bring the curvature of surfaces within the domain of

mathematics, and the first complete discussion of tortuous curves.

The Analysis Infinitorum was followed in 1755 by the

Institution** Calculi Differentialis to which it was intended as

an introduction. This is the first text-book on the differential

calculus which has any claim to be regarded as complete, and

it may be said that most modern treatises on the subject are

based on it
;

at the same time it should be added that the

exposition of the principles of the subject is often prolix and

obscure, and sometimes not altogether accurate.

This series of works was completed by the publication in

three volumes in 1768 to 1770 of the Institutions Calculi
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Integralis in which the results of several of Euler s earlier

memoirs on the same subject and on differential equations are

included. This, like the similar treatise on the differential

calculus, summed up what was then known on the subject,

but many of the theorems were recast and the proofs improved.

The Beta and Gamma* functions were invented by Euler and

are discussed here, but only as illustrations of methods of

reduction and integration. His treatment of elliptic integrals

is superficial ;
it was due to a theorem given by John Landeri

a writer who was suggestive rather than powerful in the

Philosophical Transactions for 1755 connecting the arcs of a

hyperbola and an ellipse. Euler s works that form this trilogy

have gone through numerous subsequent editions.

The classic problems on isoperimetrical curves, the brachis-

tochrone in a resisting medium, and the theory of geodesies

(all of which had been suggested by his master John Ber

noulli) had engaged Euler s attention at an early date
;
and

in solving them he was led to the calculus of variations. The

general idea of this was laid down in his Curvarum Maximi
Miniimve Proprietate Gaudentium Inventio Nova ac Facilis

published in 1744, but the complete development of the new
calculus was first effected by Lagrange in 1759. The method

used by Lagrange is described in Euler s integral calculus, and

is the same as that given in most modern text-books on the

subject.

In 1770 Euler published the Anleitung zur Algebra in two

volumes. The first volume treats of determinate algebra. This

contains one of the earliest attempts to place the fundamental

processes on a scientific basis : the same subject had attracted

D Alembert a attention. This work also includes the proof of

the binomial theorem for an unrestricted index which is still

known by Euler s name
;
the proof is founded on the principle

of the permanence of equivalent forms, but Euler made no

attempt to investigate the convergency of the series : that he

* The history of the Gamma function is given in a monograph by
Brunei in the Mtmoires de la soviet? &amp;lt;les sciences, Bordeaux, 1886.

262
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should have omitted this essential step is the more curious as

he had himself recognized the necessity of considering the

coiivergency of infinite series. The second volume treats of

indeterminate or Diophantine algebra. This contains the

solutions of some of the problems proposed by Fermat, and

which had hitherto remained unsolved. A. French translation

of the algebra, with numerous and valuable additions by

Jjagrange, was brought out in 1794; and a treatise on

arithmetic by Euler was appended to it.

These four works comprise most of what Euler produced in

pure mathematics. He also wrote numerous memoirs on nearly

all the subjects of applied mathematics and mathematical

physics then studied : the chief results in them are as follows.

In the mechanics of a rigid system he determined the

general equations of motion of a body about a fixed point,

which are ordinarily written in the form

and he gave the general equations of motion of a free body,
which are usually presented in the form

(mu)
- mv0

3
+ mw0

3 X, and h
y 3

+ A
3 2

= L.
cut dt

He also defended and elaborated the theory of &quot;least action&quot;

which had been propounded by Maupertuis in 1751 in his

Essai de cosmologie [p. 70].

In hydrodynamics Euler established the general equations

of motion, which are commonly expressed in the form

1 dp ^ du du du du
--f-

= A--r--u-r -v -w -j-.
p ax at ax dy dz

At the time of his death he was engaged in writing a treatise

on hydromechanics in which the treatment of the subject would

have been completely recast.

His most important works on astronomy are his Theoria
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Motuum Planetarum et Cometarum, published in 1744; his

Theoria Motus Lunaris, published in 1753; and his Theoria

Motuum Lunae, published in 1772. In these he attacked the

problem of three bodies : he supposed the body considered, e.g.

the moon, to carry three rectangular axes with it in its motion,

the axes moving parallel to themselves, and to these axes all

the motions were referred. This method is not convenient, but

it was from Euler s results that Mayer* constructed the lunar

tables for which his widow in 1770 received .5000, being the

prize offered by the English parliament, and in recognition of

Euler s services a sum of ,300 was voted as an honorarium to

him.

Euler was much interested in optics. In 1746 he discussed

the relative merits of the emission and undulatory theories of

light; he on the whole preferred the latter. In 1770 71

he published his optical researches in three volumes under

the title Dioptrica.

He also wrote an elementary work on physics and the

fundamental principles of mathematical philosophy. This ori

ginated from an invitation he received when he first went to

Berlin to give lessons on physics to the princess of Anhalt-

Dessau. These lectures were published in 1768 1772 in

three volumes under the title Lettres...sur quelques sujets

de physique..., and for half a century remained a standard

treatise on the subject.

Of course Euler s magnificent works were not the only
text-books containing original matter produced at this time.

Amongst numerous writers I would specially single out Daniel

Bernoulli, Simpson, Lambert, Bezout, Trembley, and Arbogast
as having influenced the development of mathematics. To
the two first-mentioned I have already alluded in the last

chapter.

* Johann Tobias Mayer, born in Wiirtemberg in 1723 and died in

1762, was director of the English observatory at Gottingen. Most of his

memoirs, other than his lunar tables, were published in 1775 under the

title Opera Inedlta.
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Lambert*. Johann Heinrich Lambert was born at Miil-

hausen on Aug. 28, 1728, and died at Berlin on Sept. 25, 1777.

He was the son of a small tailor, and had to rely on his own
efforts for his education

;
from a clerk in some iron-works, he

got a place in a newspaper office, and subsequently on the

recommendation of the editor he was appointed tutor in a

private family which secured him the use of a good library and

sufficient leisure to use it. In 1759 he settled at Augsburg,
and in 1763 removed to Berlin where he was given a small

pension and finally made editor of the Prussian astronomical

almanack.

Lambert s most important works were one on optics, issued

in 1759, which suggested to Arago the lines of investigation he

subsequently pursued ;
a treatise on perspective, published in

1759 (to which in 1768 an appendix giving practical appli

cations was added); and a treatise on comets, printed in 1761,

containing the well-known expression for the area of a focal

sector of a conic in terms of the chord and the bounding
radii. Besides these he communicated numerous papers to

the Berlin Academy. Of these the most important are his

memoir in 1768 on transcendental magnitudes, in which he

proved that TT is incommensurable (the proof is given in Le-

gendre s Geometriej and is there extended to ?r
2

)
: his paper on

trigonometry, read in 1768, in which he developed Demoivre s

theorems on the trigonometry of complex variables, and intro

duced the hyperbolic sine and cosinef denoted by the symbols
sinh x, cosh x : his essay entitled analytical observations, pub
lished in 1771, which is the earliest attempt to form functional

equations by expressing the given properties in the language

* See Lambert nach seinem Leben und Wirken by D. Huber, Bale,

1829. Most of Lambert s memoirs are collected in his Beitraye zum

Gebrauche der Mathematik, published in four volumes, Berlin, 1765

1772.

t These functions are said to have been previously suggested by

F. C. Mayer, see Die Lehre von den Hyperbelfunktionen by S. Giinther,

Halle, 1881, and Beitrdge zur Geschichte der neueren Mathematik, Ans-

bach, 1881.
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of the differential calculus, and then integrating : lastly his

paper on vis viva, published in 1783, in which for the first

time he expressed Newton s second law of motion in the no

tation of the differential calculus.

Of the other mathematicians above mentioned I here add a

few words. Etienne Be*zout, born at Nemours on March 31,

1730, and died on Sept. 27, 1783, besides numerous minor

works, wrote a Theorie generate des Equations algebriques, pub
lished at Paris in 1779, which in particular contained much

new and valuable matter on the theory of elimination and

symmetrical functions of the roots of an equation : he used

determinants in a paper in the Histoire de Vacademie royale,

1764, but did not treat of the general theory. Jean Trembley,
born at Geneva in 1749, and died on Sept. 18, 1811, con

tributed to the development of differential equations, finite

differences, and the calculus of probabilities. Louis Frangois

Antoine Arbogast, born in Alsace on Oct. 4, 1759, and died at

Strassburg, where he was professor, on April 8, 1803, wrote on

series and the derivatives known by his name : he was the first

writer to separate the symbols of operation from those of

quantity.

I do not wish to crowd my pages with an account of those

who have not distinctly advanced the subject, but I have

mentioned the above writers because their names are still well

known. We may however say that the discoveries of Euler

and Lagrange in the subjects which they treated were so com

plete and far-reaching that what their less gifted contempo
raries added is not of sufficient importance to require mention

in a book of this nature.

Lagrange*. Joseph Louis Lagrange^ the greatest mathe
matician of the eighteenth century, was born at Turin on

* Summaries of the life and works of Lagrange are given in the

English Cyclopaedia and the Encyclopaedia Britannica (ninth edition),
of which I have made considerable use : the former contains a biblio

graphy of his writings. Lagrange s works, edited by MM. Serret and
Darboux, are now being published by the French government. Delambre s

account of his life is printed in the first volume.
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Jan. 25, 1736, and died at Paris on April 10, 1813. His

father, who had the charge of the Sardinian military chest, was

of good social position and wealthy, but before his son grew up
he had lost most of his property in speculations, and young

Lagrange had to rely for his position on his own abilities. He
was educated at the college of Turin, but it was not until he

was seventeen that he shewed any taste for mathematics : his

interest in the subject being first excited by a memoir by

Halley (Phil. Trans, vol. xvm. p. 960), across which he came

by accident. Alone and unaided he threw himself into mathe

matical studies, and at the end of a year s incessant toil he

was already an accomplished mathematician, and was made

a lecturer in the artillery school. The first fruit of these

labours was his letter, written when he was still only nineteen,

to Euler in which he solved the isoperimetrical problem which

for more than half a century had been a subject of discussion.

To effect the solution (in which he sought to determine the

form of a function so that a formula in which it entered should

satisfy a certain condition) he enunciated the principles of the

calculus of variations. Euler recognized the generality of the

method adopted, and its superiority to that used by himself
;

and with rare courtesy he withheld a paper he had previously

written, which covered some of the same ground, in order that

the young Italian might have time to complete his work, and

claim the undisputed invention of the new calculus. The

name of this branch of analysis was suggested by Euler.

This memoir at once placed Lagrange in the front rank of

mathematicians then living.

In 1758 Lagrange established with the aid of his pupils

a society, which was subsequently incorporated as the Turin

Academy, and in the five volumes of its transactions, usually

known as the Miscellanea Taurinensia, most of his early

writings are to be found. Many of these are elaborate

works. The first volume contains a memoir on the theory of

the propagation of sound ;
in this he indicates a mistake

made by Newton, obtains the general differential equation for
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the motion, and integrates it for motion in a straight line.

This volume also contains the complete solution of the problem
of a string vibrating transversely ;

in this paper he points out

a lack of generality in the solutions previously given by

Taylor, D Alernbert, and Euler, and arrives at the conclusion

that the form of the curve at any time t is given by the

equation y = a sin mx sin nt. The article concludes with a

masterly discussion of echoes, beats, and compound sounds.

Other articles in this volume are on recurring series, proba

bilities, and the calculus of variations.

The second volume contains a long paper embodying the

results of several memoirs in the first volume on the theory

and notation of the calculus of variations
;
and he illustrates

its use by deducing the principle of least action, and also by
solutions of various problems in dynamics.

The third volume includes the solution of several dynamical

problems by means of the calculus of variations
;
some papers

on the integral calculus; a solution of Fermat s problem
mentioned above, p. 296 (/) ;

and the general differential

equations of motion for three bodies moving under their

mutual attractions.

In 1761 Lagrange stood without a rival as the foremost

mathematician living ;
but the unceasing labour of the pre

ceding nine years had seriously affected his health, and the

doctors refused to be responsible for his reason or life unless

he would take rest and exercise. Although his health was

temporarily restored his nervous system never quite recovered

its tone, and henceforth he constantly suffered from attacks of

profound melancholy.

The next work he produced was in 1764 on the libratiou

of the moon, and an explanation as to why the same face was

always turned to the earth, a problem which he treated by the

aid of virtual work. His solution is especially interesting as

containing the germ of the idea of generalized equations of

motion, equations which he first formally proved in 1780.

He now started to go on a visit to London, but on the
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way fell ill at Paris. There he was received with the most

marked honour, and it was with regret he left the brilliant

society of that city to return to his provincial life at Turin.

His further stay in Piedmont was however short. In 1766

Euler left Berlin, and Frederick the Great immediately wrote

expressing the wish of &quot; the greatest king in Europe
&quot;

to

have &quot; the greatest mathematician in Europe
&quot;

resident at

his court. Lagrange accepted the offer and spent the next

twenty years in Prussia, where he produced not only the

long series of memoirs published in the Berlin and Turin trans

actions but his monumental work, the Mecanique analytique.

His residence at Berlin commenced with an unfortunate mis

take. Finding most of his colleagues married, and assured by
their wives that it was the only way to be happy, he married;

his wife soon died, but the union was not a happy one.

Lagrange was a favourite of the king, who used frequently

to discourse to him on the advantages of perfect regularity of

life. The lesson went home, and thenceforth Lagrange studied

his mind and body as though they were machines, and found

by experiment the exact amount of work which he was able to

do without breaking down. Every night he set himself a

definite task for the next day, and on completing any branch

of a subject he wrote a short analysis to see what points in the

demonstrations or in the subject-matter were capable of im

provement. He always thought out the subject of his papers

before he began to compose them, and usually wrote them

straight off without a single erasure or correction.

His mental activity during these twenty years was amazing.

Not only did he produce his splendid Mecanique analytique,

but he contributed between one and two hundred papers to

the Academies of Berlin, Turin, and Paris. Some of these

are complete treatises, and all without exception are of a

high order of excellence. Except for a short time when he

was ill he produced on an average about one memoir a month.

Of these I note the following as among the most important.

First, his contributions to the fourth and fifth volumes
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(1766 1773) of the Miscellanea Taurinensia
;
of which the

most important was the one in 1771 in which he discussed

how numerous astronomical observations should be combined

so as to give the most probable result. And later, his con

tributions to the first two volumes (1784 1785) of the trans

actions of the Turin Academy ;
to the first of which he

contributed a paper on the pressure exerted by fluids in

motion, and to the second an article on integration by infinite

series, and the kind of problems for which it is suitable.

Most of the memoirs sent to Paris were on astronomical

questions, and among these I ought particularly to mention

his memoir on the Jovian system in 1766, his essay on the

problem of three bodies in 1772, his work on the secular

equation of the moon in 1773, and his treatise on cometary

perturbations in 1778. These were all written on subjects

proposed by the French Academy, and in each case the prize

was awarded to him.

The greater number of his papers during this time were

however contributed to the Berlin Academy. Several of

them deal with questions on algebra. In particular I may
mention

(i) his discussion of the solution of indeterminate

equations in integers (1770); with special notice of inde

terminate quadratics (1769). (ii) His tract on the theory of

elimination (1770). (lii) His memoirs on a general process for

solving an algebraical equation of any degree (1770 and 1771) ;

this method fails for equations of an order above the fourth,

because it then involves the solution of an equation of higher
dimensions than the one proposed, but it gives all the solutions

of his predecessors as modifications of a single principle. He
found however the complete solution of a binomial equation of

any degree, (iv) Lastly in 1773 he treated of determinants

of the second and third order.

Several of his early papers also deal with questions con

nected with the neglected but singularly fascinating subject of

the theory of numbers. Among these are
(i)

his proof of

the theorem that every integer which is not a square can
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be expressed as the sum of either two, three, or four integral

squares (1770). (ii) His proof of Wilson s theorem that if n
be a prime, then n 1 + 1 is always a multiple of n (1771). (iii)

His memoirs of 1773, 1775, and 1777, which give the demon
strations of several results enunciated by Fermat, and not

previously proved. (iv) And lastly his method for deter

mining the factors of numbers of the form xz + ay*.

There are also numerous articles on various points of analy
tical geometry. In two ofthem (in 1792 and 1793) he reduced the

equations of the quadrics (or conicoids) to their canonical forms.

During the years from 1772 to 1785 he contributed a long
series of memoirs which created the science of differential

equations, at any rate as far as partial differential equations
are concerned. I do not think that any previous writer had

done anything beyond considering equations of some particular

form. A large part of these results were collected in the second

edition of Euler s integral calculus which was published in 1794.

His papers on ?nechanics require no separate mention here

as the results arrived at are embodied in the Mecanique

analytique which is described below.

Lastly there are numerous memoirs on problems in

astronomy. Of these the most important are the following,

(i)
On the attraction of ellipsoids (1773) : this is founded on

Maclaurin s work,
(ii) On the secular equation of the moon

(1773); also noticeable for the earliest introduction of the

idea of the potential. The potential of a body at any point

is the sum of the mass of every element of the body when

divided by its distance from the point. Lagrange shewed

that if the potential of a body at an external point were known,
the attraction in any direction could be at once found. The

theory of the potential was elaborated in a paper sent to

Berlin in 1777. (iii)
On the motion of the nodes of a

planet s orbit (1774). (iv) On the stability of the planetary

orbits (1776). (v) Two memoirs in which the method of

determining the orbit of a comet from three observations is

completely worked out (1778 and 1783) : this has not indeed
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proved practically available, but his system of calculating the

perturbations by means of mechanical quadratures has formed

ti/a basis of most subsequent researches on the subject, (vi) His

determination of the secular and periodic variations of the

elements of the planets (1781 1784): the upper limits assigned

for these agree closely with those obtained later by Leverrier,

and he proceeded as far as the knowledge then possessed of the

masses of the planets permitted, (vii) Three memoirs on the

method of interpolation (1783, 1792, and 1793): the part

of finite differences dealing therewith is now in the same

stage as that in which Lagrange left it.

Over and above these various papers, he composed his great

treatise, the Mecanique analytique. In this he lays down the

law of virtual work, and from that one fundamental principle

by the aid of the calculus of variations deduces the whole

of mechanics, both of solids and fluids. The object of the

book is to shew that the subject is implicitly included in a

single principle, and to give general formulae from which any

particular result can be obtained. The method of generalized
coordinates by which he obtained this result is perhaps the

most brilliant result of his analysis. Instead of following the

motion of each individual part of a material system, as

D Alembert and Euler had done, he shewed that, if we deter

mine its configuration by a sufficient number of variables

whose number is the same as that of the degrees of freedom

possessed by the system, then the kinetic and potential energies
of the system can be expressed in terms of these, and the

differential equations of motion thence deduced by simple
differentiation. For example, in dynamics of a rigid system
he replaces the consideration of the particular problem by
the general equation which is now usually written in the form

Amongst other minor theorems here given I may mention the

proposition that the kinetic energy imparted by given impulses
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to a material system under given constraints is a maximum,
and the principle of least action. All the analysis is *p

elegant that Sir William Rowan Hamilton said the work
could be only described as a scientific poem. It may be

interesting to note that Lagrange remarked that mechanics

was really a branch of pure mathematics analogous to a

geometry of four dimensions, namely, the time and the three

coordinates of the point in space ;
and it is said that he prided

himself that from the beginning to the end of the work there

was not a single diagram. At first no printer could be found

who would publish the book
;
but Legendre at last persuaded

a Paris firm to undertake it, and it was issued under his

supervision in 1788.

In 1787 Frederick died, and Lagrange, who had found

the climate of Berlin trying, gladly accepted the offer of

Louis XVI. to migrate to Paris. He received similar invita

tions from Spain and Naples. In France he was received with

every mark of distinction, and special apartments in the Louvre

were prepared for his reception. For the first two years of his

residence here he was seized with an attack of melancholy, and

even the printed copy of his Mecanique on which he had

worked for a quarter of a century lay for more than two years

unopened on his desk. Curiosity as to the results of the

French revolution first stirred him out of his lethargy, a

curiosity which soon turned to alarm as the revolution de

veloped. It was about the same time, 1792, that the un

accountable sadness of his life and his timidity moved the

compassion of a young girl who insisted on marrying him, and

proved a devoted wife to whom he became warmly attached.

Although the decree of October, 1793, which ordered all

foreigners to leave France, specially exempted him by name,

he was preparing to escape when he was offered the presidency
of the commission for the reform of weights and measures.

The choice of the units finally selected was largely due to him,

and it was mainly owing to his influence that the decimal

subdivision was accepted by the commission of 1799. The
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general idea of the decimal system was taken from a work by
Thomas Williams entitled Method .. .for fixing an universal

standard for weights and measures, published in London in

1/88: this almost unknown writer has hardly received the

credit due to his suggestion.

Though Lagrange had determined to escape from France

while there was yet time, he was never in any danger ;
and

the different revolutionary governments (and at a later time

Napoleon) loaded him with honours and distinctions. A
striking testimony to the respect in which he was held was

shewn in 1796 when the French commissary in Italy was

ordered to attend in full state on Lagrange s father, and tender

the congratulations of the republic on the achievements of his

son, who &quot;had done honour to all mankind by his genius,

and whom it was the special glory of Piedmont to have

produced.&quot;

In 1795 Lagrange was appointed to a mathematical chair

at the newly-established Ecole normale which only enjoyed a

brief existence of four months. His lectures here were quite

elementary and contain nothing of any special importance, but

they were published because the professors had to &quot;pledge

themselves to the representatives of the people and to each

other neither to read nor to repeat from memory,&quot; and the

discourses were ordered to be taken down in shorthand in

order to enable the deputies to see how the professors ac

quitted themselves.

On the establishment of the Nicole polytechnique in 1797

Lagrange was made a professor; and his lectures there are

described by mathematicians who had the good fortune to be

able to attend them, as almost perfect both in form and matter.

Beginning with the merest elements he led his hearers on

until, almost unknown to themselves, they were themselves

extending the bounds of the subject : above all he impressed
on his pupils the advantage of always using general methods

expressed in a symmetrical notation.

His lectures on the differential calculus form the basis of
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his Theorie des fonctions analytiques which was published in

1797. This work is the extension of an idea contained in L

paper he had sent to the Berlin Memoirs in 1772, and its object

*

is to substitute for the differential calculus a group of theorems

based on the development of algebraic functions in series. A
somewhat similar method had been previously used by John

Landen in his Residual Analysis, published in London in 1758.

Lagrange believed that he could thus get rid of those diffi

culties, connected with the use of infinitely large or infinitely

small quantities, which philosophers professed to see in the usual

treatment of the differential calculus. The book is divided

into three parts ;
of these the first treats of the general theory

of functions, and gives an algebraic proof of Taylor s theorem,

the validity of which is however open to question ;
the second

deals with applications to geometry; and the third with

applications to mechanics. Another treatise on the same

lines was his Lemons sur le calcul des /auctions, issued in 1804.

These works may be considered as the starting-point for the

researches of Cauchy and Jacobi. At a later period Lagrange
reverted to the use of infinitesimals in preference to founding
the differential calculus on a study of algebraic forms : and

in the preface to the second edition of the Mecanique, which

was issued in 1811, he justifies their use and concludes

by saying that &quot;when we have grasped the spirit of the

infinitesimal method, and have verified the exactness of its

results either by the geometrical method of prime and ultimate

ratios or by the analytical method of derived functions, we may
employ infinitely small quantities as a sure and valuable means

of shortening and simplifying our
proofs.&quot;

His Resolution des equations numeriques, published in 1798,

was also the fruit of his lectures at the Polytechnic. In this

he gives the method of approximating to the real roots of an

equation by means of continued fractions, and enunciates several

other theorems. In a note at the end he shews how Fermat s

theorem that ap-1 1 = (mod p), where p is a prime and a is

prime to p, combined with a, certain suggestion due to Gauss,
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may be applied to give the complete algebraical solution of any
binomial equation. He also here explains how the equation
whose roots are the squares of the differences of the roots of

the original equation may be used so as to give considerable

information as to the position, and nature of those roots.

The theory of the planetary motions had formed the subject

of some of the most remarkable of Lagrange s Berlin papers.

In 1806 the subject was reopened by Poisson who in a paper
read before the French Academy shewed that Lagrange s

formulae led to certain limits for the stability of the orbits.

Lagrange, who was present, now discussed the whole subject

afresh, and in a memoir communicated to the Academy in

1808 explained how by the variation of arbitrary constants the

periodical and secular inequalities of any system of mutually

interacting bodies could be determined.

In 1810 Lagrange commenced a thorough revision of the

Mecaniqiw analytique, but he was able to complete only about

two-thirds of it before his death.

In appearance he was of medium height, and slightly

formed, with pale blue eyes, and a colourless complexion. In

character he was nervous and timid, he detested controversy,
and to avoid it willingly allowed others to take the credit for

what he had himself done.

Lagrange was above all a student of pure mathematics : he

sought and obtained far-reaching abstract results, and was

content to leave the applications to others. Indeed no in

considerable part of the discoveries of his great contemporary

Laplace consists of the application of the Lagrangian formulae

to the facts of nature
;
for example, Laplace s conclusions on

the velocity of sound and the secular acceleration of the moon
are implicitly involved in Lagrange s results. The only difficulty

in understanding Lagrange is that of the subject-matter and the

extreme generality of his processes ;
but his analysis is

&quot; as

lucid and luminous as it is symmetrical and ingenious.&quot;
A

recent writer speaking of Lagrange says truly that he took a

prominent part in the advancement of almost every branch of

B. 27
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pure mathematics. Like Diophantus and Format he possessed
a special genius for the theory of numbers, and in this subject

he gave solutions of most of the problems which had been pro

posed by Format, and added some theorems of his own. lie

created the calculus of variations. To him too the theory of

differential equations is indebted for its position as a science

rather than a collection of ingenious artifices for the solution

of particular problems. To the calculus of finite differences he

contributed the formula of interpolation which bears his name.

But above all he impressed on mechanics (which it will be

remembered lie considered a part of pure mathematics) that

generality and completeness towards which his labours in

variably tended.

Laplace*. Pierre Simon Laplace was born at Beaumont-en-

Auge in Normandy on March 23, 1749, and died at Paris on

March 5, 1827. He was the son of a small cottager or perhaps
a farm-labourer, and owed his education to the interest excited

in some wealthy neighbours by his abilities and engaging

presence. Very little is known of his early years, for when
he became distinguished he held himself aloof both from his

relatives and from those who had assisted him. A similar

pettiness of character marked many of his actions. It would

seem that from a pupil he became an usher in the school at

Beaumont
; but, having procured a letter of introduction to

D Alembert, he went to Paris to push his fortune. A paper on

the principles of mechanics excited D Alembert s interest, and

on his recommendation a place in the military school was

offered to Laplace.

Secure of a competency, Laplace now threw himself into

original research, and in the next seventeen years, 1771 1787,

he produced much of his original work in astronomy. This

* The following account of Laplace s life and writings is mainly
founded on the articles in the English Cyclopaedia and the Encyclopedia
Rritannica. Laplace s works were published in seven volumes by the

French government in 1843 7; and a new edition with considerable

additional matter was issued at Paris in six volumes, 187884.
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commenced with a memoir, read before the French Academy
in 1773, in which he shewed that the planetary motions were

stable, and carried the proof as far as the cubes of the eccen

tricities and inclinations. This was followed by several papers
on points in the integral calculus, finite differences, differential

equations, and astronomy.

During the years 1784 1787 he produced some memoirs

of exceptional power. Prominent among these is one read

in 1784, and reprinted in the third volume of the Mecanique

celeste, in which he completely determined the attraction of a

spheroid on a particle outside it. TJiis is memorable for the

introduction into analysis of spherical harmonics or Laplace s

coefficients, and also for the development of the use of the

potential ;
a name first given by Green in 1828.

If the coordinates of two points be (r, /i, &amp;lt;o)

and (/, pf CD
),

arid if r r, then the reciprocal of the distance between them

can be expanded in powers of r/r 9
and the respective coefficients

are Laplace s coefficients. Their utility arises from the fact that

every function of the coordinates of a point on a sphere can be

expanded in a series of them. It should be stated that the

similar coefficients for space of two dimensions, together with

some of their properties, had been previously given by

Legendre in a paper sent to the French Academy in 1783.

Legendre had good reason to complain of the way in which he

was treated in this matter.

This paper is also remarkable for the development of the

idea of the potential, which was appropriated from Lagrange*
who had used it in his memoirs of 1773, 1777, and 1780.

Laplace shewed that the potential always satisfies the diffe

rential equation

and on this result his subsequent work on attractions was

* See the Bulletin of the New York Mathematical Society, 1HH2,

vol. i., pp. 06 74.

272



420 LAGRANGE, LAPLACE, AND THEIR CONTEMPORARIES.

based. The quantity V2 F has been termed the concentration

of F, and its value at any point indicates the excess of the

value of V there over its mean value in the neighbourhood of

the point. Laplace s equation, or the more general form

V2

V=-4:7rp, appears in all branches of mathematical physics.

According to some writers this follows at once from the fact

that V2
is a scalar operator; or the equation may represent

analytically some general law of nature which has not been yet

reduced to words; or possibly (I have sometimes thought) it

might be regarded by a Kantian as the outward sign of one

of the necessary forms through which all phenomena are

perceived.

This memoir was followed by another on planetary in

equalities, which was presented in three sections in 1784, 1785,

and 1786. This deals mainly with the explanation of the
&quot;

great inequality&quot; of Jupiter and Saturn. Laplace shewed

by general considerations that the mutual action of two

planets could never largely affect the eccentricities and in

clinations of their orbits; and that the peculiarities of the

Jovian system were due to the near approach to commen-

surability of the mean motions of Jupiter and Saturn : further

developments of these theorems on planetary motion were given
in his two memoirs of 1788 and 1789. It was on these data

that Delambre computed his astronomical tables.

The year 1787 was rendered memorable by Laplace s expla

nation and analysis of the relation between the lunar accelera

tion and the secular changes in the eccentricity of the earth s

orbit : this investigation completed the proof of the stability

of the whole solar system on the assumption that it consists of

a collection of rigid bodies. All the memoirs above alluded

to were presented to the French Academy, and they are

printed in the Memoires presentes par divers savans.

Laplace now set himself the task to write a work which

should &quot;offer a complete solution of the great mechanical

problem presented by the solar system, and bring theory to

coincide so closely with observation that empirical equations
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should no longer find a place in astronomical tables.&quot; The

result is embodied in the Exposition du systeme du monde and

the Mecanique celeste.

The former was published in 1796, and gives a general

explanation of the phenomena with a summary of the history

of astronomy, but omits all details. The nebular hypothesis

was here enunciated*. According to this hypothesis the solar

system has been evolved from a globular mass of incandescent

gas rotating round an axis through its centre of mass. As it

cooled, this mass contracted and successive rings broke off

from its outer edge. These rings in their turn cooled, and

finally condensed into the planets, while the sun represents
the central core which is still left. Certain corrections required

by modern science were added by M. Roche, and recently

the theory has been discussed critically by R. Wolf. The

arguments against the hypothesis are summed up in Faye s

Oriyine du monde, Paris, 1884, where an ingenious modi

fication of the hypothesis is proposed, by which the author

attempts to explain the peculiarities of the axial rotation

of Neptune and Uranus, and the retrograde motion of the

satellites of the latter planet. Perhaps modern opinion is

inclined to attribute the separation of the various members

of a planetary system to tidal friction rather than to the

successive separation and condensation of nebulous rings ;
but

the subject is one of great difficulty. According to the rule

published by Titius of Wittemberg in 1766 but generally
known as Bode s law, from the fact that attention was called

to it by Johann Elert Bode in 1778 the distances of the

planets from the sun are nearly in the ratio of the numbers

+ 4, 3 + 4, 6 + 4, 12 + 4, &amp;lt;tc.,
the (n + 2)th term being

(2
n
x 3) + 4. It would be an -interesting fact if this could be

deduced from either the nebular or the tidal hypothesis, but so

far as I am aware only one serious attempt to do so has been

made, and the conclusion was that the law was not sufficiently

* On the history of the nebular hypothesis, see The Visible Universe,

by J. E. Gore, London, 1893.



422 LAGRANGE, LAPLACE, AND THEIR CONTEMPORARIES.

exact to be more than a convenient means of remembering
the general result. The substance of Laplace s hypothesis had
been published by Kant in 1755 in his Allgemeine Natur-

geschichte, but it is probable that Laplace was not aware of

this. The historical summary procured for its author the

honour of admission to the forty of the French Academy ;
it

is commonly esteemed one of the master-pieces of French

literature, though it is not altogether reliable for the later

periods of which it treats.

The full analytical discussion of the solar system is given
in the Mecanique celeste published in five volumes: vols. I. and
n. in 1799; vol. in. in 1802; vol. iv. in 1805; and vol. v. in

1825. An analysis of the contents is given in the English

Cyclopaedia. The first two volumes contain methods for

calculating the motions of the planets, determining their

figures, and resolving tidal problems. The third and fourth

volumes contain the application of these methods, and also

several astronomical tables. The fifth volume is mainly
historical, but it gives as appendices the results of Laplace s

latest researches. Laplace s own investigations embodied in it

are so numerous and valuable that it is regrettable to have to add

that many results are appropriated from writers with scanty
or no acknowledgment, and the conclusions which have been

described as the organized result of a century of patient toil

are generally mentioned as if they were due to Laplace ;
and

it is said (for I have not looked into the matter myself) that

the praise which he lavishes on Newton and Clairaut is only
the cloak under which he appropriates the work of other and

less known writers.

The Mecanique celeste is by no means easy reading. Biot,

who assisted Laplace in revising it for the press, says that

Laplace himself was frequently unable to recover the details

in the chain of reasoning, and, if satisfied that the conclusions

were correct, he was content to insert the constantly recurring
formula &quot; II est aise a voir.&quot; The best tribute to the excellency

of the work is that it left very little for his successors to add.
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It is not only the translation of the Principia into the language

of the differential calculus, but it also completes parts of which

Newton had been unable to fill in the details. M. Tisserand s

recent work may be considered as a continuation of Laplace s

treatise.

Laplace went in state to beg Napoleon to accept a copy of

his work, and the following account of the interview is well

authenticated, and so characteristic of all the parties concerned

that I quote it in full. Someone had told Napoleon that the

book contained no mention of the name of God
; Napoleon,

who was fond of putting embarrassing questions, received it

with the remark, &quot;M. Laplace, they tell me you have written

this large book on the system of the universe, and have never

even mentioned its Creator.&quot; Laplace, who, though the most

supple of politicians, was as stiff as a martyr on every point of

his philosophy, drew himself up and answered bluntly, &quot;Je

n avais pas besoin de cette hypothese-la.
&quot;

Napoleon, greatly

amused, told this reply to Lagrange, who exclaimed,
&quot; Ah !

c est une belle hypothese ; ^a explique beaucoup de choses.&quot;

In 1812 Laplace issued his TJieorie analytiqne des proba-

bilites. The theory is stated to be only common sense ex

pressed in mathematical language. The method of estimating

the ratio of the number of favourable cases to the whole

number of possible cases had been indicated by Laplace
in a paper written in 1779. It consists in treating the

successive values of any function as the coefficients in the

expansion of another function with reference to a different

variable. The latter is therefore called the generating function

of the former. Laplace then shews how by means of interpola

tion these coefficients may be determined from the generating
function. Next he attacks the converse problem, and from the

coefficients he finds the generating function; this is effected by
the solution of an equation in finite differences. The method
is cumbersome, and in consequence of the increased power of

analysis is now rarely used. A summary of Laplace s reason

ing is given in the article on Probability in the Encyclopaedia

Metropolitana.
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This treatise includes an exposition of the method of least

squares, which is a remarkable testimony to Laplace s com
mand over the processes of analysis. The method of least

squares for the combination of numerous observations had

been given empirically by Gauss and Legendre, but the fourth

chapter of this work contains a formal proof of it; on which

the whole of the theory of errors has been since based. This

was effected only by a most intricate analysis specially invented

for the purpose, but the form in which it is presented is so

meagre and unsatisfactory that in spite of the uniform accuracy
of the results it was at one time questioned whether Laplace
had actually gone through the difficult work he so briefly and

often incorrectly indicates.

In 1819 Laplace published a popular account of his work on

probability. This book bears the same relation to the Theorie

des probabilites that the Systeme du monde does to the

Mecanique celeste.

Amongst the minor discoveries of Laplace in pure mathe

matics I may mention his discussion (simultaneously with Yan-

dermonde) of the general theory of determinants in 1772; his

proof that every equation of an even degree must have at least

one real quadratic factor; his reduction of the solution of linear

differential equations to definite integrals ;
and his solution of

the linear partial differential equation of the second order. He
was also the first to consider the difficult problems involved in

equations of mixed differences, and to prove that the solution of

an equation in finite differences of the first degree and the

second order might be always obtained in the form of a

continued fraction. Besides these original discoveries he

determined in his theory of probabilities the values of a

number of the more common definite integrals : and in the

same book gave the general proof of the theorem enunciated

by Lagrange for the development of any implicit function in a

series by means of differential coefficients.

In theoretical physics the theory of capillary attraction

is due to Laplace who accepted the idea propounded by

Hauksbee, in the Philosophical Transactions for 1709, that
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the phenomenon was due to a force of attraction which was

insensible at sensible distances. The part which deals with

the action of a solid on a liquid and the mutual action of two

liquids was not worked out thoroughly, but ultimately was

completed by Gauss : Neumann later filled in a few details.

In 1862 Lord Kelvin (Sir William Thomson) shewed that, if

we assume the molecular constitution of matter, the laws of

capillary attraction can be deduced from the Newtonian law of

gravitation. Laplace in 1816 was the first to point out

explicitly why Newton s theory of vibratory motion gave an

incorrect value for the velocity of sound. The actual velocity

is greater than that calculated by Newton in consequence of the

heat developed by the sudden compression of the air which

increases the elasticity and therefore the velocity of the sound

transmitted. Laplace s investigations in practical physics were

confined to those carried on by him jointly with Lavoisier in

the years 1782 to 1784 on the specific heat of various bodies.

Laplace seems to have regarded analysis merely as a means

of attacking physical problems, though the ability with which

he invented the necessary analysis is almost phenomenal. As

long as his results were true he took but little trouble to ex

plain the steps by which he arrived at them
;
he never studied

elegance or symmetry in his processes, and it was sufficient

for him if he could by any means solve the particular question
he was discussing. In these respects he stands in marked con

trast to his great contemporary Lagrange.
It would have been well for Laplace s reputation if he had

been content with his scientific work, but above all things he

coveted social fame. The skill and rapidity with which he

managed to change his politics as occasion required would be

amusing if they had not been so servile. As Napoleon s power
increased Laplace abandoned his republican principles (which,
since they had faithfully reflected the opinions of the party in

power, had themselves gone through numerous changes) and

begged the first consul to give him the post of minister of the

interior. Napoleon, who desired the support of men of science,
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accepted the offer; but a little less than six weeks saw the

close of Laplace s political career. Napoleon s memorandum on

the subject is as follows. &quot;Geometre de premier rang, Laplace
ne tarda pas a se montrer administrateur plus que mediocre

;

des son premier travail nous reconnumes que nous nous etions

trompe. Laplace ne saisissait aucune question sous son veri

table point de vue : il cherchait des subtilites partout, n avait

que des idees problematiques, et portait en fin 1 esprit des

infiniment petits jusque dans Tad ministration.&quot;

Although Laplace was expelled from office it was desirable to

retain his allegiance. He was accordingly raised to the senate,

and to the third volume of the Mecanique celeste he prefixed a

note that of all the truths therein contained the most precious

to the author was the declaration he thus made of his devotion

towards the peace-maker of Europe. In copies sold after the

restoration this was struck out. In 1814 it was evident that

the empire was falling; Laplace hastened to tender his services

to the Bourbons, and on the restoration was rewarded with the

title of marquis : the contempt that his more honest colleagues

felt for his conduct in the matter may be read in the pages of

Paul Louis Courier. His knowledge was useful on the

numerous scientific commissions on which he served, and

probably accounts for the manner in which his political in

sincerity was overlooked
;

but the pettiness of his character

must not make us forget how great were his services to

science.

That Laplace was vain and selfish is not denied by his

warmest admirers
;
his conduct to the benefactors of his youth

and his political friends was ungrateful and contemptible ;

while his appropriation of the results of those who were com

paratively unknown seems to be well established and is

absolutely indefensible of those whom he thus treated three

subsequently rose to distinction (Legendre and Fourier in

France and Young in England) and never forgot the injustice

of which they had been the victims. On the other side it may
be said that on some questions he shewed independence of
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character, and he never concealed his views on religion,

philosophy, or science however distasteful they might be to

the authorities in power ;
it should be also added that towards

the close of his life and especially to the work of his pupils

Laplace was both generous and appreciative, and in one case

suppressed a paper of his own in order that a pupil might have

the sole credit of the discovery.

J7 Legendre. Adrien Marie Legendre was born at Toulouse

[on Sept. 18, 1752, and died at Paris on Jan. 10, 1833. The

leading events of his life are very simple and may be summed

up briefly. He was educated at the Mazarin College in Paris,

appointed professor at the military school in Paris in 1777,
was a member of the Anglo-French commission of 1787 to

connect Greenwich and Paris geodetically ;
served on several

of the public commissions from 1792 to 1810; was made a

professor at the Normal school in 1795; and subsequently
held a few minor government appointments. The influence

of Laplace was steadily exerted against his obtaining office

or public recognition, and Legendre who was a timid student

accepted the obscurity to which the hostility of his colleague

condemned him.

Legendre s analysis is of a high order of excellence and is

second only to that produced by Lagrange and Laplace, though
it is not so original. His chief works are his Geometrie, his

Theorie des nombres, his Calcul integral, and his Fonctions

elliptiques. These include the results of his various papers on

these subjects. Besides these he wrote a treatise which gave
the rule for the method of least squares, and two groups of

memoirs, one on the theory of attractions, and the other

on geodetical operations.

The memoirs on attractions are analyzed and discussed in

Todhunter s History of tJie Theories of Attraction. The earliest

of these memoirs, presented in 1783, was on the attraction

of spheroids. This contains the introduction of Legendre s

coefficients, which are sometimes called circular (or zonal)

harmonics, and which are particular casos of Laplace s co-
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efficients (see above, p. 419); it also includes the solution of a

problem in which the potential is used. The second memoir

was communicated in 1784, and is on the form of equilibrium
of a mass of rotating liquid which is approximately spherical.

The third, written in 1786, is on the attraction of confocal

ellipsoids. The fourth is on the figure which a fluid planet

would assume, and its law of density.

His papers on geodesy are three in number and were

presented to the Academy in 1787 and 1788. The most im

portant result is that by which a spherical triangle may be

treated as plane, provided certain corrections are applied to the

angles. In connection with this subject he paid considerable

attention to geodesies.

The method of least squares was enunciated in his Nouvelles

methodes published in 1806, to which supplements were added

in 1810 and 1820. Gauss independently had arrived at the

same result, had used it in 1795, and published it and the

law of facility in 1809. Laplace was the earliest writer to

give a proof of it : this was in 1812 (see above, p. 424).

Of the other books produced by Legendre, the one most

widely known is his Elements de geometrie which was published

in 1794, and was generally adopted on the continent as a sub

stitute for Euclid. The later editions contain the elements of

trigonometry, and proofs of the irrationality of TT and ?r
2
(see

above, p. 406). An appendix on the difficult question of the

theory of parallel lines was issued in 1803, and is bound up

with most of the subsequent editions.

His Theorie des nombres was published in 1798, and ap

pendices were added in 1816 and 1825 : the third edition,

issued in two volumes in 1830, includes the results of his various

later papers, and still remains a standard work on the subject.

It may be said that he here carried the subject as far as was

possible by the application of ordinary algebra ;
but he did not

realize that it might be regarded as a higher arithmetic, and so

form a distinct subject in mathematics.

The law of quadratic reciprocity, which connects any two
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odd primes is first proved in this book, but the result had been

enunciated in a memoir of 1785. Gauss called the proposition
&quot; the gem of arithmetic,&quot; and no less than six separate proofs

are to be found in his works. The theorem is as follows. If

p be a prime and n be prime to p, then we know that the

remainder when n^p
~

l) is divided by JP is either -t- 1 or-1.

Legendre denoted this remainder by ( )
When the re

mainder is + 1 it is possible to find a square number which

when divided by p leaves a remainder n, that is, n is a

quadratic residue of p ;
when the remainder is - 1 there exists

no such square number, and n is a non-residue of p. The

law of quadratic reciprocity is expressed by the theorem that,

if a and b be any odd primes, then

thus, if 6 be a residue of a, then a is also a residue of 6, unless

both of the primes a and b are of the form 4?n -f 3. In other

words, if a and b be odd primes, we know that

a*0-i) = * 1 (mod 6), and W(-D =
l(mod a) ;

but by Legendre s law the two ambiguities will be either

both positive or both negative, unless a and b are both of the

form 4w + 3. Thus, if one odd prime be a non-residue of

another, then the latter will be a non-residue of the former.

Gauss and Kummer have subsequently proved similar laws of

cubic and biquadratic reciprocity ; and an important branch of

the theory of numbers has been based on these researches.

This work also contains the useful theorem by which,

when it is possible, an indeterminate equation of the second

degree can be reduced to the form ax2 + by* + cz
2 = 0. Legendre

too here discussed the forms of numbers which can be expressed
as the sum of three squares; and he proved [art. 404] that

the number of primes less than n is very approximately

w/(logw- 1-08366).
The Exercices de calcul integral was published in three
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volumes, 1811, 1817, 1826. Of these the third and most of the

first are devoted to elliptic functions
;
the bulk of this being

ultimately included in the Fonctions elliptiques. The contents

of the remainder of the treatise are of a miscellaneous

character
; they include integration by series, definite integrals,

and in particular an elaborate discussion of the Beta and the

Gamma functions.

The Traite desfonctions elliptiques was issued in two volumes

in 1825 and 1826, and is the most important of Legendre s

works. A third volume was added a few weeks before his

death, and contains three memoirs on the researches of Abel

and Jacobi. Legendre s investigations had commenced with a

paper written in 1786 on elliptic arcs, but here and in his

other papers he treated the subject merely as a branch of

the integral calculus. Tables of the elliptic integrals were

constructed by him. The modern treatment of the subject is

founded on that of Abel and Jacobi. The superiority of their

methods was at once recognized by Legendre, and almost the

last act of his life was to recommend those discoveries which

he knew would consign his own labours to comparative oblivion.

This may serve to remind us of a fact which I wish to

specially emphasize, namely, that Gauss, Abel, Jacobi, and some

others of the mathematicians alluded to in the next chapter

were contemporaries of the members of the French school.

Pfaff. I may here mention another writer who also made

a special study of the integral calculus. This was Johann

Friederich Pfaff, born at Stuttgart on Dec. 22, 1765, and

died at Halle on April 21, 1825, who was described by

Laplace as the most eminent mathematician in Germany at

the beginning of this century, a description which, had it not

been for Gauss s existence, would have been true enough.

PfafF was the precursor of the German school, which under

Gauss and his followers has largely determined the lines on

which mathematics have developed during this century. He

was an intimate friend of Gauss, and in fact the two mathe

maticians lived together at Helmstadt for the year after Gauss
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finished his university course in 1798. Pfaflfs chief work

was his (unfinished) Disquisitiones Analyticae on the integral

calculus, published in 1797
;
and his most important memoirs

were either on the calculus or on differential equations : on the

latter subject his paper read before the Berlin Academy in

1814 is still a standard authority.

The creation of modern geometry.

While Euler, Lagraiige, Laplace, and Legendre were per

fecting analysis, the members of another group of French

mathematicians were extending the range of geometry by
methods similar to those previously used by Desargues and

Pascal. The most eminent of those who created modern

synthetic geometry was Poncelet, but the subject is also

associated with the names of Monge and L. Carnot
;

its de

velopment in more recent times is largely due to Steiner, von

Staudt, and Cremona (see below, p. 482).

Monge*. Gaspard Monge was born at Beaune on May 10,

1746, and died at Paris on July 28, 1818. He was the son

of a small pedlar, and was educated in the schools of the

Oratorians, in one of which he subsequently became an usher.

A plan of Beaune which he had made fell into the hands

of an officer who recommended the military authorities to

admit him to their training-school at Mezieres. His birth

however precluded his receiving a commission in the army,
but his attendance at an annexe of the school where surveying
and drawing were taught was tolerated, though he was told

that he was not sufficiently well born to be allowed to attempt

problems which required calculation. At last his opportunity
came. A plan of a fortress having to be drawn from the

data supplied by certain observations, he did it by a geo
metrical construction. At first the officer in. charge refused too
receive it, because etiquette required that not less than a

* See A xx// hixtorique sur /&amp;lt;&amp;gt; tnirnu.r...dt Montje, by F. P. C. Dupin,

Paris, 1819; also the Notice hi*tin iqiu. .s//r Monge by B. Brisson, Paris,

1818.
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certain time should be used in making such drawings, but the

superiority of the method over that then taught was so

obvious that it was accepted; and in 1768 Monge was made

professor, on the understanding that the results of his descrip

tive geometry were to be a military secret confined to officers

above a certain rank.

In 1780 he was appointed to a chair of mathematics in

Paris, and this with several provincial appointments which he

held gave him a comfortable income. The earliest paper of

any special importance which he communicated to the French

Academy was one in 1781 in which he discussed the lines of

curvature drawn on a surface. These had been first considered

by Euler in 1760, and defined as those normal sections whose

curvature was a maximum or a minimum. Monge treated

them as the locus of those points on the surface at which suc

cessive normals intersect, and thus obtained the general differ

ential equation. He applied his results to the central quadrics
in 1795. In 1786 he published his well-known work on statics.

Monge eagerly embraced the doctrines of the revolution,

In 1792 he became minister of the marine, arid assisted the

committee of public safety in utilizing science for the defence

of the republic. When the Terrorists obtained power he was

denounced, and only escaped the guillotine by a hasty flight.

On his return in 1794 he was made a professor at the short

lived Normal school where he gave lectures on descriptive

geometry ;
the notes of these were published under the regula

tion above alluded to (see above, p. 415). In 1796 he went to

Italy on the roving commission which was sent with orders to

compel the various Italian towns to offer any pictures, sculpture,

or other works of art that they might possess as a present or in

lieu of contributions to the French republic for removal to Paris.

In 1798 he accepted a mission to Rome, and after executing it

joined Napoleon in Egypt. Thence after the naval and military

victories of England he escaped to France. He was then made

professor at the Polytechnic school, where he gave lectures on

descriptive geometry ;
these were published in 1800 in the form
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of a text-book entitled Geometrie descriptive. This work con

tains propositions on the form and relative position ofgeometrical

figures deduced by the use of transversals. The theory of per

spective is considered ;
this includes the art of representing in

two dimensions geometrical objects which are of three dimen

sions, a problem which Monge usually solved by the aid of two

diagrams, one being the plan and the other the elevation.

Monge also discussed the question as to whether, if in solving

a problem certain subsidiary quantities introduced to facilitate

the solution become imaginary, the validity of the solution is

thereby impaired, and he shewed that the result would not be

affected. On the restoration he was deprived of his offices and

honours, a degradation which preyed on his mind and which

he did not long survive.

Most of his miscellaneous papers are embodied in his

works Application de Valgebre a la geometrie published in 1805,

and Application de Vanalyse a la geometrie, the fourth edition

of which, published in 1819, was revised by him just before

his death. It contains among other results his solution of a

partial differential equation of the second order.

Carnot*. Lazare Nicholas Marguerite Camot, born at

Nolay on May 13, 1753, and died at Magdeburg on Aug. 22,

1823, was educated at Burgundy, and obtained a commission

in the engineer-corps of Conde. Although in the army, he

continued his mathematical studies in which he felt great
interest. His first work, published in 1784, was on machines:

it contains a statement which foreshadows the principle of

energy as applied to a falling weight, and the earliest proof of

the fact that kinetic energy is lost in the collision of bodies.

On the outbreak of the revolution in 1789 he threw himself

into politics. In 1793 he was elected on the committee of

public safety, and the victories of the French army were

largely due to his powers of organization and enforcing disci

pline. He continued to occupy a prominent place in every
* See the eloge by Arago, which, like most obituary notices, is a

panegyric rather than an impartial biography.

B. 28
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successive form of government till 1796 when, having opposed

Napoleon s coup detat, he had to fly from France. He took

refuge in Geneva, and there in 1797 issued his La metaphysique
du calcul infinitesimal. In 1802 he assisted Napoleon, but

his sincere republican convictions were inconsistent with the

retention of office. In 1803 he produced his Geometric de

position. This work deals with protective rather than des

criptive geometry, it also contains an elaborate discussion of

the geometrical meaning of negative roots of an algebraical

equation. In 1814 he offered his services to fight for France,

though not for the empire ;
and on the restoration he was

exiled.

Poncelet*. Jean Victor Poncelet, born at Metz on July 1,

1788, and died at Paris on Dec. 22, 1867, held a commission

in the French engineers. Having been made a prisoner in the

French retreat from Moscow in 1812 he occupied his enforced

leisure by writing the Traite des proprietes projectiles des

figures, published in 1822, which was long one of the best

known text-books on modern geometry. By means of pro

jection, reciprocation, and homologous figures he established

all the chief properties of conies and quadrics. He also treated

the theory of polygons. His treatise on practical mechanics in

1826, his memoir on water-mills in 1826, and his report on

the English machinery and tools exhibited at the International

exhibition held in London in 1851 deserve mention. He
contributed numerous articles to Crelle s journal. The most

valuable of these deal with the explanation of imaginary
solutions in geometrical problems by the aid of the doctrine of

continuity.

The development of mathematical physics.

It will be noticed that Lagrange, Laplace, and Legendre

mostly occupied themselves with analysis, geometry, and astro-

* See La vie et les ouvrages de Poncelet by Didion and Dupin, Paris,

1869.
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nomy. I am inclined to regard Cauchy and the French mathe

maticians of the present day as belonging to a different school

of thought to that considered in this chapter and I place them

amongst modern mathematicians, but I think that Fourier,

Poisson, and the majority of their contemporaries are the lineal

successors of Lagrange and Laplace. If this view be correct, it

would seem that the later members of the French school

devoted themselves mainly to the application of mathematical

analysis to physics. Before considering these mathematicians

I may mention the distinguished English experimental physic
ists who were their contemporaries, and whose merits have only

recently received an adequate recognition. Chief among these

are Cavendish and Young.
Cavendish*. The honourable Henry Cavendish was born at

Nice 011 Oct. 10, 1731, and died in London on Feb. 24, 1810.

His tastes for scientific research and mathematics were formed

at Cambridge, where he resided from 1749 to 1753. Recreated

experimental electricity, and was one of the earliest writers to

treat chemistry as an exact science. T mention him here on

account of his experiment in 1798 to determine the density of

the earth, by estimating its attraction as compared with that

of two given lead balls : the result is that the mean density of

the earth is about five and a half times that of water. This

experiment was carried out in accordance with a suggestion
which had been first made by John Michell, a fellow of Queens

College, Cambridge, who had died before he was able to carry
it into effect.

Rumfordf. Sir Benjamin Thomson, Count Rumford, born

at Concord on March 26, 1753, and died at Auteuil on Aug.

* An account of his life by G. Wilson will be found in the first

volume of the publications of the Cavendish Society, London, 1851. His

Electrical Researches were edited by J. C. Maxwell, and published at

Cambridge in 1879.

f An edition of Rumford s works, edited by George Ellis, accom

panied by a biography was published by the American Academy of

Sciences at Boston in 187*2.

282
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21, 1815, was of English descent and fought on the side of the

loyalists in the American War of secession : on the conclusion

of peace, he settled in England, but subsequently entered the

service of Bavaria where his military and civil powers of

organization proved of great value. At a later period he

again resided in England, and when there founded the Royal
Institution. The majority of his papers were communicated

to the Royal Society of London; of these the most important
is his memoir in which he shewed that heat and work are

mutually convertible.

Young *. Among the most eminent physicists of his time

was Thomas Young, who was born at Milverton on June 13,

1773, and died in London on May 10, 1829. He seems as a

boy to have been somewhat of a prodigy, being well read in

modern languages and literature as well as in science
;
he

always kept up his literary tastes and it was he who first

furnished the key to decipher the Egyptian hieroglyphics.

He was destined to be a doctor, and after attending lectures

at Edinburgh and Gottingen entered at Emmanuel College,

Cambridge, from which he took his degree in 1799
;
and to

his stay at the university he attributed much of his future

distinction. His medical career was not particularly suc

cessful, and his favourite maxim that a medical diagnosis is

only a balance of probabilities was not appreciated by his

patients who looked for certainty in return for their fee.

Fortunately his private means were ample. Several papers
contributed to various learned societies from 1798 onwards

prove him to have been a mathematician of considerable

power ;
but the researches which have immortalized his name

are those by which he laid down the laws of interference of

waves and of light, and was thus able to suggest the means by
which the chief difficulties in the way of acceptance of the

undulatory theory of light could be overcome.

* His collected works and a memoir on his life were published by
G. Peacock, 4 volumes, London, 1855.
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Wollaston. Another experimental physicist of the same

time and school was William Hyde Wollaston, who was born

at Dereham on Aug. G, 1766, and died in London on Dec.

22, 1828. He was educated at Gains College, Cambridge,
of which society he was a fellow. Besides his well-known

chemical experiments, he is celebrated for his researches on

experimental optics, and for the improvements which he

effected in astronomical instruments.

Dalton*. Another distinguished writer of the same period

was John Dalton, who was born in Cumberland on Sept. 5,

1766, and died at Manchester on July 27, 1844. Dalton in

vestigated the tension of vapours, and the law of the expansion

of a gas under changes of temperature. He also founded the

atomic theory in chemistry.

It will be gathered from these notes that the English

school of physicists at the beginning of this century were

mostly concerned with the experimental side of the subject.

But in fact no satisfactory theory could be formed without some

similar careful determination of the facts. The most eminent

French physicists of the same time were Fourier, Poisson,

Ampere, and Fresnel. Their method of treating the subject

is more mathematical than that of their English contem

poraries, and the two first named were distinguished for

general mathematical ability.

Fourier t- The first of these French physicists was Jean

Baptiste Joseph Fourier, who was born at Auxerre on March 21,

1768, and died at Paris on May 16, 1830. He was the son of

a tailor, and was educated by the Benedictines. The com

missions in the scientific corps of the army were, as is still the

case in Russia, reserved for those of good birth, and being

thus ineligible he accepted a military lectureship on mathe-

* See the Memoir of Dalton by B. A. Smith, London, 1856; and

W. C. Henry s memoir in the Cavendish Society Transactions, London,

1854.

t An edition of his works, edited by Gaston Darboux, is now being

issued by the French government.
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matics. He took a prominent part in his own district in

promoting the Revolution, and was rewarded by an appoint
ment in 1795 in the Normal school, and subsequently by a

chair at the Polytechnic school.

He went with Napoleon on his eastern expedition in 1798,

and was made governor of Lower Egypt. Cut off from France

by the English fleet, he organized the workshops on which the

French army had to rely for their munitions of war. He also

contributed several mathematical papers to the Egyptian In

stitute which Napoleon founded at Cairo with a view of

weakening English influence in the East. After the British

victories and the capitulation of the French under General

Menou in 1801, he returned to France and was made prefect

of Grenoble, and it was while there that he made his experi

ments on the propagation of heat. He moved to Paris in

1816. In 1822 he published his Theorie analytique de la

chaleur, in which he bases his reasoning on Newton s law of

cooling, namely, that the flow of heat between two adjacent

molecules is proportional to the infinitely small difference of

their temperatures. He states that the theory demands that

the temperature of stellar space should be between 50 C. and

60 C., a conclusion which it has been as yet impossible to

prove or disprove. In this work be shews that any function

of a variable, whether continuous or discontinuous, can be

expanded in a series of sines of multiples of the variable
;
a

result which is constantly used in modern analysis. Lagrange
had given particular cases of the theorem and had implied that

the method was general, but he had not pursued the subject.

Fourier left an unfinished work on determinate equations
which was edited by Navier, and published in 1831

;
this

contains much original matter, in particular there is a demon

stration of Fourier s theorem on the position of the roots of

an algebraical equation. Lagrange had shewn how the roots

of an algebraical equation might be separated by means of

another equation whose roots were the squares of the differ

ences of the roots of the original equation. Budan, in 1807
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and 1811, had enunciated the theorem generally known by
the name of Fourier, but the demonstration was clumsy and

not altogether satisfactory. Fourier s proof is the same as

that usually given in text-books on the theory of equations.

The final solution of the problem was given in 1829 by Jacques
Charles Fra^ois Sturm.

Sadi Carnot*. Among Fourier s contemporaries who were

interested in the theory of heat the most eminent was Sadi

Carnot, a son of the eminent geometrician mentioned above.

Sadi Carnot was born at Paris in 1796, and died there of

cholera in August, 1832; he was an officer in the French

army. In 1824 he issued a short work entitled Reflexions sur

la puissance motrice dufeu in which he attempted to determine

in what way heat produced its mechanical effect. He made
the mistake of assuming that heat was material, but his essay
was the commencement of the modern theory of thermo

dynamics.

Poissont. Simeon Denis Poisson, born at Pithiviers on

June 21, 1781, and died at Paris on April 25, 1840, is almost

equally distinguished for his applications of mathematics to

mechanics and to physics. His father had been a common

soldier, and on his retirement was given some small adminis

trative post in his native village : when the revolution broke

out he appears to have assumed the government of the place,

and, being left undisturbed, became a person of some local

importance. The boy was put out to nurse, and he used to

tell how one day his father coming to see him found that the

nurse had gone out on pleasure bent, while she had left him

suspended by a small cord to a nail fixed in the wall. This

she explained was a necessary precaution to prevent him from

* A sketch of his life and an English translation of his Reflexions was

published by R. H. Thurston, London and New York, 1890.

t Memoirs of Poisson will be found in the Encyclopaedia Britannica,

the Transactions of the Royal Astronomical Society, vol. v., and Arago s

Eloges, vol. n.; the latter contains a bibliography of Poisson s papers and

works.
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perishing under the teeth of the various animals and animal-

cula that roamed on the floor. Poisson used to add that his

gymnastic efforts carried him incessantly from one side to

the other, and it was thus in his tenderest infancy that he

commenced those studies on the pendulum that were to occupy
so large a part of his mature age.

He was educated by his father, and destined much against

his will to be a doctor. His uncle offered to teach him the art;

and began by making him prick the veins of cabbage-leaves

with a lancet. When perfect in this, he was allowed to

put on blisters
;
but in almost the first case he did this by

himself, the patient died in a few hours, and though all the

medical practitioners of the place assured him that &quot;the event

was a very common one&quot; he vowed he would have nothing

more to do with the profession. Returning home he found

amongst the official papers sent to his father a copy of the

questions set at the Polytechnic school, and at once found his

career. At the age of seventeen he entered the Polytechnic,

and his abilities excited the interest of Lagrange and

Laplace whose friendship he retained to the end of their

lives. A memoir on finite differences which he wrote when

only eighteen was reported on so favourably by Legendre that

it was ordered to be published in the Recueil des savants etran-

gers. Directly he had finished his course he was made a

lecturer at the school, and he continued through his life to

hold various government scientific posts and professorships.

He was somewhat of a socialist, and remained a rigid republican

till 1815 when, with a view to making another empire im

possible, he joined the legitimists. He took however no active

part in politics, and made the study of mathematics his amuse

ment as well as his business.

His works and memoirs are between three and four hundred

in number. The chief treatises which he wrote were his Traite

de mecanique*, 2 volumes, 1811 and 1833, which was long a

* Among Poisson s contemporaries who studied mechanics and of

whose works he made use I may mention Louis Poinsot, who was born
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standard work; his Theorie nouvelle de fraction capillaire, 1831;

his Tlieorie mathematique de la chaleur, 1835, to which a supple

ment was added in 1837 ;
and his Recherckes sur la probabilite

des jugements, 1837. He had intended if he had lived to write

a work which should cover all mathematical physics and in

which these would have been incorporated.

Of his memoirs on the subject of pure mathematics the

most important are those on definite integrals, and Fourier s

series (these are to be found in the Journal poll/technique from

1813 to 1823, and in the Memoires de Vacademie for 1823),

their application to physical problems constituting one of his

chief claims to distinction
;
his essay on the calculus of varia

tions (Memoires de I academie, 1833); and his papers on the

probability of the mean results of observations (Connaissance
des temps, 1827 and following years). Most of his memoirs

were published in the three periodicals here mentioned.

Perhaps the most remarkable of his memoirs in applied

mathematics are those on the theory of electrostatics and

magnetism, which originated a new branch of mathematical

physics : he supposed that the results were due to the

attractions and repulsions of imponderable particles. The

most important of those on physical astronomy are the two

read in 1806 (printed in 1809) on the secular inequalities of

the mean motions of the planets, and on the variation of

arbitrary constants introduced into the solutions of questions
on mechanics

;
in these Poisson discusses the question of the

stability of the planetary orbits, which Lagrange had already

proved to the first degree of approximation for the disturbing

forces, and shews that the result can be extended to the third

order of small quantities : these were the memoirs which led

to Lagrange s famous memoir of 1808. Poisson also published
a paper in 1821 on the libration of the moon; and another in

in Paris on Jan. 3, 1777, and died there on Dec. 5, 1859. In his Statique

published in 1803 he treated the subject without any explicit reference

to dynamics: the theory of couples is largely due to him (1806), as also

the motion of a body in space under the action of no forces.
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1827 on the motion of the earth about its centre of gravity.

His most important memoirs on the theory of attraction are

one in 1829 on the attraction of spheroids, and another in

1835 on the attraction of a homogeneous ellipsoid: the

substitution of the correct equation involving the potential,

namely, V 2F= 4?rp ?
for Laplace s form of it, V2

F=0, was

first published in 1813 in the Bulletin des sciences of the

Societe philomatique. Lastly I may mention his memoir in

1825 on the theory of waves.

Ampere *. Andre Marie Ampere was born at Lyons on

January 22, 1775, and died at Marseilles on June 10, 1836.

He was widely read in all branches of learning, and lectured

and wrote on many of them, but after the year 1809, when he

was made professor of analysis at the Polytechnic school in

Paris, he confined himself almost entirely to mathematics and

science. His papers on the connection between electricity and

magnetism were written in 1820. According to his theory,

propounded in 1826, a molecule of matter which can be mag
netized is traversed by a closed electric current, and magnet
ization is produced by any cause which makes the direction of

these currents in the different molecules of the body approach

parallelism.

Fresnel. Augustin Jean Fresnel, born at Broglie on May
10, 1788, and died at Ville-d Avray on July 14, 1827, was a

civil engineer by profession, but he devoted his leisure to the

study of physical optics. The undulatory theory of light which

Hooke, Huygens, and Euler had supported on a priori grounds
had been based ori experiment by the researches of Young.
Fresnel deduced the mathematical consequences of these ex

periments, and explained the phenomena of interference both

of ordinary and polarized light.

Biot. Fresnel s friend and contemporary, Jean Baptiste

Biot, who was born at Paris on April 21, 1774, and died there

in 1862, requires a word or two in passing. Most of his

* See Valson s Etude sur la vie et les ouvrages d*Ampere, Lyons, 1885.
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mathematical work was in connection with the subject of

optics and especially the polarization of light. His systematic

works were produced within the years 1805 and 1817: a

selection of his more valuable memoirs was published in Paris

in 1858.

Arago*. Francois Jean Dominique Arago was born at

Estagel in the Pyrenees on Feb. 26, 1786, and died in Paris

on Oct. 2, 1853. He was educated at the Polytechnic school,

Paris, and we gather from his autobiography that however

distinguished were the professors of that institution they were

remarkably incapable of imparting their knowledge or main

taining discipline. In 1804 he was made secretary to the

observatory, and from 1806 to 1809 he was engaged in mea

suring a meridian arc in order to determine the exact length

of a metre. He was then made one of the astronomers at

Paris, given a residence there, and made a professor at the

Polytechnic school, where he enjoyed a marked success as a

lecturer. He subsequently gave popular lectures on astronomy
which were both lucid and accurate, a combination of qualities

which was rarer then than now. He reorganized the national

observatory, the management of which had long been in

efficient, but in doing this he shewed himself dictatorial and

passionate, and the same defects of character revealed them

selves in many of the events of his life. He remained to the

end a consistent republican, and after the coup d etat of 1852

though half blind and dying he resigned his post as astronomer

rather than take the oath of allegiance. It is to the credit of

Napoleon III. that he gave directions that the old man should

be in no way disturbed, and should be left free to say and do

what he liked.

His earliest physical researches were on the pressure of

*
Arago s works, which include loges on many of the leading mathe

maticians of the last five or six centuries, have been edited by M. J. A.

Barral and published in fourteen volumes, Paris, 1856 7. An auto

biography is prefixed to the first volume.
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steam at different temperatures, and the velocity of sound, 1818

to 1822. His magnetic observations mostly took place from

1823 to 1826. He discovered what has been called rotatory

magnetism, and the fact that most bodies could be magnetized :

these discoveries were completed and explained by Faraday.
He warmly supported Fresnel s optical theories, and the two

philosophers conducted together those experiments on the polar

ization of light which led to the inference that the vibrations

of the luminiferous ether were transverse to the direction of

motion, and that polarization consisted in a resolution of recti

linear motion into components at right angles to each other.

The subsequent invention of the polariscope and discovery of

rotatory polarization are due to Arago. The general idea of

the experimental determination of the velocity of light in

the manner subsequently effected by Fizeau and Foucault

was suggested by him in 1838, but his failing eyesight pre

vented his arranging the details or making the experiments.
It will be noticed that some of the last members of the

French school were alive at a comparatively recent date, but

nearly all their mathematical work was done before the year

1830. They are the direct successors of the French writers

who flourished at the commencement of this century, and

seem to have been out of touch with the great German

mathematicians of the early part of it on whose researches

much of the best work of this century is based
; they are thus

placed here though their writings are in some cases of a later

date than those of Gauss, Abel, Jacobi, and other mathe

maticians of recent times.

The introduction of analysis into England.

The complete isolation of the English school and its

devotion to geometrical methods are the most marked features

in its history during the latter half of the eighteenth century ;

and the absence of any considerable and valuable contribution
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to the advancement of mathematical science was a natural

consequence. One result of this was that the energy of English

men of science was largely devoted to practical physics and

practical astronomy, which were in consequence studied in

Britain perhaps more than elsewhere.

Ivory. Almost the only English mathematician at the

beginning of this century who used analytical methods and

whose work requires mention here is Ivory, to whom the

celebrated theorem in attractions is due. James Ivory was

born in Dundee in 1765, and died at Douglastown on Sept.

21, 1845. After graduating at St Andrews he became the

managing partner in a flax-spinning company in Forfarshire,

but continued to devote most of his leisure to mathematics.

In 1804 he was made professor at the Royal Military College

at Marlow, which is now moved to Sandhurst. He contributed

numerous papers to the Philosophical Transactions, the most

remarkable being those on attractions. In one of these, in

1809, he shewed how the attraction of a homogeneous ellipsoid

on an external point is a multiple of that of another ellipsoid

on an internal point: the latter can be easily obtained. He
criticized Laplace s solution of the method of least squares with

unnecessary bitterness, and in terms which proved his incompe
tence to understand it.

The Cambridge Analytical School. Towards the close of

the last century the more thoughtful members of the Cam

bridge school of mathematics began to recognize that their

isolation from their continental contemporaries was a serious

evil. The earliest attempt in England to explain the notation

and methods of the calculus as used on the continent was due

to Woodhouse, who stands out as the apostle of the new move
ment. It is doubtful if he could have brought the analytical
methods into vogue by himself

;
but his views were enthusi

astically adopted by three undergraduates, Babbage, Peacock,
and Herschel, who succeeded in carrying out the reforms he had

suggested. In a book which will fall into the hands of few but

English readers I may be pardoned for making space for a few
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remarks on these four mathematicians*. The original stimulus

came from French sources and I therefore place these remarks

at the close of my account of the French school, but I should

add that the English mathematicians of this century at once

struck out a line independent of their French contemporaries.

Woodhouse. Robert Woodhouse was born at Norwich on

April 28, 1773; was educated at Caius College, Cambridge, of

which society he was subsequently a fellow; was Plumian pro
fessor in the university; and continued to live at Cambridge
till his death on December 23, 1827. His earliest work,

entitled the Principles of Analytical Calculation, was published
at Cambridge in 1803. In this he explained the differential

notation and strongly pressed the employment of it, but he

severely criticized the methods used by continental writers,

and their constant assumption of non- evident principles. This

was followed in 1809 by a trigonometry (plane and spherical),

and in 1810 by a historical treatise on the calculus of variations

and isoperimetrical problems. He next produced an astro

nomy ;
the first volume (usually bound in two) on practical

and descriptive astronomy being issued in 1812, the second

volume, containing an account of the treatment of physical

astronomy by Laplace and other continental writers, being

issued in 1818. All these works deal critically with the

scientific foundation of the subjects considered a point which

is not unfrequently neglected in modern text-books.

A man like Woodhouse, of scrupulous honour, universally

respected, a trained logician, and with a caustic wit, was well

fitted to introduce a new system ;
and the fact that when he

first called attention to the continental analysis, he exposed
the unsoundness of some of the usual methods of establishing

it more like an opponent than a partizan, was as politic as it

was honest. Woodhouse did not exercise much influence on

the majority of his contemporaries, and the movement might
have died away for the time being, if it had not been for the

advocacy of Peacock, Herschel, and Babbage who formed an

* The following account is condensed from my History of the Study

of Mathematics at Cambridge, Cambridge, 1889.
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Analytical Society, with the object of advocating the general

use in the university of analytical methods and of the diffe

rential notation.

Peacock. George Peacock, who was the most influential of

the early members of the new school, was born at Denton on

April 9, 1791. He was educated at Trinity College, Cam

bridge, of which society he was subsequently a fellow and

tutor. The establishment of the university observatory was

mainly due to his efforts, and in 1836 he was appointed to the

Lowndean professorship of astronomy and geometry. In 1839

he was made dean of Ely, and resided there till his death on

Nov. 8, 1858. Although Peacock s influence on English
mathematicians was considerable he has left but few me
morials of his work; but I may note that his. report on recent

progress in analysis, 1833, commenced those valuable summaries

of scientific progress which enrich many of the annual volumes

of the Transactions of the British Association.

Babbage. Another important member of the Analytical

Society was Charles Babbage, who was born at Totnes on

Dec. 26, 1792; he entered at Trinity College, Cambridge, in

1810; subsequently became Lucasian professor in the univer

sity; and died in London on Oct. 18, 1871. It was he who

gave the name to the Analytical Society, which he stated was

formed to advocate &quot; the principles of pure d-isrn as opposed
to the dW-age of the university.&quot; In 1820 the Astronomical

Society was founded mainly through his efforts, and at a later

time, 1830 to 1832, he took a prominent part in the foundation

of the British Association. He will be remembered for his

mathematical memoirs on the calculus of functions, and his

invention of an analytical machine which could not only

perform the ordinary processes of arithmetic but could tabu

late the values of any function and print the results.

Herschel. The third of those who helped to bring ana

lytical methods into general use in England was the son of

Sir William Herschel (1738 1S22), the most illustrious

astronomer of the latter half of the last century and the

creator (it may be fairly said) of stellar astronomy. Sir John
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Frederick William Herschel was born on March 7, 1792,

educated at St John s College, Cambridge, and died on May
11, 1871. His earliest original work was a paper on Cotes s

theorem, and it was followed by others on mathematical

analysis, but his desire to complete his father s work led ulti

mately to his taking up astronomy. His papers on light and

astronomy contain a clear exposition of the principles which

underlie the mathematical treatment of those subjects.

In 1813 the Analytical Society published a volume of

memoirs, of which the preface and the first paper (on continued

products) are due to Babbage; and three years later they
issued a translation of Lacroix s Traite elementaire du calcul

differential et du calcul integral. In 1817, and again in 1819,

the differential notation was used in the university examina

tions, and after 1820 its use was well established. The

Analytical Society followed up this rapid victory by the issue

in 1820 of two volumes of examples illustrative of the new

method; one by Peacock on the differential and integral

calculus, and the other by Herschel on the calculus of finite

differences. Since then English works on the infinitesimal

calculus have abandoned the exclusive use of the fluxional

notation. It should be noticed in passing that Lagrange and

Laplace, like the majority of other modern writers, employ
both the fluxional and the differential notation

;
it was the

exclusive adoption of the former that was so hampering.

Amongst those who materially assisted in extending the

use of the new analysis were William Whewell (1794 1866)

and George Biddell Airy (18011892), both fellows of Trinity

College, Cambridge. The former issued in 1819 a work on

mechanics, and the latter, who was a pupil of Peacock, pub
lished in 1826 his Tracts^ in which the new method was

applied with great success to various physical problems. The

efforts of the society were supplemented by the rapid publica

tion of good text-books in which analysis was freely used.

The employment of analytical methods spread from Cambridge
over the rest of Britain, and by 1830 these methods had come

into general use there.



CHAPTER XIX.

MATHEMATICS OF RECENT TIMES.

IT is evidently impossible for me to discuss adequately the

mathematicians of the age in which we live, especially as I

purposely exclude from this work any detailed reference to

living writers. I make therefore no attempt to give a complete

history of this period, but as a sort of appendix to the preceding

chapters I add a few notes on some of the more striking

features in the history, during this century, of pure mathe

matics (in which I include theoretical dynamics and astronomy) ;

but except for a few allusions I shall not discuss the applica

tion of mathematics to physics. These notes are brief, and in

many cases consist merely of a list of the names of some of

those to whom the development of any branch of the subject

is chiefly due, and an indication of that part of it to which

they have directed most attention. I would refer any one

who wishes for more details to the invaluable catalogue

which has been compiled by the Royal Society of London,
and which contains a list, under the names of the authors, of

all the scientific papers contributed during this century to

journals and learned societies. In only a few cases do I add

any account of the life and works of the mathematicians men
tioned. Even with these limitations it has been very difficult

to put together a connected account of the mathematics of

recent times
;
and I wish to repeat explicitly that I do not

suggest, nor do I wish my readers to suppose, that my notes

on a subject give the names of all the chief writers who have

studied it. In fact the quantity of matter produced has been

B. 29
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so enormous that no one can expect to do more than make

himself acquainted with the work in some small department :

as an illustration of this remark I may say that I have reason

to believe that something like 15,000 separate scientific memoirs

are now published every year by the different societies and jour

nals of Europe and America.

Most of the treatises on the history of mathematics omit

all reference to the work produced during this century. The

chief exceptions with which I am acquainted are a short disser

tation by H. Hank el, entitled Die Entwickelung der Mathematik

in den letzten Jahrhunderten, Tubingen, 1885; the eleventh

and twelfth volumes of Marie s Histoire des sciences in which

are some notes on mathematicians who were born in the last

century; Gerhardt s Geschichte der Mathematik in Deutschland,

Munich, 1877 ;
and a Discours on the professors at the Sorbonne

by Ch. Hermite in the Bulletin des sciences mathematiques, 1890,

pp. 6 36. A few histories of the development of particular

subjects have been written such as those by the late Isaac

Todhunter on the theories of attraction and on the calculus of

probabilities while the annual volumes of the British Asso

ciation contain a number of reports on the progress in several

different branches of modern mathematics
;
a few similar reports

(and notably one in 1857 by J. Bertrand on the development
of mathematical analysis) have been presented to the French

Academy. I have found these authorities and these reports

useful, but I have derived most assistance in writing this

chapter from the obituary notices in the proceedings of various

learned Societies, foreign as well as British; I am also in

debted to information kindly furnished me by various friends,

and if I do not further dwell on this, it is only that I would

not seem to make them responsible for errors and omissions

which they would have avoided in their own works.

A period of exceptional intellectual activity in any subject

is usually followed by one of comparative stagnation ;
and

after the deaths of Lagrange, Laplace, Legendre, and Poisson
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the French school, which had occupied so prominent a position

at the beginning of this century, ceased for some years to

produce much new work. Some of the mathematicians whom
I intend first to mention, Gauss, Abel, and Jacobi, were

contemporaries of the later years of the French mathematicians

just named, but their writings appear to me to belong to a

different school, and thus are properly placed at the beginning
of a fresh chapter.

There is no mathematician of this century whose writings
have had a greater effect than those of Gauss ;

nor is it on

only one branch of the science that his influence has left a

permanent mark. I cannot therefore commence my account

of the mathematics of recent times better than by describing

very briefly his more important researches.

Gauss*. Karl Friedrich Gauss was born at Brunswick on

April 23, 1777, and died at Gottingen on Feb. 23, 1855. His

father was a bricklayer, and Gauss was indebted for a liberal

education (much against the will of his parents who wished

to profit by his wages as a labourer) to the notice which his

talents procured from the reigning duke. In 1792 he was sent

to the Caroline College, and by 1795 professors and pupils

alike admitted that he knew all that the former could teach

him : it was while there that he investigated the method of

least squares, and proved by induction the law of quadratic

reciprocity. Thence he went to Gottingen, where he studied

under Kastner : many of his discoveries in the theory of num
bers were made while a student here. In 1798 he returned

to Brunswick, where he earned a somewhat precarious liveli

hood by private tuition.

In 1799 Gauss published his demonstration that every

algebraical equation has a root of the form a + bi
;
a theorem

of which altogether he gave three distinct proofs. In 1801 this

was followed by his Disquisitioiies Aritkmeticae, which is printed

* Gauss s collected works have been edited by E. J. Schering, and pub
lished by the Royal Society of Gottingen in 7 volumes, 1863 71.

292
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as the first volume of his collected works. The greater part

of it had been sent to the French Academy in the preceding

year, and had been rejected with a sneer which, even if the

book had been as worthless as the referees believed, would

have been unjustifiable ; Gauss was deeply hurt, and his

reluctance to publish his investigations may be partly

attributable to this unfortunate incident.

The next discovery of Gauss was in a totally different

department of mathematics. The absence of any planet in the

space between Mars and Jupiter, where Bode s law would have

led observers to expect one, had been long remarked, but it

was not till 1801 that any one of the numerous group of

minor planets which occupy that space was observed. The

discovery was made by Piazzi of Palermo
;
and was the more

interesting as its announcement occurred simultaneously with

a publication by Hegel in which he severely criticized as

tronomers for not paying more attention to philosophy, a

science, said he, which would at once have shewn them that

there could not possibly be more than seven planets, and a

study of which would therefore have prevented an absurd

waste of time in looking for what in the nature of things

could never be found. The new planet was named Ceres, but

it was seen under conditions which appeared to render it almost

impossible to forecast its orbit. The observations were fortu

nately communicated to Gauss
;
he calculated its elements,

and his analysis proved him to be the first of theoretical astro

nomers no less than the greatest of &quot;

arithmeticians.&quot;

The attention excited by these investigations procured for

him in 1807 the offer of a chair at St Petersburg, which he

declined. In the same year he was appointed director of the

Gottingen observatory and professor of astronomy there.

These offices he retained to his death
;

and after his ap

pointment he never slept away from his observatory except

on one occasion when he attended a scientific congress at

Berlin. His lectures were singularly lucid and perfect in

form, and it is said that he used here to give the analysis by
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which he had arrived at his various results, and which is so

conspicuously absent from his published demonstrations; but

for fear his auditors should lose the thread of his discourse, he

never willingly permitted them to take notes.

I have already mentioned Gauss s publications in 1799,

1801, and 1802. For some years after 1807 his time was

almost wholly occupied by work connected with his observa

tory. In 1809 he published at Hamburg his Theoria Motus

Corporum Coelestium, a treatise which contributed largely to

the improvement of practical astronomy, and introduced the

principle of curvilinear triangulation : and on the same

subject, but connected with observations in general, we have

his memoir Theoma Combinationis Observationum Errombus

Minirnis Obnoxia, with a second part and a supplement.
Somewhat later, he took up the subjects of geodesy, acting

from 1821 to 1848 as scientific adviser to the Danish and

Hanoverian governments for the survey then in progress :

his papers of 1843 and 1866, Ueber Gegenstande der Jioheni

Geodasie, contain his researches on the subject.

Gauss s researches on electricity and magnetism date from

about the year 1830. His first paper on the theory of

magnetism, entitled Intensitas Vis Magneticae Terrestris ad
Mensuram Absolutam Mevocata, was published in. 1833. A
few months afterwards he, together with Weber, invented the

declination instrument and the bitilar magnetometer; and in

the same year they erected at Gottingen a magnetic observa

tory free from iron (as Humboldt and Arago had previously
done on a smaller scale) where they made magnetic observa

tions, and in particular shewed that it was possible and

practicable to send telegraphic signals. In connection with

this observatory Gauss founded the association called the

Magnetische Verein with the object of securing continuous

observations at fixed times. The volumes of their publica

tions, Resultate aus der Beobachtungen des Magnetischen
Vereiiis for 1838 and 1839, contain two important memoirs

by Gauss, one on the general theory of earth-magnetism, and
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the other on the theory of forces attracting according to

the inverse square of the distance. Like Poisson he treated

the phenomena in electrostatics as due to attractions and re

pulsions between imponderable particles. In electrodynamics
he arrived (in 1835) at a result equivalent to that given by
W. E. Weber in 1846, namely, that the attraction between

two electrified particles e and e whose distance apart is r

depends on their relative motion and position according to the

formula

Gauss however held that no hypothesis was satisfactory which

rested on a formula and was not a consequence of a physical

conjecture, and as he could not frame a plausible physical

conjecture he abandoned the subject. Such conjectures were

proposed by Biemann in 1858, and by 0. Neumann and

E. Betti in 1868, but Helmholtz in 1870, 1873, and 1874

shewed that they were untenable. A simpler view which

regards all electric and magnetic phenomena as stresses and

motions of a material elastic medium had been outlined by
Michael Faraday, and was elaborated by James Clerk Maxwell;
the latter, by the use of generalized coordinates, was able to

deduce the consequences, and the agreement with experiment
is close (see below, p. 496). These and other electric theories

were classified and critically discussed in a memoir by J. J.

Thomson in 1885 (see below, p. 497).

Gauss s researches on optics, including systems of lenses,

were published in 1840 in his Dioptrische Untersuchungen.

From this sketch it will be seen that the ground covered

by Gauss s researches was extraordinarily wide. I will now

mention very briefly some of the most important of his

discoveries in pure mathematics.

His most celebrated work in pure mathematics is the

Disquisitiones Arithmeticae which has proved a starting point

for several interesting investigations on the theory of numbers.

This treatise and Legendre s Theorie des nombres remain
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standard works on the theory of numbers
; but, just as

in his discussion of elliptic functions Legendre failed to

rise to the conception of a new subject, and confined him

self to regarding their theory as a chapter in the integral

calculus, so he treated the theory of numbers as a chapter in

algebra. Gauss however realized that the theory of discrete

magnitudes or higher arithmetic was of a different kind from

that of continuous magnitudes or algebra, and he introduced

a new notation and new methods of analysis of which

subsequent writers have generally availed themselves. In

particular the Disquisitiones Aritkmeticae introduced the modern

theory of congruences of the first and second orders, and to

this Gauss reduced indeterminate analysis. In it also he

discussed the solution of binomial equations of the form xn = 1 :

this involves the celebrated theorem that the only regular

polygons which can be constructed by elementary geometry
are those of which the number of sides is 2m (2

n
+1), where m

and n are integers and 2n + 1 is a prime ;
a discovery he had

made in 1796. He developed the theory of ternary quadratic
forms involving two indeterminates. He also investigated the

theory of determinants, and it was on Gauss s results that

Jacobi based his researches on that subject.

The theory of functions of double periodicity had its origin

in the discoveries of Abel and Jacobi, which I describe later.

Both these mathematicians arrived at the theta functions,

which play so large a part in the theory of the subject. Gauss

however had independently, and indeed at a far earlier date,

discovered these functions and their chief properties ; having
been led to them by certain integrals which occurred in the

Determinatio Attractionis, to evaluate which he invented the

transformation now associated with the name of Jacobi. Though
Gauss at a later time communicated the fact to Jacobi, he did

not publish his researches
; they occur in a series of note

books of a date not later than 1808, and are included in his

collected works.

Of the remaining memoirs in pure mathematics the most
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remarkable are those on the theory of biquadratic residues

(wherein the notion of complex numbers of the form a + bi

was first introduced into the theory of numbers) in which are

included several tables, and notably one of the number of

the classes of binary quadratic forms; that relating to the

proof of the theorem that every numerical equation has a real

or imaginary root
; that on the summation of series

;
that on

hypergeometric series, which contains a discussion of the

Gamma function
;
and lastly one on interpolation : his intro

duction of rigorous tests for the convergency of infinite series

is specially noticeable. Finally we have the important memoir
on the conformal representation of one surface upon another,
in which the results given by Lagrange for surfaces of

revolution are generalized for any surfaces.

In the theory of attractions we have a paper on the

attraction of homogeneous ellipsoids ;
the already-mentioned

memoir of 1839, Allgemeine Lehrsatze in Beziehung auf die

im verkehrten Verhdltnisse des Quadrats der Entferung, on the

theory of forces attracting according to the inverse square of

the distance
;
and the memoir, Determinatio Attractionis, in

which it is shewn that the secular variations, which the

elements of the orbit of a planet experience from the attraction

of another planet which disturbs it, are the same as if the

mass of the disturbing planet were distributed over its orbit into

an elliptic ring in such a manner that equal masses of the ring

would correspond to arcs of the orbit described in equal times.

The great masters of modern analysis are Lagrange, Laplace,

and Gauss, who were contemporaries. It is interesting to note

the marked contrast in their styles. Lagrange is perfect both

in form and matter, he is careful to explain his procedure,

and though his arguments are general they are easy to follow.

Laplace on the other hand explains nothing, is absolutely

indifferent to style, and, if satisfied that his results are correct,

is content to leave them either with no proof or with a faulty

one. Gauss is as exact and elegant as Lagrange, but even

more difficult to follow than Laplace, for he removes every
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trace of the analysis by which he reached his results, and

studies to give a proof which while rigorous shall be as concise

and synthetical as possible.

Dirichlet*. One of Gauss s pupils to whom I may here allude

is Lejeune Dirichlet, who is generally known for his exposition

of the discoveries of Jacobi (who was his father-in-law) and of

Gauss, rather than for his own original investigations, valuable

though some of these are. Peter Gustav Lejeune Dirichlet was

born at Diiren on Feb. 13, 1805, and died at Gottingen on

May 5, 1859. He held successively professorships at Breslau

and Berlin, and on Gauss s death in 1855 was appointed to

succeed him as professor of the higher mathematics at Gottin-

gen. He intended to finish Gauss s incomplete works, for

which he was admirably fitted, but his early death prevented
this

;
he produced however several memoirs which have

considerably facilitated the comprehension of some of Gauss s

more abstruse methods. Of Dirichlet s original work the most

celebrated is that on the determination of means with applica

tions to the distribution of prime numbers.

The researches of Gauss on the theory of numbers were

continued or supplemented by Jacobi (see below, p. 465) who
first proved the law of cubic reciprocity ;

discussed the theory
of residues

; and, in his Canon Aritlimeticus, gave a table of

residues of prime roots.

Eisenstein. This subject was next taken up by Ferdinand

Gotthold Eisenstein, a professor at the university of Berlin,

who was born at Berlin on April 16, 1823, and died there on

Oct. 11, 1852. The theory of numbers may be divided into

two main divisions, namely, the theory of congruences and

the theory of forms. The solution of the problem of the

representation of numbers by binary quadratic forms is one of

* His works are being produced in two volumes, vol. i., by
L. Kronecker, Berlin, 1889. His lectures on the theory of numbers were

edited by B. Dedekind, third edition, Brunswick, 187981: his investi

gations on the theory of the potential have been edited by F. Grube, second

edition, Leipzig, 1887. There is a note on some of his researches by C.

W. Borchardt in Crelle s Journal, vol. LVII., 1859, pp. 9192.
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the great achievements of Gauss, and the fundamental principles

upon which the treatment of such questions rest were given

by him in the Disquisitiones Arithmeticae. Gauss there added

some results relating to ternary quadratic forms, but the general

extension from two to three indeterminates was the work of

Eisenstein, who, in his memoir Neue T/ieoreme der hoheren

Arithmetik, denned the ordinal and generic characters of ternary

quadratic forms of an uneven determinant
; and, in the case

of definite forms, assigned the weight of any order or genus ;

but he did not consider forms of an even determinant, nor

give any demonstrations of his work.

Eisenstein also considered the theorems relating to the

possibility of representing a number as a sum of squares, and

shewed that the general theorem was limited to eight squares.

The solutions in the cases of two, four, and six squares may be

obtained by means of elliptic functions, but the cases in which

the number of squares is uneven involve special processes

peculiar to the theory of numbers. Eisenstein gave the solu

tion in the case of three squares. He also left a statement

of the solution he had obtained in the case of five squares*;
but his results were published without proofs, and apply

only to numbers which are not divisible by a square.

Among Eisenstein s other investigations I single out for

special mention the remarkable rule he enunciated by means

of which it is possible to distinguish whether a given series

represents an algebraical or a transcendental function.

Henry Smitht One of the most original and powerful

mathematicians of the school founded by Gauss was Henry
Smith. Henry John Stephen Smith was born in London

on Nov. 2, 1826, and died at Oxford on Feb. 9, 1883. He

* Crelle s Journal, vol. xxxv., 1847, p. 368.

t Smith s collected mathematical works, edited by Dr Glaisher of

Trinity College, Cambridge, will be shortly issued by the university of

Oxford. The following account is extracted from the obituary notice by

Dr Glaisher in the monthly notices of the Astronomical Society, 1884,

pp. 138149.
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was educated at Rugby, and at Balliol College, Oxford, of

which latter society he was a fellow; and in 1861 he was

elected Savilian professor of geometry at Oxford, where he

resided till his death.

The subject in connection with which Smith s name will

be always specially remembered is the theory of numbers, and

to this he devoted the years from 1854 to 1864. The results

of his historical researches were given in his report published in

parts in the Transactions of the British Association from 1859

to 1865
;
this report contains an account of what had been done

on the subject to that time together with some additional mat

ter. The chief outcome of his own original work on the sub

ject is included in two memoirs printed in the Philosophical

Transactions for 1861 and 1867 ;
the first being on linear

indeterminate equations and congruences, and the second

on the orders and genera of ternary quadratic forms. In the

latter memoir demonstrations of Eisenstein s results and their

extension to ternary quadratic forms of an even determinant

were supplied, and a complete classification of ternary

quadratic forms was given.

Smith, however, did not confine himself to the case of three

indeterminates, but succeeded in establishing the principles on

which the extension to the general case of n indeterminates

depends, and obtained the general formulae
;
thus effecting the

greatest advance made in the subject since the publication of

Gauss s work. In the account of his methods and results which

appeared in the Proceedings of the Royal Society*, Smith re

marked that the theorems relating to the representation of

numbers by four squares and other simple quadratic forms, are

deducible by a uniform method from the principles there indi

cated, as also are the theorems relating to the representation of

numbers by six and eight squares. He then proceeded to say
that as the series of theorems relating to the representation of

numbers by sums of squares ceases, for the reason assigned by
Eisenstein, when the number of squares surpasses eight, it was

* See vol. xiii., 1864, pp. 199203, and vol. xvi., 1868, pp. 197208.
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desirable to complete it. The results for even squares were

known. The principal theorems relating to the case of five

squares had been given by Eisenstein, but he had considered

only those numbers which are not divisible by a square,

and he had not considered the case of seven squares. Smith

here completed the enunciation of the theorems for the case of

five squares, and added the corresponding theorems for the case

of seven squares.

This paper was the occasion of a dramatic incident in the

history of mathematics. Fourteen years later, in ignorance of

Smith s work, the demonstration and completion of Eisenstein s

theorems for five squares were set by the French Academy as

the subject of their &quot;Grand prix des sciences mathematiques.&quot;

Smith wrote out the demonstration of his general theorems so

far as was required to prove the results in the special case of

five squares, and only a month after his death, in March 1883,

the prize was awarded to him, another prize being also awarded

to H. Minkowski of Bonn. No episode could bring out in a

more striking light the extent of Smith s researches than that

a question of which he had given the solution in 1867 as a

corollary from general formulae which governed the whole

class of investigations to which it belonged should have been

regarded by the French Academy as one whose solution was of

such difficulty and importance as to be worthy of their great

prize. It has been also a matter of comment that they should

have known so little of contemporary English and German

researches on the subject as to be unaware that the result

of the problem they were proposing was then lying in their

own library.

Among Smith s other investigations I may specially mention

his geometrical memoir Sur quelques problemes cubiques el

biquadratiques, for which in 1868 he was awarded the Steiner

prize of the Berlin Academy. In a paper which he contributed

to the Atti of the Accademia dei Lincei for 1877 he established

a very remarkable analytical relation connecting the modular

equation of order n and the theory of binary quadratic forms
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belonging to the positive determinant n. In this paper the

modular curve is represented analytically by a curve in such a

manner as to present an actual geometrical image of the

complete systems of the reduced quadratic forms belonging to

the determinant, and a geometrical interpretation is given to

the ideas of &quot;

class/
&quot;

equivalence,&quot; and &quot; reduced form.&quot; He
was also the author of important papers in which he succeeded

in extending to complex quadratic forms many of Gauss s

investigations relating to real quadratic forms. He was led

by his researches on the theory of numbers to the theory of

elliptic functions, and the results he arrived at, especially on

the theory of the theta and omega functions, are of importance.

The Theory of Numbers, as treated to-day, may be said to

originate with Gauss. I have already mentioned very briefly

the subject of the subsequent investigations of Jacobi, Dirich-

let, Eisenstein, and Henry Smith.

Among other mathematicians who have written on it I

may allude to the following.

Riemann (see below, p. 468), who investigated the dis

tribution of primes.

James Joseph Sylvester, Savilian professor in the university

of Oxford, born in London on Sept. 3, 1814 (see below, pp. 462,

478, 482), who also has written on the distribution of primes.

Cauchy (see below, p. 473), who in particular discussed the

expression of quadratic binomials.

Joseph LiouviUe, the editor from 1836 to 1874 of the well-

known journal, who was born at St Omer on March 24, 1809,

and died in 1882 (see below, p. 470), most of whose numerous

investigations dealt with the representation of numbers by

special forms.

Ernest Edward Kummer, born at Sorau on Jan. 29, 1810,

and until recently professor at Berlin (see below, p. 477),
to whom we owe the conception of the so-called ideal primes,
which are required in the treatment of complexes, and which

he applied to the problem of Fermat s equation ;
and whose



462 THE THEORY OF NUMBERS.

paper on hypergeometric series may rank with that by Gauss

as a classical memoir on the subject.

Leopold Kronecker, professor in Berlin, born at Liegnitz on

Dec. 7, 1823, and died at Berlin on Dec. 29, 1891, most of

whose investigations on this branch of mathematics were on

ternary and quadratic forms : on his investigations generally
see the Bulletin of the New York Mathematical Society, vol. I.,

pp. 173184; see also below, p. 469.

Charles Hermite, professor in Paris, born in Lorraine on

Dec. 24, 1822 (see below, pp. 469, 470, 471, 478), who wrote

on ternary forms.

Julius Wilhelm Richard Dedekind, born at Brunswick on

Oct. 6, 1831, whose more important researches, given in an ap

pendix to his edition of Dirichlet s writings, are on ideal primes :

see also below, p. 493.

Patnutij Tchebycheff, formerly professor at the university

of St Petersburg, born in Russia in 1821, who has written on

the number of primes between given limits : a problem also

considered by Legendre, Dirichlet, and Riemann.

And James Whitbread Lee Glaisher, fellow and tutor of

Trinity College, Cambridge, born at Lewisham on Nov. 5, 1848

(see below, p. 470), from whose numerous papers I may single

out those relating to prime numbers
;
those on functions of a

number which are formed from its (real or complex) divisors
;

and those on the possible divisors of numbers of a given form.

Finally I may mention that the problem of the partition of

numbers, to which Euler paid considerable attention, has in

recent times attracted the attention of Arthur Cayley, Sadlerian

professor in the university of Cambridge, born in Richmond,

Surrey, on Aug. 16, 1821 (see below, pp. 469, 478, 481), of

Sylvester (see pp. 461, 478, 482), and of Percy Alexander

Macmahon, professor at Woolwich and a major in the English

artillery, born at Malta on Sept. 26, 1854 (see below, p. 479).

Interest in problems connected with the theory of numbers

seems recently to have flagged, and possibly it may be found

hereafter that the subject is approached better on other lines.
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The theory of functions of double and multiple periodicity

is another subject to which much attention has been paid

during this century. I have already mentioned that as early

as 1808 Gauss had discovered the theta functions and their chief

properties, but his investigations remained for many years

concealed in his note-books ;
and it was to the researches

made between 1820 and 1830 by Abel and Jacobi that

the modern development of the subject is due. Their treat

ment of it has completely superseded that used by Legendre,

and they are justly reckoned as the creators of this branch of

mathematics.

Abel*. Niels Henrick Abel was born at Findoe in Norway
on Aug. 5, 1802, and died at Arendal on April 6, 1829, at the

age of twenty-six. His memoirs on elliptic functions which

were originally published in Crellds Journal treat the subject

from the point of view of the theory of equations and algebraic

forms, a treatment to which his researches naturally led him.

The important and very general result known as Abel s theorem,

which was subsequently applied by Riemann to the theory of

transcendental functions, was sent to the French Academy in

1828, but (mainly through the action of Cauchy) was not

published for several years. The name of Abelian function has

been given to the higher transcendents of multiple periodicity

which were first discussed by Abel. He criticized the use of

infinite series, but I do not know that the results lead to any
definite rules for testing convergency. As illustrating his

fertility of ideas I may in passing notice his celebrated demon
stration that it is impossible to solve a quiutic equation by
means of radicals

;
this theorem was the more important since

it definitely limited a field of mathematics which had pre

viously attracted numerous writers. I should add that this

theorem had been enunciated as early as 1798 by Paolo

* The life of Abel by C. A. Bjerknes was published at Stockholm in

1880 Two editions of Abel s works have been published, of which the

last, edited by Sylow and Lie and issued at Christian ia in two volumes
in 1881, is the more complete.
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Ruffini, an Italian physician practising at Modena
;

but I

believe that the proof he gave was deficient in generality.

Jacob! *. Carl Gustav Jacob Jacobi, born of Jewish parents
at Potsdam on Dec. 10, 1804, and died at Berlin on Feb. 18,

1851, was educated at the university of Berlin where he ob

tained the degree of doctor of philosophy in 1825. In 1827 he

became extraordinary professor of mathematics at Konigsberg,
and in 1829 was promoted to be an ordinary professor ;

this

chair he occupied till 1842, when the Prussian government

gave him a pension, and he moved to Berlin where he con

tinued to live till his death in 1851.

Jacobi s most celebrated investigations are those on elliptic

functions, the modern notation in which is due to him, and the

theory of which he established simultaneously with Abel but

independently of him. These are given in his treatise Funda-

menta Nova Theoriae Functionum Elliptwarum, Konigsberg,

1829, and in some later papers in Crelle s Journal. The

correspondence between Legendre and Jacobi on elliptic func

tions has been reprinted in the first volume of Jacobi s collected

works. Jacobi, like Abel, recognized that elliptic functions

were not merely a group of theorems on integration, but that

they were types of a new kind of function, namely, one of

double periodicity; hence he paid particular attention to the

theory of the theta function. The following passage! in which

he explains this view is sufficiently interesting to deserve textual

reproduction: &quot;E quo, cum universam, quae fingi potest, am-

plectatur periodicitatem analyticam elucet, functioiies ellipticas

non aliis adnumerari debere transcendentibus, quae quibusdam

gaudent elegantiis, fortasse pluribus illas aut maioribus, sed

speciem quandam iis inesse perfecti et absoluti.&quot;

* See C. J. Gerhardt s Geschichte der Mathematik in Deutschland,

Munich, 1877. Jacobi s collected works were edited by Dirichlet, 3

volumes, Berlin, 1846 71, and accompanied by a biography, 1852; a

new edition, under the supervision of C. W. Borchardt and K. Weierstrass,

was issued at Berlin in 7 volumes, 1881 1891.

t His collected works, vol. i., 1881, p. 87.
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Among Jacobi s other investigations I may specially single

out his papers on determinants, which did a great deal to bring

them into general use
;
and particularly his invention of the

Jacobian, that is, of the functional determinant formed by the

na

partial differential coefficients of the first order of n given
functions of n independent variables. I ought also to mention

his papers on Abelian transcendents; his investigations on the

theory of numbers (see above, p. 457) ;
his important work

on the theory of partial differentia] equations; his development
of the calculus of variations

;
and his numerous memoirs on

the planetary theory and other particular dynamical problems,
in the course of which also he extended the theory of differential

equations : most of the results of the researches last named are

included in his Vorlesungen uber Dynamik, edited by Clebsch,

Berlin, 1866.

Riemaim*. Georg Friederich Bernhard Riemann was born

at Breselenz on Sept. 17, 1826, and died at Selasca on July 20,

1866. He studied at Gottingen under Gauss, and subsequently
at Berlin under Jacobi, Dirichlet, Steiner, and Eisenstein, all

of whom were professors there at the same time. His earliest

paper, written in 1850, was on algebraic functions of a complex

variable, and on it the recent investigations of Schwarz,

Klein, and Poincare are largely based : to these I refer very

briefly below (see p. 470). In 1854 Riemann wrote his cele

brated memoir on the hypotheses on which geometry is

founded. This was succeeded by memoirs on elliptic functions

and the theory of numbers; he also wrote on physical subjects.

The question of the truth of the assumptions usually made
in our geometry had been considered by J. Saccheri as long

ago as 1733, and in more recent times had been discussed by
Nicolai Ivanowitsch Lobatschewsky (professor at Kasan, born

at Nijnii-Novgorod in 1793, and died at Kasan on Feb. 12,

* Riemann s collected works, edited by H. Weber and prefaced by an
account of his life by Dedekind, were published at Leipzig, second edition,

1892. Another short biography of Riemann has been written by E. J.

Schering, Gottingen, 18G7.

B. 30
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1856) in 1826 and again in 1840, by Gauss in 1831 and in

1846, and by Johann Bolyai (born at Klausenburg in 1802 and

died at Maros-Vasarhely in 1860) in 1832 in the appendix to

the first volume of his father s Tentamen, but Rieniann s memoir
of 1854 attracted general attention to the subject of hyper-

geometry, and the theory has been since extended and simpli
fied by various writers, notably by Eugenio Beltrami (professor

at Pavia, born at Cremona in 1835), and by Hermann Ludwig
Ferdinand von Helmholtz (professor at Berlin, born at Potsdam

on Aug. 31, 1821)*. The subject is so technical that I confine

myself to a bare sketch of the argument from which the idea

is derived.

That a space of two dimensions should have the geometrical

properties with which we are made familiar in the study of

elementary geometry, it is necessary that it should be possible

at any place to construct a figure congruent to a given figure ;

and this is so only if the product of the principal radii of

curvature at every point of the space or surface be constant.

There are three species of surfaces which possess this property :

namely, (i) spherical surfaces, where the product is positive ;

(ii) plane surfaces (which lead to Euclidean geometry), where

it is zero
;
and

(iii)
what Beltrami has called pseudo-spherical

surfaces, where it is negative. Moreover, if any surface be

bent without dilation or contraction, the measure of curvature

remains unaltered. Thus these three species of surfaces are types

of three kinds on which congruent figures can be constructed.

For instance a plane can be rolled into a cone, and the system

of geometry on a conical surface is similar to that on a plane.

These kinds of space of two dimensions are distinguished

one from the other by a simple test. Through a point of

spherical space no geodetic line a geodetic line being defined

as the shortest distance between two points can be drawn

* For references see my Mathematical Recreations and Problems,

chap. x. A historical summary of the treatment of non-Euclidean

geometry is given in J. Frischaufs Elements der absoluten Geometrie,

Leipzig, 1876.
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parallel to a given geodetic line. Through a point of Euclidean

or plane space one and only one geodetic line
(i.e.

a straight

line) can be drawn parallel to a given geodetic line. Through

a point of pseudo-spherical space more than one geodetic line

can be drawn parallel to a given goedetic line, but all these

lines form a pencil whose vertical angle is constant.

It may be thought that we have a demonstration that our

space is plane, since through a given point we can draw only

one straight line parallel to a given straight line. This is not

so, for it is conceivable that our means of observation do riot

permit us to say with absolute accuracy whether two lines are

parallel ;
hence we cannot use this as a means to tell whether

our space is plane or not. A better test can be deduced from

the proposition that in any two-dimensional space of uniform

curvature the sum of the angles of a triangle, if it differ from

two right angles, will differ by a quantity proportional to the

area of the triangle. Hence it may happen possibly that,

although for triangles such as we can measure the difference

is imperceptible, yet for triangles which are millions of times

bigger there would be a sensible difference.

If space be spherical or pseudo-spherical, its extent is finite
;

if it be plane, its extent is infinite. In regard to pseudo-

spherical space, I should add that its extent may be infinite, if

it be constructed in space of four dimensions.

In the preceding sketch of the foundations of non-Euclidean

geometry I have assumed tacitly that the measure of a distance

remains the same everywhere. Klein has shewn that, if this

be not the case and if the law of the measurement of distance be

properly chosen, we can obtain three systems of plane geometry

analogous to the three systems mentioned above. These are

called respectively elliptic, parabolic, and hyperbolic geometries.
The above refers only to hyper-space of two dimensions.

Naturally there arises the question whether there are different

kinds of hyper-space of three or more dimensions. Riemann
shewed that there are three kinds of hyper-space of three

dimensions having properties analogous to the three kinds of
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hyper-space of two dimensions already discussed. These are

differentiated by the test whether at every point no geodetical

surfaces, or one geodetical surface, or a fasciculus of geodetical

surfaces can be drawn parallel to a given surface : a geodetical

surface being defined as such that every geodetic line joining

two points on it lies wholly on the surface.

I return now to Riemann s other investigations. In mul

tiply periodic functions, it is hardly too much to say that he,

in his memoir in Borchardt s Journal for 1857, did for the

Abel ian functions what Abel had done for the elliptic func

tions, and it is this perhaps that will constitute one of his

chief claims to future distinction.

In the theory of numbers, Riemann s short tract of eight

pages on the number of primes which lie between two given
numbers affords a striking instance of his analytical powers.

Legendre had previously shewn (see above, p. 429) that

the number of primes less than n is very approximately

n/(log n
-
1-08366); but Riemann went further, and this tract

and a memoir by Tchebycheff contain nearly all that has been

done yet in connection with a problem of so obvious a charac

ter that it has suggested itself to all who have considered the

theory of numbers, and yet which overtaxed the powers even

of Lagrange and Gauss.

Among others than those already named I may mention the

following who have written on Elliptic and Abelian functions.
Johann Georg Rosenhain, professor in Konigsberg, born

there on June 10, 1816, and died in 1887, who wrote (in 1844)

on the hyperelliptic (double theta) function and functions of

two variables with four periods.

Adolphe Gopel, born at Rostok in September, 1812 and

died at Berlin in March, 1847, who discussed hyperelliptic

functions: see Creliefs Journal, vol. xxxv., 1847, pp. 313 318.

Karl Weierstrass, professor in Berlin, born at Ostendfelde

on Oct. 31, 1815, whose earlier researches related to the theta

functions, which he treated under a modified form in which
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they are expressible in powers of the modulus : at a later

period he developed a method for treating all elliptic functions

in a symmetrical manner a process to which he was natur

ally led by his researches on the general theory of functions

(see below, pp. 471, 482); in this theory the theta functions are

independent of the form of their space boundaries.

Leopold Kronecker (see above, p. 462), who wrote on

elliptic functions.

Francesco Brioschi of Rome (see below, p. 478), who wrote

on elliptic and hyperelliptic functions.

Henry Smith (see above, p. 461), who discussed the trans

formation theory, the theta and omega functions, and certain

functions of the modulus.

Cayley (see pp. 462, 478, 481), who was the first to

work out (in 1845) the theory of doubly infinite products
and determine their periodicity, and who has written at length

on the connection between the researches of Legendre and

Jacobi
;
his later writings have dealt mainly with the theory

of transformation and the modular equation : Cayley s collected

works are now being issued by the university of Cambridge.
The researches of Uermite (see pp. 462, 470, 471, 478) are

mostly concerned with the transformation theory, the higher

development of the theta functions, and the connection between

the methods and results of Weierstrass and Jacobi.

The transformation of the double theta function has been

also considered by Leo Konigsberger, professor at Heidelberg,

born in Prussia in 1837; see his lectures, published at Leipzig

in 1874.

The investigations of Georges Henri Halphen, an officer in

the French army, born at Rouen on Oct. 30, 1844 and died at

Paris on May 21, 1889, are largely founded on Weierstrass s

work : a sketch of Halphen s life and works is given in

Liouville s Journal for 1889, pp. 345 359, and in the Comptes

Rendus, 1890, vol. ex, pp. 489497; see also below, pp. 481,

482.

Felix Christian Klein, born in 1849 and now professor in
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Gottingen (see below, pp. 470 1, 479), has written on Abelian

functions, elliptic modular functions, and hyperelliptic functions.

Filially H. A. Schwarz, formerly of Gottingen and now of

Berlin, born in 1845 (see below pp. 470, 482), H. Weber, of

Marburg, M. Nother of Erlangen (see below, p. 481), W. Stahl

of Aix-la-Chapelle, F. G. Frobenius, now of Berlin and formerly
of Zurich (see below, p. 482), and Glaisher (see above, p. 462)
have written on various branches of the theory, and Dr Glaisher

has in particular developed the theory of the zeta function.

The text-book by Briot and Bouquet contains a clear

account of elliptic functions as it exists at present, developed
from the point of view of the complex variable. Albert Briot

was born at St Hippolyte in 1817, occupied a chair at the

Sorbonne in Paris, and died in 1882 : Jean Claude Bouquet
was born in 1819, and died in Paris in 1885.

The consideration of algebraical, trigonometrical, elliptic,

hyperelliptic, and other special kinds of functions paved the

way for a theory offunctions, which promises to prove a most

important and far-reaching branch of mathematics. To a

large extent this is the work of living mathematicians, and

therefore outside the limits of this chapter. I will content

myself by referring to the following writers.

First I may mention Cauchy (see below, p. 473) who gave

the general elementary theory of functions, and Liouville (see

above, p. 461), who wrote chiefly on doubly periodic functions :

their investigations were extended and connected in the work

by Briot and Bouquet, and have been further developed by

Hermite (see pp. 462, 469, 471, 478).

Next I may refer to the researches on the theory of

algebraic functions which have their origin in Riemanris paper

of 1850 (see above, p. 465).

Schwarz (see above, p. 470) has established accurately

certain theorems of which the proofs given by Riemann were

open to objection.

Klein (see pp. 469 70, 479) has connected Riemann s
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theory of functions with the theory of groups, and has written

on automorphic functions.

Henri Poincare, professor in Paris, born at Nancy in 1854

(see below, pp. 482, 492), has also written on automorphic

functions, and on the general theory with special applications

to differential equations.

Finally I may refer to the work of Weierstrass and Mittag-

Leffler.

Of these, Karl Weierstrass (see pp. 469, 482) has created

a large part of the modern theory of functions, and in particu

lar has constructed the theory of uniform analytical functions.

And Magnus Gustaf Mittag-Leffler, born at Stockholm,

1846, and now professor there, has greatly developed the

theory of analytical functions
;

a subject on which Hermite

(see pp. 462, 469, 470, 478) has also written.

In connection with these researches Paul Emile Appell,

professor in Paris, born at Strassburg in 1858, C. Emile

Picard of Paris, and fidouard Goursat of Paris have written

on special branches of the theory.

As text-books I may mention Dr. Forsyth s Theory of

Functions of a Complex Variable, Cambridge, 1893 ; and Carl

Neumann s Vorlesungen uber Riemann s Theorie der AbeVschen

Integrate ,
second edition, Leipzig, 1884.

The theory of numbers may be considered as a higher

arithmetic, and the theory of elliptic and Abelian functions as

a higher trigonometry. The theory of higher algebra (including
the theory of equations) has also attracted considerable attention,

and was a favourite subject of study of the three mathematicians,

Cauchy, Hamilton, and De Morgan whom I propose to

mention next though the interests of these writers were by
no means limited to this subject.

Cauchy*. The first of these mathematicians is the best

* See La vie et les travaux de Cauchy by L. Valson, 2 volumes, Paris,

1868. A complete edition of his works is now being issued by the French

government.
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representative of the French school of analysis in this century.

Augustin Louis Cauchy, who was born at Paris on Aug. 21,

1789, and died at Sceaux on May 25, 1857, was educated

at the Polytechnic school, the nursery of so many French

mathematicians of that time, and adopted the profession of

a civil engineer. His earliest mathematical paper was

one on polyhedra in 1811. Legendre thought so highly of it

that he asked Cauchy to attempt the solution of an analogous

problem which had baffled previous investigators, and his

advice was justified by the success of Cauchy in 1812. Memoirs

on analysis and the theory of numbers presented in 1813,

1814, and 1815 shewed that his ability was not confined to

geometry alone : in one of these papers he generalized some

results which had been established by Gauss and Legendre ;

in another of them he gave a theorem on the number of values

which an algebraical function can assume when the literal

constants it contains are interchanged. It was the latter

theorem that enabled Abel to shew that in general an algebraic

equation of a degree higher than the fourth cannot be solved

by the use of purely algebraical expressions.

To Cauchy and Gauss we owe the scientific treatment of

series which have an infinite number of terms, and the former

established general rules for investigating the convergency and

divergency of such series. It is only a few works of an earlier

date that contain any discussion as to the limitations of the

series employed. It is said that Laplace, who was present

when Cauchy read his first paper on the subject, was so im

pressed by the illustrations of the danger of employing such

series without a rigorous investigation of their convergency

that he put on one side the work on which he was then

engaged and denied himself to all visitors, in order to see

if any of the demonstrations given in the earlier volumes of

the Mecanique celeste were invalid
;
and he was fortunate

enough to find that no material errors had been thus introduced.

The treatment of series and of the fundamental conceptions

of the calculus in most of the text books then current was
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based on Euler s works, and to any one trained to accurate

habits of thought was not free from objection. It is one of

the chief merits of Cauchy that he placed those subjects on a

logical foundation.

On the restoration in 1816 the French Academy was

purged, and, in spite of the indignation and scorn of French

scientific society, Cauchy accepted a seat which was procured
for him by the expulsion of Monge. He was also at the same

time made professor at the Polytechnic; and his lectures there

on algebraic analysis, the calculus, and the theory of curves

were published as text-books. On the revolution in 1830 he

went into exile, and was first appointed professor at Turin,

whence he soon moved to Prague to undertake the education

of the Comte de Chambord. He returned to France in 1837
;

and in 1848, and again in 1851, by special dispensation of the

emperor was allowed to occupy a chair of mathematics without

taking the oath of allegiance.

His activity was prodigious, and from 1830 to 1859 he

published in the transactions of the Academy or the Comptes
Rendus over 600 original memoirs and about 150 reports.

In most of them the feverish haste with which they were

thrown off is too visible
;
and many are marred by obscurity,

repetition of old results, and blunders.

Among the more important of his researches are the

discussion of tests for the convergency of series; the determina

tion of the number of real and imaginary roots of any algebraic

equation ;
his method of calculating these roots approximately ;

his theory of the symmetric functions of the coefficients of

equations of any degree ;
his ci priori valuation of a quantity

IMS than the least difference between the roots of an equation ;

and his papers on determinants in 1841 which did a great deal

to bring them into general use. Cauchy also did something to

reduce the art of determining definite integrals to a science, but

this branch of the integral calculus still remains without much

system or method. The rule for finding the principal values

of integrals was enunciated by him
; and the calculus of resi-
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dues was his invention. His proof of Taylor s theorem seems

to have originated from a discussion of the double periodicity

of elliptic functions. The means of shewing a connection

between different branches of a subject by giving imaginary
values to independent variables is largely due to him. He
also gave a direct analytical method for determining planetary

inequalities of long period ;
and to physics he contributed a

memoir on the quantity of light reflected from the surfaces

of metals, as well as other papers on optics.

Argand. I may mention here the name of Jean Robert

Argand who was born at Geneva on July 22, 1768 and died

circ. 1825. In his Essai, issued in 1806, he gave a geo

metrical representation of a complex number, and applied

it to shew that every algebraic equation has a root : this was

prior to the memoirs of Gauss and Cauchy on the same subject,

but the essay did not attract much attention when it was first

published. An earlier demonstration that
/v/( 1) indicates

perpendicularity, due to Buee, was published in the Philo

sophical Transactions for 1806, and the idea was foreshadowed

in a memoir by H. Kuhn in the Transactions [pp. 170 223]
for 1750 of the St Petersburg Academy.

Hamilton*. In the opinion of some writers, the theory of

quaternions will be ultimately esteemed one of the great

discoveries of this century : that discovery is due to Sir

William Rowan Hamilton, who was born of Scotch parents in

Dublin on Aug. 4, 1805, and died there on Sept. 2, 1865.

His education, which was carried on at home, seems to have

been singularly discursive : under the influence of an uncle

who was a good linguist he first devoted himself to linguistic

studies
; by the time he was seven he could read Latin, Greek,

French, and German with facility ;
and when thirteen he was

able to boast that he was familiar with as many languages as

he had lived years. It was about this time that he came

* See the life of Hamilton (with a bibliography of his writings) by R.

P. Graves, three volumes, Dublin, 188289 : the leading facts are given

in an article in the North British Revieiv for 186G.
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across a copy of Newton s CWwno/ Arithmetic; this was his

introduction to modern analysis, and he soon mastered the

elements of analytical geometry and the calculus. He next

read the /ViiicyiX and the foar Tolmnes then iiiiMMnii
of Laplace s M^mm^mt nffejfc In the latter he detected a

mistake, and his paper on the subject, written in 1823, placed
him at once in the front rank of mathematicians. In the

following year he entered at Trinity College, Dublin: his

university career is unique, for the chair of astronomy be

coming vacant in 1827. while he was yet an undergraduate,

he was asked by the electors to Hnai for it, and was elected

unanimously, it being understood that he should be left free

to pursue his own line of study.

His earliest paper, wriifcem in 1823, was em eptice and was

published in 1828 under the title of a Theory of System* of

Bmyt, to which two supplements, written in 1831 and 1832,

wove afterwards added ; in the latter of these the phenomenon
of *mfo$ refraction is predicted. This was followed by a

paper in 1827 on the principle of Varying Attim9 and in 1834

and 1835 by memoirs on a General Method** Dynamic*: the

subject of theoretical dynamics bong piopetlj treated as a

branch of pure mathematics. His luoUum on Quatenno**
were published in 1852. Amongst his other papers, I may
specially mention one on the form of the solution of the gumel
elgfiUriir equation of the fifth degree, which confirmed the

conclusion arrived at by Abel that it cannot be expressed in

terms of the more elementary operations and functions : one

on fluctuating functions ; one on the hodograph ; and lastly

one on the numerical solution of differential equations. His

Mlematf* o/Quatemum* were issued in 1866 : of this a compe
tent authority says that the methods of analysis there given
shew as great an advance over those of analytical geometry, as

the lillm ihneiMl over those of Euclidean geometry. In more

|
recent times the subject has been further developed by Tait

(aee below, p. 497).

Hamilton was painfully fastidious on what he published,
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and he left an immense collection of manuscript books which
are now in the library of Trinity College, Dublin, and some of

which it is to be hoped will be ultimately printed.

Grassmann. The idea of non-commutative algebras and

of quaternions seems to have occurred to Grassmann at about

the same time as to Hamilton. Hermann Gunther Grast-

mann, was born in Stettin on April 15, 1809, and died there

in 1877. He was professor at the gymnasium at Stettin.

His researches on non-commutative algebras are contained in

his Ausdehnungslehre, first published in 1844 and enlarged in

1862. The scientific treatment of the fundamental principles

of algebra initiated by Hamilton and Grassman, was con

tinued by De Morgan and Boole, and subsequently was further

developed by H. Hankel in his work on complexes, 1867,

and by G. Cantor in his memoirs on the theory of irrationals,

1871
;
the discussion is however so technical that I am unable

to do more than allude to it. Grassmann also investigated

the properties of homaloidal hyper- space.
De Morgan*. Augustus De Morgan, born in Madura

(Madras) in June, 1806 and died in London on March 18,

1871, was educated at Trinity College, Cambridge, but in

the then state of the law was (as a Unitarian) ineligible to

a fellowship. In 1828 he became professor at the newly-
established university of London, which is the same institution

as that now known as University College. There (except for

five years from 1831 to 1835) he taught continuously till 1867,

and through his works and pupils exercised a wide influence

on English mathematicians of the present day. The London

Mathematical Society was largely his creation, and he took a

prominent part in the proceedings of the Royal Astronomical

Society.

He was perhaps more deeply read in the philosophy and

history of mathematics than any of his contemporaries, but the

results are given in scattered articles which well deserve col-

* His life was written by his widow, S. E. De Morgan, London, 1882.
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lection and republication. A list of these is given in his life,

and I have made considerable use of some of them in this book.

The best known of his works are the memoirs on the founda

tion of algebra, Cambridge Philosophical Transactions, vols. vin.

and ix.; his treatise on the differential calculus published in

1842, a work of great ability and noticeable for the rigorous

treatment of infinite series
;
and his articles on the calculus

of functions and on the theory of probabilities in the Encyclo

paedia Metropolitana. The article on the calculus of functions

contains an investigation of the principles of symbolic reason

ing, but the applications deal with the solution of functional

equations rather than with the general theory of functions :

the article on the theory of probabilities gives a clear analysis

of the mathematics of the subject to the time at which it was

written.

Besides those above named, I may mention the following
who have written on the subjects of Higher Algebra, the Theory

of Forms, and the Theory of Equations.

Josef Ludwig Raabe who in 1832 discussed tests for the

convergency of series
;
a subject also discussed later by Joseph

Louis Francois Bertrand, secretary of the French Academy,
born in Paris in 1822 (see below, pp. 482, 488), Rummer

(see above, p. 461), Ulisse Dini of Pisa, and A. Pringsheim
of Munich

;
on the researches of the above writers see the

Bulletin of the New York Mathematical Society, October,

1892, pp. 110.
George Boole, born at Lincoln on Nov. 2, 1815, and died at

Cork on Dec. 8, 1864, who invented a system of non-commuta

tive algebra, and from whose memoirs on linear transformations

part of the theory of covariants has developed.
Evariste Galois, one of the most original and powerful

mathematicians of this century, born at Paris on Oct. 26,

1811, and killed in a duel on May 30, 1832, at the early

age of 20, whose writings are mainly concerned with the

theory of equations and substitution groups : on his in-
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vestigations, see Liouville s Journal for 1846, vol. xi.,

pp. 381 444
;
and the American Journal of Mathematics for

1891, vol. xiii., pp. 109142.
Carl Wilhelm Borchardt, professor in Berlin, born there

on Feb. 22, 1817, and died there in 1880, who in particular

discussed generating functions in the theory of equations, and

arithmetic-geometric means: a collected edition of his works,

edited by G. Hettner, was issued at Berlin in 1888.

Cayley (see pp. 462, 469, 481), whose ten classical memoirs

on quantics (binary and ternary forms) and researches on non-

commutative algebras, especially on matrices, will be found in

the collected edition of his works.

Sylvester (see pp. 461, 462, 482), from among whose

numerous memoirs I may in particular single out those

on canonical forms, on the theory of contravariants, reci-

procants (i.e., differential invariants), on the theory of equa

tions, and that on Newton s rule; to which I may add that

he has created the language and notation of considerable parts

of the subjects on which he has written.

Camille Jordan, who has written on the theory of substi

tutions in general and with special applications to differential

equations.

Sir George Gabriel Stokes, Lucasian professor in the uni

versity of Cambridge, born near Sligo on Aug. 13, 1819, who
has written on the critical values of the sums of periodic series,

and on the summation of series (Cambridge Philosophical

Transactions, 1847, vol. viii., pp. 533 583) ;
see also below,

pp. 492, 496.

Eugen Netto, of Strassburg, who has written on substitutions.

Hermite (see above, pp. 462, 469, 470, 471), who has in

particular discussed the theory of associated covariants in binary

quantics, the theory of ternary quantics, and who has applied

elliptic functions to the solution of the quintic equation.
Enrico Betti of Pisa who died in 1892, and Brioschi (see

above, p. 469), both of whom discussed binary quantics.

Siegfried Heinrich Aronhold, born at Angerburg on July 16,
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1819, who developed symbolic methods, especially in connection

with ternary quantics ;
this was done concurrently with but

independently of Cayley s work on the same subject.

Paid Gordan, professor at Erlangen, who has discussed

the theory of forms, and shewn that there are only a finite

number of concomitants of quantics : an edition of his work on

invariants (determinants and binary forms) edited by G. Ker-

schensteiner was issued at Leipzig in three volumes 1885, 1887,
1893.

Rudolph Frederick Alfred Clebsch, born at Konigsberg in

1833, died at Gottingen, where he was professor, in 1872,

who also independently investigated the theory of binary forms

in some papers collected and published in 1871 : an account of

his life and works is printed in the MatJiematische Annalen,

1873, vol. vi., pp. 197202, and 1874, vol. VIL, pp. 155:
see also below, pp. 481, 493.

Macmahon (see above, p. 462), who has written on the

connection of symmetric functions, the derivation of invariants

and covariants from elementary algebra, and the concomitants

of binary forms.

Sophus Lie, professor at Leipzig (see below, p. 482), who
has written on groups of continuous substitutions, differential

invariants, and complexes of lines.

Klein (see above, pp. 469 70, 470 1), who has investigated

the problem of discontinuous substitutions and polyhedral groups.

And lastly Andrew Russell Forsyth, fellow and lecturer of

Trinity College, Cambridge, born at Glasgow on June 18, 1858,

who has developed the theory of invariants of differential

equations, ternariants, and quaternariants.
No account of contemporary writings on this subject would

be complete without a reference to the admirable text-books

produced by George Salmon, provost of Trinity College,

Dublin, born in 1819, in his Higher Algebra, and by Joseph
Alfred Serret, professor at the Sorbonne, born at Paris on

Aug. 30, 1819, and died in 1885, in his Cours cTAlgebre

superieure, in which the chief discoveries of their respective



480 ANALYTICAL GEOMETRY.

authors are embodied. An admirable historical summary of

the theory of the complex variable is given in the Vorlesungen
uber die complexen Zahlen, Leipzig, 1867 by H. Hankel,

professor in Tubingen, born at Halle in 1839, and died at

Schramberg in 1873.

Before mentioning the creators of modern synthetic

geometry it will be convenient to call attention to two other

divisions of pure mathematics which have been greatly

developed in recent years, but any sketch of the results

arrived at or of the methods by which they have been attained

would be so closely connected with the work of living mathe

maticians that I shall do little more than mention the names

of the subjects.

Analytical Geometry has been studied by a host of modern

writers, but I do not propose to describe their investigations,

and I shall content myself by merely mentioning the names of

the following mathematicians.

James Booth, born in the county Leitrim on Aug. 25, 1806

and died in Buckinghamshire on April 15, 1878 was one of

the earliest writers in this century to devote himself to the

development of analytical geometry ;
his chief results are

embodied in his work entitled A Treatise on some new Geo

metrical Methods.

The researches of James MacCullagh, professor in Dublin,

born near Strabane in 1809 and died in Dublin on Oct. 24,

1846, which include some valuable discoveries on the theory of

quadrics, will be found in his collected works edited by Jellett

and Haughton, Dublin, 1880 : see also below, p. 496.

Julius PIticker, professor (after 1836) in Bonn, born at

Elberfeld on July 16, 1801, and died at Bonn on May 22,

1868, devoted himself chiefly to the study of algebraic curves,

of a geometry in which the line is the element in space, and

the theory of congrueness and complexes; his equations con

necting the singularities of curves are well known : in 1847 he

exchanged his chair for one of physics, and his subsequent
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Researches were on spectra and magnetism. An account of

his works was published by Clebsch, Gesellschaft der Wissen-

schaften, Gottingen, 1872, vol. xvi.

The majority of the memoirs on analytical geometry by

Cayley (see pp. 462, 469, 478) and by Henry Smith (see

above, p. 460) deal with the theory of curves and surfaces
;
the

most remarkable&quot; of those of Ludwig Otto Hesse, born at

Konigsberg on April 22, 1811, and died at Munich, where he

was professor, in 1874, are on the plane geometry of curves

(see the notice of these by F. C. Klein); of those of Jean Gaston

Darboux, professor in Paris, born at Mines in 1842, on the

geometry of surfaces
;
and of those of Halphen (see pp. 469,

482) on the singularities of surfaces and on tortuous curves.

The singularities of curves and surfaces have also been con

sidered by Hieronymus Georg Zeuthen, professor at Copenhagen,
born in 1839, and by Hermann Cdsar Hannibal Schubert, pro
fessor at Hamburg, born at Potsdam in 1848: the lectures of

the latter have been published by F. Lindemann, two volumes,

Leipzig, 1875, 1891. Nother (see above, p. 470) has discussed

the theory of tortuous curves. And Clebsch (see pp. 479, 493)
has applied Abel s theorem to geometry.

Among more recent text-books are Clebsch s Vorlesuny //

iiSer Geometric, edited by F. Lindemann
;
and Salmon s Conic

Sections, Geometry of Three Dimensions, and Higher Pln&amp;lt;

Curves; in which the chief discoveries of these writers ait

embodied.

Finally I may allude to the extension of the subject-matter

of analytical geometry by the introduction of the ideas of

|
space of n dimensions in the writings of Grassmann (see above,

p. 476) in 1844 and 186-, liif.inann (see above, p. ;

Cayley (see above, pp. 462, 469, 478, 481), and others.

Among those who have extended the range of

(including the calculus and differential equations) or whom
it is difficult to place in any of the preceding categories

are the following, whom I place in alphabetical order.

B. 31
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Appell (see above, p. 471). Bertrand (see pp. 450, 477, 488).

Boole (see above, p. 477). Cauchy (see above, p. 473).
Darboux (see above, p. 481). Forsyth (see above, p. 479),

who has written on Pfaff s problem, and is also the author

of the standard English treatise on differential equations.

Frobenius (see above, p. 470). Lazarus Fuchs, professor at

Berlin, born in Prussia in 1833. Halphen (see above, pp. 469,

481). Jacobi (see above, p. 464). Jordan (see above, p. 478).

Konigsberger (see above, p. 469). Sophie Koivalevski, pro
fessor at Stockholm, born on Dec. 27, 1853, and died Feb.

18, 1891
;

see the Bulletin des sciences mathematiques, vol. xv.,

pp. 212 220. Lie (see above, p. 479). Poincare (see pp.

471, 492). Riemann (see above, p. 465) who wrote on the

theory of partial differential equations. Schwarz (see above,

p. 470). Sylvester (see above, pp. 461, 462, 478). And
Weierstrass (see above, pp. 468 9, 471) who has developed
the calculus of variations.

The writers I have mentioned above mostly concerned

themselves with analysis. I will next describe some of the

more important works produced in this century on synthetic

geometry*.

Modern synthetic geometry may be said to have had its

origin in the works of Monge in 1800, Carnot in 1803, and

Poncelet in 1822, but these only dimly foreshadowed the great

extension it was to receive in Germany, of which Steiner and.

von Staudt are perhaps the best known exponents.

Steinerf. Jacob Steiner, &quot;the greatest geometrician since

* The Aperpu historique sur Vorigins et le developpement des methodes

en geometric by M. Chasles, Paris, second edition, 1875, and the Die

synthetische Geometric im Alterthum und in der Neuzeit by Th. Keye,

Strassburg, 1886, contain interesting summaries of the history of geometry,

but Chasles s work is written from an exclusively French point of

view.

f Steiner s collected works, edited by Weierstrass, were issued in two

volumes, Berlin, 188182. A sketch of his life is contained in the Erin-

nerung an Steiner by C. F. Geiser, Schaffhausen, 1874.



SYNTHETIC GEOMETRY. 483

the time of Apollonius,&quot; was born at Utzensdorf on March 18,

1796, and died at Bern on April 1, 1863. His father was a

peasant, and the boy had no opportunity to learn reading and

writing till the age of fourteen. He subsequently went to

Heidelberg and thence to Berlin, supporting himself by giving

lessons. His Systematise?!* Entivickelunyen was published in

1832, and at once made his reputation: it contains a full

discussion of the principle of duality, and of the projective

and homographic relations of rows, pencils, &amp;lt;fec.,
based on

metrical properties. By the influence of Crelle, Jacobi, and

the von Humboldts, who were impressed by the power of this

work, a chair of geometry was created for Steiner at Berlin,

and he continued to occupy it till his death. The most im

portant of his other researches are contained in papers which

appeared originally in Crelle s Journal, and are embodied

in his tiynthetische Geometric, vol. I. edited by C. F. Geiser,

vol. ii. by H. Schroeter : these relate chiefly to properties of

algebraic curves and surfaces, pedals and roulettes, and maxima
and minima

;
the discussion is purely geometrical. Steiner s

works may be considered as the classical authority on recent

synthetic geometry.
Von Staudt. A system of pure geometry, quite distinct

from that expounded by Steiner, was proposed by Karl

Georg Christian von Staudt, born at Rothenburg on Jan.

24, 1798, and died in 1867, who held the chair of mathe
matics at Erlangen. In his Geometric der Laye, published in

1847, he constructed a system of geometry built up without

any reference to number or magnitude, but, in spite of its

abstract form, he succeeded by means of it alone in establishing
the non-metrical projective properties of figures, discussed

imaginary points, lines, and planes, and even obtained a geo
metrical definition of a number : these views were further

elaborated in his Beitrdge zur Geometric der Lage, 1856 1860.

This geometry is curious and brilliant, and has been used by
Culmann as the basis of his graphical statics.

Among other works on pure geometry I may refer to the

312



484 GRAPHICS.

Introduzione ad una teoria yeometrica delle curve piane, 1862,
and its continuation Preliminari di una teoria geometrica delle

superficie by Luigi Cremona, of the Polytechnic School at Rome.
As usual text-books I may mention M. Chasles s Traite de

geometrie superieure, 1852
; J. Steiner s Vorlesungen iiber syn-

thetische Geometric, 1867; L. Cremona s Elements de geometrie

protective, translated into English by C. Leudesdorf, Oxford,
1885

;
and Th. Reye s Geometrie der Lage 3 volumes, third

edition.

I shall conclude the chapter with a few notes more

or less discursive on branches of mathematics of a less

abstract character and concerned with problems that occur in

nature.

Closely connected with the subject of modern geometry is

the science of graphics in which rules are laid down for solving

various problems by the aid of the drawing-board: the modes

of calculation which are permissible are considered in modern

protective geometry. This method of attacking questions has

been hitherto applied chiefly to problems in mechanics,

elasticity, and electricity; it is especially useful in engineering,

and in that subject an average draughtsman ought to be able

to obtain approximate solutions of most of the equations,

differential or otherwise, with which he is likely to be

concerned, which will not involve errors greater than would

have to be allowed for in any case in consequence of our im

perfect knowledge of the structure of the materials employed.
The theory may be said to have originated with Poncelet s

work, but I believe that it is only within the last twenty

years that systematic expositions of it have been published.

Among the best known of such works I may mention the

Graphische Statik, by C. Culmann, Zurich, 1875, recently edited

by W. Ritter; the Lezioni di statica grafica, by A. Favaro,

Padua, 1877 (French translation annotated by P. Terrier in

2 volumes, 1879 85) ;
the Calcolo grafico, by L. Cremona,

Milan, 1879 (English translation by T. H. Beare, Oxford,
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1889), which is largely founded on Mobius s work; La statique

graphique, by M. Levy, Paris, 4 volumes, 1886 88; and La
statica grafica, by C. Sairotti, Milan, 1888.

The general character of these books will be sufficiently

illustrated by the following note on the contents of Culmann s

work. Culmann commences with a description of the geo
metrical representation of the four fundamental processes of

addition, subtraction, multiplication, and division; and pro
ceeds to evolution and involution, the latter being effected by
the use of equiangular spiral. He next shews how the quan
tities considered such as volumes, moments, and moments of

inertia may be represented by straight lines
;
thence deduces

the laws for combining forces, couples, &c.
;
and then explains

the construction and use of the ellipse and ellipsoid of inertia,

the neutral axis, and the kern
;
the remaining and larger part

of the book is devoted to shewing how geometrical drawings,
made on these principles, give the solutions of many practical

problems connected with arches, bridges, frameworks, earth

pressure on walls and tunnels, &c.

The subject has been treated during the last twenty years

by numerous writers especially in Italy and Germany, and

applied to a large number of problems. But as I stated at

the beginning of this chapter that I should as far as possible

avoid discussion of the works of living authors I contento

myself with a bare mention of the subject.

Clifford*. I may however add here a brief note on Clifford,

who was one of the earliest English mathematicians of the latter

half of this century to advocate the use of graphical and geo
metrical methods in preference to analysis. William Kitigdon

Cliford, born at Exeter on May 4, 1845, and died at Madeira

on March 3, 1879, was educated at Trinity College, Cambridge,
of which society he was a fellow. In 1871 he was appointed

professor of applied mathematics at University College, London,

* For further details of Clifford s life and work see the authorities

quoted in the article on him in the Dictionary of National Biography,
vol. xi.
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a post which he retained till his death. His remarkable felicity

of illustration and power of seizing analogies made him one of

the most brilliant expounders of mathematical principles. His

health failed in 1876, when the writer of this book undertook

his work for a few months
;
Clifford then went to Algeria and

returned at the end of the year, but only to break down again
in 1878. His most important works are his Theory of

Biquaternions, On the Classification of Loci (unfinished), and

The Theory of Graphs (unfinished) : his Canonical Dissection

of a Riemann s Surface, and the Elements of Dynamic also

contain much interesting matter.

I next turn to the question of mechanics treated analytically.

The knowledge of mathematical mechanics of solids attained

by the great mathematicians of the last century may be said

to be summed up in the admirable Mecanique analytique by

Lagrange and Traite de mecanique by Poisson, and the appli

cation of the results to astronomy is illustrated by Laplace s

Mecanique celeste. These works have been already described.

The mechanics of fluids is more difficult than that of solids

and the theory is less advanced.

Theoretical Statics, especially the theory of the potential

and attractions has received considerable attention from the

mathematicians of this century.

I have already mentioned (see above, p. 412) that the

introduction of the idea of the potential is due to Lagrange,
and it occurs in a memoir of a date as early as 1773. The

idea was at once grasped by Laplace who, in his memoir of

1784, used it freely and to whom the credit of the invention was

formerly, somewhat unjustly, attributed. In the same memoir

Laplace also extended to space of three dimensions the idea of

circular harmonic analysis which had been introduced by

Legendre in 1783.

Green*. George Green was one of the earliest writers of

* A collected edition of Green s works was published at Cambridge
in 1871.
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this century who investigated further the properties of the

potential. Green was born near Nottingham in 1793 in a

humble condition in life, and died at Cambridge in 1841.

Although self-educated he contrived to get access to various

mathematical books, and in 1827 wrote a paper on the po
tential in which the term was first introduced proved its

chief properties, and applied the results to electricity and

magnetism. This contains the important theorem now known

by his name. This remarkable paper was seen by some neigh
bours who were able to appreciate the power shewn in it : it

was published by subscription in 1828, but does not seem to

have attracted much attention at first. Similar results were

independently established, in 1839 by Gauss to whom their

general dissemination was due.

In 1832 and 1833 Green presented papers to the Cam

bridge Philosophical Society on the equilibrium of fluids and

on attractions in space of n dimensions, and in the latter year
his memoir on the motion of a fluid agitated by the vibrations

of a solid ellipsoid was read before the Royal Society of Edin

burgh. In 1833 he entered at Cains College, Cambridge, and

was subsequently elected to a fellowship. He then threw

himself into original work, and produced in 1837 his paper on

the motion of waves in a canal, and on the reflection and

refraction of sound and light. In the latter the geometrical
laws of sound and light are deduced by the principle of energy
from the undulatory theory, the phenomenon of total reflexion

is explained physically, and certain properties of the vibrating
medium are deduced. He also discussed the propagation of

light in any crystalline medium.

Of Gauss s work on attractions I have already spoken (see

above, p. 456). The theory of level surfaces and lines of force

is largely due to Chasles who also determined the attraction of

an ellipsoid at any external point. I ought not to leave

the subject of theoretical statics without mentioning Mobius.

August Ferdinand Mobius, professor at Leipzig, who was born

at Schulpforta on Nov. 17, 1790, and died on Sept. 26, 1 E
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was one of the best known of Gauss s pupils; he published
his Barycentrisches Calcul in 1826 : his collected works were

published at Leipzig in four volumes, 1885 7. Among living

writers I may allude to Sir Robert Stawell Ball, Lowndean

professor in the university of Cambridge, born in Dublin

on July 1, 1840, who issued his Theory of Screws in

1876.

Theoretical Dynamics has been studied by most of the

writers above mentioned. In addition to these I may repeat

that the principle of &quot;

Varying Action &quot; was elaborated by Sir

William Hamilton in 1827. and the &quot; Hamiltonian equations&quot;

were given in 1835; and I may call attention to Bertrand s

work on dynamics. The use of generalized coordinates, intro

duced by Lagrange (see above, p. 409), has become the custo

mary means of attacking dynamical (as well as many physical)

problems. The standard English text-book on the dynamics of

rigid bodies is that by Dr Routh.

On the mechanics of fluids, liquids, and gases, apart from

the physical theories on which they rest, I propose to say

nothing, except to refer to the memoirs of Green, Sir George

Stokes, Lord Kelvin (better known as Sir William Thomson),
and von Helmholtz. The fascinating but difficult theory of

vortex rings is due to the two writers last-mentioned. One

problem in it has been also considered by J. J. Thomson, but

it is a subject which is as yet rather beyond our powers of

analysis. The subject of sound may be treated in connection

with hydrodynamics, but on this I would refer the reader who
wishes for further information to the work published at Cam

bridge in 1877 by Lord Rayleigh, recently Cavendish professor

in the university of Cambridge.

Theoretical Astronomy is included in, or at any rate closely

connected with, theoretical dynamics. Among those who in

this century have devoted themselves to the study of theoreti

cal astronomy the name of Gauss is one of the most prominent;
to his work I have already alluded.
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Bessel*. The best known of Gauss s contemporaries was

Friedrich Wilkelm Bessel, who was born at Minden on

July 22, 1784, and died at Konigsberg on March 17, 1846.

Bessel commenced his life as a clerk on board ship, but in

1806 he became an assistant in the observatory at Lilienthal,

and was thence in 1801 promoted to be director of the new
Prussian observatory at Konigsberg where he continued to

live during the remainder of his life. Bessel introduced into

pure mathematics those functions which are now called by
his name, this was in 1824 though their use is indicated in a

memoir seven years earlier
;
but his most notable achievements

were the reduction (given in his Fundamenta Astronomiae,

Konigsberg, 1818) of the Greenwich observations by Bradley
of 3,222 stars, and his determination of the annual parallax

of 61 Cygni. Bradley s observations have been recently

reduced again by Dr A. Auwers of Berlin.

Leverriert. Among the astronomical events of this century
the discovery of the planet Neptune by Leverrier and Adams
is one of the most striking. Urbain Jean Joseph Leverrier,

the son of a petty Government employe in Normandy, was

born at St L6 on March 11, 1811, and died at Paris on

Sept. 23, 1877. He was educated at the Polytechnic school,

and in 1837 was appointed as lecturer on astronomy there.

His earliest researches in astronomy were communicated to the

Academy in 1839 : in these he calculated within much narrower

limits than Laplace had done the extent within which the incli

nations and eccentricities of the planetary orbits vary. The

independent discovery in 1846 by Leverrier and Adams of the

planet Neptune by means of the disturbance it produced on

* See pp. 36 53 of A. M. Clerke s History of Astronomy, Edinburgh,

1887. Bessel s collected works and correspondence have been edited by
R. Engelmann and published in four volumes at Leipzig, 1875 82.

t For further details of his life see Bertrand s eloye in vol. XLI. of the

M&moires de Vacademie ; and for an account of his work see Adams s

address in vol. xxxvi. of the Monthly Notices of the Royal Astronomical

Society.
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the orbit of Uranus attracted general attention to physical

astronomy, and strengthened the opinion as to the universality
of gravity. In 1855 Leverrier succeeded Arago as director

of the Paris observatory, and reorganized it in accordance

with the requirements of modern astronomy. He now set

himself the task of discussing the theoretical investigations
of the planetary motions and of revising all tables which

involved them. He lived just long enough to sign the last

proof-sheet of this work.

Adams*. The co-discoverer of Neptune was John Couch

Adams, who was born in Cornwall on June 5, 1819, educated

at St. John s College, Cambridge, subsequently appointed
Lowndean professor in the University, and director of the

Observatory, and who died at Cambridge on Jan. 21, 1892.

There are three important problems which are specially

associated with the name of Adams. The first of these is his

discovery of the planet Neptune from the perturbations it

produced on the orbit of Uranus : in point of time this was

slightly earlier than Leverrier s investigation.

The second memoir to which I referred was on the secular

acceleration of the moon s mean motion (Philosophical Trans

actions, 1855, vol. CXLIII., p. 377). Laplace had calculated

this on the hypothesis that it was caused by the eccentricity of

the earth s orbit, and had obtained a result which agreed

substantially with the value deduced from a comparison of the

records of ancient and modern eclipses. Adams shewed that

certain terms in an expression had been neglected, and that

if they were taken into account the result was only about

one-half that found by Laplace. The correctness of the

calculations of Adams was denied by Plana, Pontecoulant, and

other continental astronomers, but Delaunay in France and

Cayley in England verified the work.

The third investigation connected with the name of

* A sketch of his life was given in Nature, Oct. 14, 1866, and in The

Observatory, April, 1892, pp. 173189 : his collected works will be issued

shortly at Cambridge.
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Adams, is his determination of the orbit of the Leonids or

shooting stars which were especially conspicuous in November,

1866, and whose period is about thirty-three years. Newton,
of Yale, had shewn that there were only five possible orbits.

Adams calculated the disturbance which would be produced by
the planets on the motion of the node of the orbit of a swarm

of meteors in each of these cases, and found that this dis

turbance agreed with observation for one of the possible orbits,

but for none of the others. Hence the orbit was known

(Monthly Notices of the Royal Astronomical Society, April,

1867, p. 247).

Other well-known astronomers of this century are Giovanni

Antonio Ainadeo Plana, born at Voghera on Nov. 8, 1781, and

died at Turin on Jan. 20, 1864, whose work on the motion

of the moon was published in 1832.

Philip Gustave Doulcet, Count Pontecoulant, born in 1795

and died at Pontecoulant on July 21, 1871.

Charles Eugene Delaunay, born at Lusigny on April 9,

1816, and drowned off Cherbourg on Aug. 3, 1872, whose

work on the lunar theory indicates the best method yet sug

gested for the analytical investigations of the whole problem,
and whose (incomplete) lunar tables are among the astronomical

achievements of this century.

And Peter Andrew Hansen, born in Schleswig on Dec. 8,O

1795, and died at Gotha where he was head of the observatory
on March 28, 1874, who compiled the lunar tables published
in London in 1857, and elaborated the most delicate methods

yet known for the determination of lunar and planetary pertur

bations; for an account of his numerous memoirs see the

Transactions of the Royal Society of London for 1876 77.

Among living mathematicians 1 may mention the following

names.

Felix Tisserand of Paris, born in 1845, whose Mecanique
celeste forms a worthy pendant to Laplace s work of the same

title.
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George William Hill, born in New York in 1838, and until

recently on the staff of the American Ephemeris, who (in 1884)
determined the inequalities of the moon s motion due to the

non-spherical figure of the earth an investigation which

completed Delaunay s lunar theory : Hill has also dealt with

the secular motion of the moon s perigee and the motion of a

planet s perigee under certain conditions
;
and has written on

the analytical theory of the motion of Jupiter and Saturn,

with a view to the preparation of tables of their positions

at any given time.

Simon Newcomb, born in Nova Scotia on March 12, 1835,

superintendent of the American Ephemeris, who re-examined

the Greenwich observations from the earliest times, applied

the results to the lunar theory, and revised Hansen s tables.

George Howard Darwin, of Trinity College, Cambridge,
born in Kent in 1845, and now Plumian professor in the

university of Cambridge, who has written on the effect of

tides on viscous spheroids, the development of planetary

systems by means of tidal friction, the mechanics of meteoric

swarms, &c.

Perhaps also I may here mention Poincare (see above,

pp. 471, 482), who has discussed the difficult problem of

three bodies, and the form assumed by a mass of fluid under

its own attraction.

Within the last half century the results of spectrum

analysis have been applied to determine the constitution, and

directions of motions of the heavenly bodies to and from the

earth. The early history of spectrum analysis will be always

associated with the names of Gustav Robert Kirclihoff (see

below, p. 495), of A. J. Angstrom, of Upsala, and of Sir George

Stokes of Cambridge (see pp. 478, 496), but it pertains to

optics rather than to astronomy.
Within the last few years the range of astronomy has

been still further extended by the art of photography. To

what new developments this may lead it is as yet impossible

to say.
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Mathematical Physics. An account of the history of mathe

matics in this century would not be other than misleading
if there were no reference to the application of it to numerous

problems in heat, elasticity, light, electricity, and other physical

subjects. The history of mathematical physics is however so

extensive that I could not pretend to do it justice even were its

consideration properly included in a history of mathematics :

moreover, it is so closely connected with the works of living

physicists notably of von Helmholtz and of Lord Kelvin

(better known as Sir William Thomson) that I may consider

it outside the limits I have laid down for myself in this

chapter. It is however interesting to note that the advance in

our knowledge of physics is largely due to the application to it

of mathematics, and every year it becomes more difficult for an

experimenter to make any mark in the subject unless he is also

a mathematician.

Amongst recent writers on mathematical physics (exclud

ing all reference to experimental physics, as also to theories

to which mathematical analysis has not been applied) I may
specially mention the following (whose names are here arranged

alphabetically) though the list does not in any way profess to

be complete or exhaustive.

J. Boussinesq, of Paris, who has written on optics.

Luchvig Boltzmann, of Vienna, whose writings greatly

extended the kinetic theory of gases, and have done something
to bring molecular physics within the domain of mathematics.

Rudolph Julius Emmanuel Clausius, born at Coslin on

Jan. 2, 1822, and died at Bonn, where he was professor of

physics, in August, 1888, who was among the earliest to discuss

the subject of heat from a mathematical point of view.

Clebsch (see above, pp. 479, 481), who discussed the elasti

city of solid bodies.

Julius Wilhelm Richard Dedekind (see above, p. 462),
who is the author of a remarkable memoir on the vibrations

of a liquid ellipsoid, which is treated as a problem in pure
mathematics.
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Michael Faraday, born at Newington on Sept. 22, 1791

and died at Hampton Court on Aug. 25, 1867, who had a

special gift in deducing results by general reasoning from

fundamental principles, and in disentangling those principles
from the symbols in which they are usually expressed. For

further details, see the biographies by Tyndall (second edition,

1870), Bence Jones (1870), or Dr Gladstone (1872).

George Francis Fitzgerald, professor in Dublin, born there

on Aug. 3, 1851, who has written on electromagnetism and

optics.

Jean Bernard Leon Foucault, born at Paris on Sept. 18,

1819, and died there of paralysis on Feb. 11, 1868, whose

chief memoirs were on the practicability of photography, 1840
;

on the electric lamp, 1849
;

on the determination of the

velocity of light in 1850, but repeated with improvements in

1862; 011 his demonstration of the diurnal motion of the earth

by means of the rotation of the plane of oscillation of a simple

pendulum, 1851
;
on the gyroscope, 1852; on the rotation of

a copper disc between the poles of a magnet, 1855; and on a

polarizer, 1857. For further details see La vie et les travaux

de Leon Foucault by J. A. Lissajous, Paris, 1875; and also a

notice by J. Bertrand prefaced to the collected edition of

Foucault s works, Paris, 1878.

J. Willard Gibbs, of Yale, America, who has written on

thermodynamics and Maxwell s electromagnetic theory.

Richard Tetley Glazebrook, of Trinity College, Cambridge,
born at Liverpool on Sept. 18, 1854, who has written on optics

and electricity. His report in the Transactions of the British

Association, 1885, on theories of optics contains a valuable

summary of most of the mathematical researches on that

subject during this century and prior to the date of the report.

After a brief allusion to the views of Green, Cauchy, Mac-

Cullagh, and F. E. Neumann, he describes the more recent work

according as it conies under the simple elastic solid theory ;
or

theories assuming an action between matter and ether; or

Maxwell s electromagnetic theory.
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Green (see above, p. 487), whose physical memoirs were

mostly 011 the theory of waves.

Von Helmlioltz (see above, p. 466), who is in the front

rank of all departments of mathematical physics : his collected

papers were published in two volumes, Leipzig, 1882 3.

Oliver Heaviside, who has written on the mathematical

theories of optics and electromagnetism.

Lord Kelvin (Sir William Thomson), professor at Glasgow,
born at Belfast in June, 1824, who has enriched every depart
ment of physics by his researches : his collected papers were

published at Cambridge, vol. I. in 1882, vol. n. in 1884, and

vol. in. in 1890.

Gustav Robert Kirchhoff, professor of physics first at

Heidelberg and then at Berlin, born at Konigsberg on March

12, 1824, and died at Berlin, Oct. 17, 1887, whose name will

be always associated with the history of spectrum analysis, and

his researches on elasticity : his collected papers were published
at Leipzig in 1882.

Gabriel Lame, born at Tours on July 22, 1795, and died at

Paris in 1870, where he was professor at the Polytechnic

school, whose best-known works are his course on physics,

1836; his treatise on elasticity, 1852; his work on functions,

1857; an essay on curvilinear coordinates, 1859; and lastly

his theory of heat, 1861 : he also wrote memoirs on different

points in the theory of numbers.

James Clerk Maxwell, born at Edinburgh on June 13, 1831,
and died at Cambridge on Nov. 5, 1879, where he was profes
sor of experimental physics. His most important works were

his memoir in 1859 on the stability of Saturn s rings; various

articles on colour; his memoir on the electromagnetic field;

his Electricity and Magnetism, issued in 1873; his Theory

of Heat, published in 1871
;
and his elementary text-book on

Matter and Motion : to these I may add his memoir on

reciprocal figures (which are useful in graphics), .
and his

papers on the molecular theory of gases and cognate
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subjects. His Electricity and Magnetism has revolutionized

the treatment of the subject. Poisson and Gauss had explained

the phenomena of electrostatics by attractions and repulsions

between imponderable particles; while Lord Kelvin (Sir

William Thomson) in 1846 had shewn that the effects might
be supposed analogous to a flow of heat from various sources of

electricity properly distributed. In electrodynamics the theory
then generally current was that proposed by W. E. Weber,
in which the attraction between electrified particles depends on

their relative motion and position. Maxwell rejected all these

hypotheses, and explained the phenomena by stresses and

motions of a material medium
;
he concluded by shewing that

if the medium were the same as the so-called luminiferous

ether, the velocity of light would be equal to the ratio of

the electromagnetic and electrostatic units : subsequent ex

periments have tended to confirm this conclusion. For fuller

details, his collected works, Cambridge, two volumes, 1890, and

his life by L. Campbell and W. Garnett, London, 1882, may
be consulted.

MacCullagh (see above, p. 480), who wrote on physical optics.

Franz Ernst Neumann, of Konigsberg, born at Ukermark
on Sept. 11, 1798, who wrote on elasticity and light.

William John Macquorn Rankine, of Glasgow, born at

Edinburgh on July 5, 1820, and died Dec. 24, 1872, whose

discoveries in thermodynamics and hydromechanics will be

found in the collected edition of his works issued in London

in 1881.

Lord Rayleigh, born on Nov. 12, 1842, who, besides some

classical papers on the mathematics of physical optics, has

written the standard English work on sound, published at

Cambridge in 1877.

Barre de Saint-Venant, whose researches on elasticity and

torsion are well known.

Sir George Gabriel Stokes (see above, pp. 478, 492), most of

whose papers are on hydromechanics, or optics, or allied
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subjects ;
these memoirs have been recently collected and

published by the university of Cambridge.
Peter Guthrie Tail, professor in Edinburgh, born at Dalkeith

on April 28, 1831, who has written on the mathematics of

various physical subjects, and especially on the molecular

theory of gases.

Joseph John Thomson, of Trinity College, and Cavendish

professor in the university of Cambridge, born at Manchester

on Dec. 18, 1856, who has written on vortex rings and the

application of generalized coordinates to various physical

problems. I may also allude to his report in the Transactions

of the British Association, 1885, on electric theories, which he

classifies into those not founded on the principle of the

conservation of energy (such as those of Ampere, Grassmann,

Stefan, and Korteweg) ;
those which rest on assumptions

concerning the velocities and positions of electrified particles

(such as those of Gauss, W. E. Weber, Riemann, and Clausius) ;

those which require the existence of a kind of energy of which

we have no other knowledge (such as the theory of C. Neumann);
those which rest on dynamical considerations but in which no

account is taken of the action of the dielectric (such as the

theory of F. E. Neumann) ;
and finally those which rest on

dynamical considerations and in which the action of the

dielectric is considered (such as Maxwell s theory). In the

report these theories are described, criticized, and compared
with the results of experiments.

Withelm Eduard Weber, died in 1891, whose most import
ant investigations were in connexion with electrodynamics : his

works are being produced by the Royal Society of Gottingen,

vol. i. edited by W. Voigt. Berlin, 1892.

And Oustav Heinrich Wiedemann, of Bale, born Oct. 2, 1826,

who is the author of an admirable text-book on electricity and

allied subjects, four volumes, 1882 1885.

I am well aware that the above list excludes many who
have studied physics from a strictly mathematical point of

view
;
and I give it not as an account of contemporary work,

B. 32
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but as a pendant to this chapter, which may serve as an

indication of the subjects discussed by many mathematicians

in recent times illustrated by the names of a few of them. To

make it more than this would involve knowledge to which I

can make no pretence.

^ &quot;
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INDEX.

Abacus, description of, 125-8.
- ref. to, 5, 59, 114, 134, 141, 142,

187, 188.

Abd-al-gehl, 167.

Abel, 463-4.

ref. to, 399, 430, 444, 455, 464,

468, 472, 475.

Abelard, 144.

Abelian functions, 403, 430, 455,

463-4, 468, 468-70.
Aberration (astronomical), 387.

Abu Djefar ;
see Alkarismi.

Abul-Wafa, 167.

Academy, Plato s, 43.
- the French, 283.

the Berlin, 362.

Achilles and tortoise, paradox of, 32.

Action, Least, 404, 409, 414.
- Varying, 488.

Adalbero of Rheims, 140.

Adams, 490-1. ref. to, 489.

Addition, processes of, 193
- symbols for, 4, 105, 106, 159,

178, 200, 210-2, 215, 218, 219,

220, 231, 232, 243.

Adelhard of Bath, 170. ref. to, 182.

Africanus, Julius, 115.

Agrippa, Cornelius, 121.

Ahmes, 3-4, 6-8.
- ref. to, 74, 92, 104.

Airy, 448
Akhmim papyrus, 92.

Albategni, 167
Alberi on Galileo, 249.

Albuzjani, 167.

Alcuin, 137-8.
Alembert d ; see D Alembert.
Alexander the Great, 48, 52.

Alexandria, university of, 52, 93,

94, 114, 116-7.

Alexandrian library, 52, 83, 116,117.

-^ Schools, chapters iv. v.

symbols for numbers, 129.

Alfarabius, 171.

Alfred the Great, 136.

Algebra. Treated geometrically by
Euclid and his school, 59-61, 103.

Development of rhetorical and

syncopated algebra in the fourth

century after Christ, 103-111.
Discussed rhetorically by the
Hindoo and Arab mathemati
cians, chapter jx.; by the early
Italian writers, chapterj.; and
Pacioli, 214. Introduction of

syncopated algebra by Bhaskara,
159, 160; Jordanus, 177-8;

Regiomontanus, 207-8 ; Record,
218; Stifel,220; Cardan, 227-8 ;

Bombelli, 231
;

and Stevinus,
232. Introduction of symbolic
algebra by Vieta, 234-6; Gi-

rard, 238; and Harriot, 241.

Developed by (amongst others)

Descartes, 277 ; Wallis, 293 ;

Newton, 331-3; and Euler,
403-4. Recent extensions of,

471-9.

Algebra, definitions of, 188.

earliest problems in, 103.

earliest theorem in, 96-7.

historical development, 104-5.
histories of, 51, 293.

origin of term, 163.

symbols in, 2436.

Algebraic equations; see Simple

322
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equations, Quadratic equations,
&c.

Algebrista, 175.

Algorism, 164, 171, 179, 184, 188,

193, 222.

Alhazen, 167. ref. to, 171.

Alhossein, 166.

Alkarismi, 162-4.

ref. to, 171, 172, 188, 228.

Alkarki, 166.

-Alkayami, 165-6.
Al-Khwarizmi

;
see Alkarismi.

Allman, ref. to, 13, 14, 19, 26, 29,

31, 34, 42.

Almagest, the, 97-9.
- ref. to, 82, 87, 112, 152, 162,

165, 166, 167, 169, 170, 171,

176, 181, 183, 185, 186, 205,
230.

Almanacks, 184, 191-2.
Al Mamun, the Caliph, 151, 162.

Al Mansur, the Caliph, 152.

Alphonso of Castile, 173.

Alphonso s tables, 174.

Al Kaschid, the Caliph, 151.

Amasis of Egypt, 16.

America, discovery of, 204.

Ampere, 442. ref. to, 497.

Amyclas of Athens, 47.

Analysis, Cambridge school, 445-8.
in synthetic geometry, 44.

Analytical geometry, origin of, 265,

273-6, 299; on development of,

see chapters xv-xix.

Anaxagoras of Clazomenae, 35.

Anaximander, 17-8.

Anchor ring, 47, 86.

Anderson on Vieta, 234.

Angle, sexagesimal division, 5, 246.
- trisection of, 35, 38, 86, 237,

o 379.

Angstrom, 492.

Angular coefficient, 313.

Anharmonic ratios
; see Geometry

(Modern Synthetic)

Anthology, Palatine, 63, 103.

Antioch, Greek School at, 151.

Antipho, 37.

Apian on Jordanus, 176.

Apices, 127, 141.

Apollonius, 77-83.
- ref. to, 53, 89, 112, 113, 152, 165,

167, 169, 176, 230, 233, 238, 275,

294, 312, 355, 379, 387, 482.

Appell, 471, 482.

Apse, motion of lunar, 339, 381,
397.

Arabic numerals, 119, 131, 153,

158, 161, 164, 171, 173, 174,
189-192.

origin of, 189, 190.

Arabs, Mathematics of, chapter ix.

introduced into China, 9.

introduced into Europe, chap. x.

Arago, 443-4.
ref. to, 91, 406, 439, 453, 490.

Aratus, 47, 87.

Arbogast, 407. ref. to, 405.

Archimedes, 65-77.
ref. to, 53, 64, 79, 81, 83, 86, 91,

102, 113, 152, 165, 169, 176, 230,

247, 261, 288, 312, 373, 395.

Archimedean mirrors, 67.

Archimedean screw, 66.

Archippus, 29.

Archytas, 29-31.
ref. to, 28, 38, 43, 45.

Area of triangle, 89, 90.

Areas, conservation of, 258, 337.

Argand, 474.

Argyrus, 120.

Aristaeus, 49.
- ref. to, 48, 58, 78, 79, 379.

Aristarchus, 63-5. ref. to, 86, 230.

Aristotle, 49-50.
ref. to, 13, 14, 27, 53, 136, 151,

631.

Aristoxenus, 23.

Arithmetic. Primitive, chapter vn.

Pre-hellenic, 2-5. Pythagorean,
27-9. Practical Greek, 59, 102,

113, 130, 131. Theory of, treated

geometrically by most ofthe Greek
mathematicians to the end of the

first Alexandrian school, 59 ;
and

thenceforward treated empirically

(Boethian arithmetic) by most of

the Greek and European mathe
maticians to the end of the four

teenth century after Christ, 96,

130-1, 187-8. Algoristic arith

metic invented by the Hindoos,
158

; adopted by the Arabs, 161,

164; and used since the four-
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teenth century in Europe, 171,

173, 189-192; development of

European arithmetic, 1300-1637,

chapter xi.

Arithmetical machine, 283, 360,447.

problems, 63, 73, 74.
- progressions, 29, 71, 85, 158.

triangle, 222, 234, 285.

Apitfwriter), signification of, 59.

Aronhold, 478-9.

Arts, bachelor of, 148.

master of, 148-9.

Ar} a-Bhatta, 153-4.
- ref. to, 156, 158, 161, 167.

Aryan invasion of India, 152.

Arzachel, 170.

Assumption, rule of false, 104, 157,

175, 212, 213.

Assurance, life, 397.

Astrology, 158, 185, 257.
Astronomical Society, London, 447,

476.

Astronomy. Descriptive astronomy
outside range of work, vi. Early
Greek theories of, 17, 18, 24, 35,

47, 63, 64, 77, 84. Scientific

astronomy founded by Hippar-
chus, 87-8 ;

and developed by
Ptolemy in the Almagest, 97-9.
Studied by Hindoos and Arabs,
153, 154, i57, 167, 170. Modern
theory of, created by Copernicus,
217; Galileo, 251; and Kepler,
258. Physical astronomy created

by Newton, chapter xvi. Devel

oped by (amongst others) Clai-

raut,381; Lagrange, 411, 412-3
;

Laplace, 420-3
;
and in recent

times by Gauss and others, chap
ter XIX.

Asymptotes, theory of, 346

Athens, School of, chapter in.

Second School of, 112-4.

Athos, Mount, 120.

Atomic theory in chemistry, 437.

Atomistic School, 33.

Attains, 78.

Attic symbols for numbers, 129.

Attraction, theories of, 321-3, 331,
834 0. 340, 381, 395, 412, 419,

427-8, 442, 445, 456, 486-7.

Australia, map of, 256.

Autolycus, 63.

Auwers, 489.

Avery s steam-engine, Ul.

Babbage, 447. ref. to, 445, 448.

Babylonians, mathematics of, 5, 6.

Bachelor of arts, degree of, 148.

Bachet, 306-7.
- ref. to, 224, 298, 299.

Bacon, Francis, 253-4. ref. to, 299.

Bacon, Roger, 180-2.
- ref. to, 170, 172, 174.

Baillet, A., on Descartes, 270.

Baillet, J., on Akhmim papyrus, 92,

Baily on Flamsteed, 345.

Baldi on Arab mathematicians, 161,

170.

Ball, Sir Rob. S., 488.

Ball, W. W. R., ref. to, 21, 38, 56,

121, 148, 183, 184, 218, 240, 242,

255, 288, 296, 306, 317, 346, 390,
446.

Balliol College, Oxford, 146.

Barlaam, 119-120.

Barnwell, priory of, 147.

Barometer, invention of, 283, 309.

Barral on Arago, 443.

Barrow, 311-4.
- ref. to, 53, 92, 240, 245, 276, 300,

321, 323, 324, 329, 348, 349, 352,
368.

Bastien on D Alembert, 382.

Beare on graphics, 484.

Beaune, De, 308. ref. to, 276

Becket, Thomas a, Archbishop, 14&quot;.

Bede on finger symbolism, 120.

Beeckman, 271.

Beldomandi, 186.

Beltrami, 466.

Benedictine monastei i -.
1;&amp;gt;J, 138.

Ben Ezra, 171. ref. to, 178.

Berkeley on the calculus. :&amp;gt; .!.

Berlet on Riese, LM .i.

Berlin Academy, 362.

Bernelinus, 142.

Bernhardy on Eratosthem -

Bernoulli, Daniel. 38

ret to, 340, 375, 3&amp;lt;W, 400.

Bernoulli, James, 37-
- ref. to, 246, 371. ^

*

Bernoulli, James II., 375.

I5 Tiioulli, John, 373-4. \V fc



502 INDEX.

Bernoulli, John, ref. to, 246, 355,

356, 365, 369, 371, 375, 376, 386,

398, 400, 401, 403.

Bernoulli, John II.
,
375.

Bernoulli, John III., 375.

Bernoulli, Nicholas, 374-5.
- ref. to, 347, 373, 400.

Bernoullis, the younger, 374-5.

Bertrand, 477.
- ref. to, 282, 450, 482, 488, 494.

Berulle, De, Cardinal, 271.

Bessel, 489.

Bessel s functions, 489.

Beta function, 403, 430.

Betti, 454, 478.
Bevis and Hulton on Simpson, 396.

Bezout, 407.

Bhaskara, 156-160.
ref. to, 153, 161, 167, 245.

Bija Ganita, 156, 159-160.
Binomial equations, 411, 417, 455.

Binomial theorem, 328, 348, 403.

Biot, 442-3. ref. to, 358, 422.

Biot and Lefort, 362.

Biquadratic equation, 165, 226, 229,
236.

Biquadratic reciprocity, 429.

Biquadratic residues, 456.

Bjerknes on Abel, 463.

Bobynin on Ahmes, 3.

Bockh on Babylonian measures, 2.

Bode s law, 421, 422, 452.

Boethian arithmetic; see Arith-

.rnetic.

Boethius, 135-6.
ref. to, 96, 115, 138, 139, 141,

148, 180, 187.

Boetius
;
see Boethius.

Bologna, university of, 143, 144,
185.

Boltzmann, 493.

Bolyai, J., 466.

Bombelli, 231-2.
- ref. to, 227, 229, 236, 245.

Bonacci
;
see Leonardo of Pisa.

Boncompagni, ref. to, 162, 172, 210.

Boniface VIII. of Borne, 146.

Book-keeping, 192, 213, 248.

Boole, 477. ref. to, 476, 482.

Booth, 480.

Borchardt, 478. ref. to, 457, 464.

Borrel, 230.

Boscovich, 101.

Bossut on Clairaut, 381.

Bougainville, De, 376

Bouquet, Briot and, 470.

Boussinesq, 493.

Boyle, 316, 386.

Brachistochrone, 356, 370, 374, 376,
403.

Brackets, introduction of, 238, 245.

Bradley, 387-8. ref. to, 489.

Bradwardine, 183.

Brahmagupta, 154-6.
- ref. to, 153, 157, 158, 161, 162,

167, 193, 209, 314.

Branker, 317.

Brassine on Fermat, 294
Breitschwert on Kepler, 256.

Bretschneider, ref. to, 13, 34, 42, 58.

Brewer on Eoger Bacon, 180.

Brewster, ref. to, 249, 319, 345.

Briggs, 240-1. ref. to, 201, 202.

Brioschi, 469, 478.
Briot and Bouquet, 470.

Brisson on Monge, 431.

British Association, 447, 450.

Brouncker, Lord, 314-5.
ref. to, 155, 291, 316.

Brunei on Gamma function, 403.

Bryso, 31, 37.

Bucquoy, De, 271.

Budan, 438.

Buee, 474.

Buffon on Archimedes, 67.

Bull problem, the, 73-4.
Burnell on numerals, 189.

Burnet on Newton, 354.

Byzantine School, chapter vi.

Calculating machine, 283, 360, 447,

Calculation
;
see Arithmetic.

Calculus, Infinitesimal, 265-6,
349-352, 362-9, 372, 375-380,
388, 394, 402-3, 416.

Calculus of Operations, 389, 407.
- of Variations, 403, 408, 409, 465.

Calendar, 17, 84, 210.

Calendars, 184, 191-2.

Cambrensis, 146.

Cambridge, university of, 146-7,

184, 445-8.

Campanus, 182-3. ref. to, 185.

Campbell, 333.



INDEX. 50. }

Campbell and Garnett, 496.

Cantor, G., 476.

Cantor, M., ref. to, vii. 3, 6, 8, 9, 13,

14, 19, 28, 29, 34, 39, 51, 53, 65,

89, 105, 114, 123, 134, 137, 150,

172, 176, 189, 203, 205, 212,219,
258.

Capet, Hugh, of France, 140.

Capillarity, 388, 424, 425, 441.

Carasco, Sampson, 175.

Carcavi, 299.

Cardan, 224-8.
- ref. to, 61, 216, 222, 229, 230.

Careil on Descartes, 270.

Carnot, Lazare, 433-4.
- ref. to, 88, 399, 431, 482.

Carnot, Sadi, 439.

Cartes, Des; see Descartes.

Cartesian vortices, 278, 323, 336,

341, 344.

Cassiodorus, 136. ref. to, 115.

Catacaustics, 318.

Castillon on Pappus s problem, 102.

Cataldi, 239, 314.

Catenary, 370, 372, 389.

Cathedral Schools, the, 137-142.

Cauchy, 471-4.
ref. to, 348, 416, 435, 461, 463,
470, 482, 494.

Caustics are rectifiable, 318.

Cavalieri, 279-282.
- ref. to, 238, 240, 258, 269, 289,

300, 352.

Cavendish, 435.

Cayley, 462, 469, 478, 481, 490.
Censo di censo, 214.

Census, 207, 214, 231, 235.

Centres of mass, 75, 101, 254, 280,

293, 300.

Centrifugal force, 304.

Ceres, 452.

Ceulen, van, 239.

Chaldean mathematics, 2, 8.

Chambord, Comte de, 473.

Chancellor of university, 143.

Chardin, Sir John, 194.

Charles the Great, 137, 138, 139.

Charles I. of England, 289.
Charles II. of England, 311.

Charles V. of France, 183.

Charles VI. of France, 183.

Charles, E., on Roger Bacon, 180.

Chasles, ref. to, 62, 83, 256, 259,

482, 484, 487.

Chaucer, ref. to, 188.

Chinese, early mathematics, 9-10.

Chios, School of, 32.

Christians (Eastern Church) op
posed to Greek science, 112, 113,
116.

Chuquet, 210.

Cicero, 68.

Ciphers ;
see Numerals.

Ciphers, discoveries of, 234, 289.

Circle, quadrature of, (or squariug

the), 27, 35, 38; also see TT.

Circular harmonics, 427.

Cissoid, 86.

Clairaut, 380-1.
ref. to, 244, 339, 340, 347, 394,

397, 398, 422.

Clausius, 493, 497.

Clavius, 237.

Clebsch, 465, 479, 481, 493.

Clement, 137.

Clement IV. of Home, 181, 182.

Clerk Maxwell; see Maxwell.

Clerke, 489.

Clifford, 485-6.

Clocks, 250, 303, 304.

Cocker, 396.

Coefficient, angular, 313.

Colebrooke, ref. to, 154, 157, 160.

Colla, 221, 229.

Collins, 317.
- ref. to, 324, 329, 349, 355, 360,
364.

Collision of bodies, 293, 303, 316.

Colours, theory of, 321, 324, 325.

Colson, 349 r 350, 351, 352, 354.

Comets, 342, 381.

Commandino, 230. ref. to, 63.

Commensurables, Euclid on, 60.

Commercium epistolicuni, 362, 365.

Complex numbers, 227, 455, 474,
479.

Conchoid, 85.

Condorcet, 385. ref. to, 382.

Cone, sections of, 48.

surface of, 72, 156.

volume of, 47, 72, 156.

Congruences, invention of, 455, 457.
Conic Sections (Geometrical). Dis

cussed by most of the Greek geo-
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metricians after Menaechmus,
48

; especially by Euclid, 62; and

Apollonius, 78-80 ;
interest in,

revived by writings of Kepler,
258; and Desargues, 259-260;
and subsequently by Pascal,

284-5; Newton, 338; and Mac-

laurin, 393. Treatment of by
modern synthetic geometry, 431-

4, 482-4.

Conies (Analytical). Invention of

by Descartes, 273-6, and by Fer-

mat, 299
;
treated by Wallis, 292,

and Euler, 402; recent exten

sions of, 480-1.

Conicoids, 72, 402, 412.

Conon of Alexandria, 65, 66, 71.

Conservation of energy, 386, 409,
433.

Constantine VII., the Emperor, 119.

Constantinople, fall of, 122.

Conti, 364, 366.

Continued fractions, 239, 314, 416,
424.

Continuity, principle of, 258, 259,

332, 368, 434.

Contravariants, 478.

Conventual Schools, 137-142.

Convergency, 315, 348, 371, 376,

394, 401, 456, 463, 472, 473, 477.

Coordinates, 273-4, 369.

generalized, 409, 413, 488.

Copernicus, 217.

ref. to, 88, 98, 205, 231, 252.

Cordova, School of, 169, 170.

Cornelius Agrippa, 121.

Corpuscular theory of light, 326-7.

Cosa, 214.

Cosecant, 246.

Cosine, 167, 201, 205, 242, 246.

Cos x, series for, 315.

Cos&quot;
1
x, series for, 315.

Cossic art, 214.

Cotangent, 167, 201, 246.

Cotangents, table of, 167.

Cotes, 390.

ref. to, 201, 353, 393, 401, 448.

Courcier, 310.

Courcon, Cardinal de, 145.

Courier on Laplace, 426.

Cousin on Descartes, 270.

Cramer, 378. ref. to, 101,

Crelle, 483.

Cremona, 431, 484.

Ctesibus, 89.

Cuba, 214.

Cube, duplication of, 30-1, 38,

42-3, 45, 48-9, 82-3, 84, 86, 89,

237.

origin of problem, 42-3.

Cubic curves, Newton on, 346-7.
Cubic equations, 72, 108, 165, 221,

222, 228, 231, 236.

Cubic reciprocity, 429 457.

Culmann on graphics, 484-5.

ref. to, 483.

Curtze, ref. to, 176, 183.

Curvature, lines of, 432.

Curve of quickest descent, 356, 370,

374, 376, 403.

Curves, areas of; see Quadrature.
Curves, classification of, 275, 346,

402.

Curves of the third degree, 346-7.

Curves, rectification of, 291-2, 314,

318, 329, 348, 350.

Curves, tortuous, 380, 402.

Cusa, Cardinal de, 209-210.

Cycloid, 284, 288, 291, 292, 303,

^304, 339.

Cyzicenus of Athens, 48.

Cyzicus, School of, chapter in.

D Alembert, 382-5.

ref. to, 288, 340, 373, 389, 398,

403, 409, 413.

Dalton, 437.

Damascius, 113.

Damascus, Greek School at, 151.

Darboux, 407, 437, 482.

Darwin, 492.

Dasypodius on Theodosius, 92.

De Beaune, 308. ref. to, 276.

De Berulle, Cardinal, 271.

De Bougainville, 376.

De Bucquoy, 271.

De Careil on Descartes, 270.

Decimal fractions, 202, 248.

Decimal numeration, 72-3, 81-2,

153, 158, 161, 164, 171, 173-4,

189-192.
Decimal point, 202.

Decimal measures, 248, 414, 415.
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De Condorcet, 385.

De Courcon, Cardinal, 145.

Dedekind, 462, 493. ref. to, 457, 465.

Defective numbers, 29.

De Fontenelle, ref. to, 372, 377.

Degree, length of, 84, 93, 380, 443.

Degrees, angular, 5, 85.

De Gua, 377-8.
De Kempten, 124.

De la ffire, 379. ref. to, 121, 310.

De Laloubere, 310.

Delambre, 86, 87, 97, 99, 237, 407.

Delaunay, 491. ref. to, 490, 492.

De 1 Hospital, 375-6. ref.to,374, 388.

Delian problem ;
see Cube.

De Halves, 377-8.
De Mere, 286.

De Mdziriac, 306-7.
- ref. to, 224, 298, 299.

Democritus, 33.

Demoivre, 391-2. ref. to, 390, 406.

De Montrnort, 377.

De Morgan, 476-7.
- ref. to, 53, 57, 62, 97, 98, 99,

111, 187, 210, 211, 401.

Demptus for minus, 208, 215.

Denifle, 142.

De Kohan, 233.

Desargues, 259-260.
- ref. to, 257, 269, 270, 284, 285,
379, 431.

Descartes, 270-9.
- ref. to, 57, 85, 232, 235, 241,
244, 245, 254, 259, 260, 261, 265,

269, 288, 289, 292, 294, 298, 299,

310, 321, 323, 331, 371, 373, 378.
rule of signs of, 277, 332, 378.
vortices of ; nee Cartesian vor

tices.

De Sluze, 317-8.
- ref. to, 308, 312, 313.

Desmaze on Ramus, 230.

De Sorbonne, 145.

Destouches, 382.

Determinants, 371, 407, 411, 424,
455, 458, 465.

Devanagari numerals, 189, 190.

Devonshire, Earl of, 391.

Dewulf on Cremona, 482.

Didion and Dupin on Poucelet, 434.

Difference between, sign for, 236,
244.

Differences, tinite, 377, 389, 413,

418, 424.

mixed, 424.

Differential calculus
;
tee Calculus.

Differential equations, 378, 383-4,

403, 407, 412, 431, 4.S1-2.

Differential triangle, the, 313.

Differentials, 330, 416.

Diffraction, 305, 327, 436, 442.

Digby, 296.

Dini, 477.

Dinocrates, 52.

Dinostratus of Cyzicus, 48.

Diodes, 86. ref. to, 93.

Dionysius of Tarentum, 30.

Dionysodorus, 92-3.

Diophantus, 105-112.
- ref. to, 28, 72, 85, 119, 152, 153,

156, 206, 230, 231, 295, 298,807,
418.

Directrix in conies, 80, 101.

Dirichlet, 457.
- ref. to, 297, 461, 462, 464, 465.

Distance of sun, 64.

Disturbing forces, 337, 340, 411,
492.

Ditton, 388.

Division, processes of, 196200.
- symbols for, 159, 166, 244.

Dodecahedron, discovery of, 22.

Dodson on life-assurance, 397
Don Quixote, 175.

Dositheus, 65, 69, 71, 72.

Double entry, book-keeping by, I .i J.

213, 248.

Double theta functions; see Ellip
tic functions.

Dreyer on Tycho Brahe, 258.

Duillier, 365.

Dupin, ref. to, 431, 434.

Duplication of cube; see Cube.
D Urban on Aristarchus, 63.

Diirer, 217. ref. to, 122.

Dynamics ; see Mechanics.

e, symbol for 2-71828..., 401.

Eanbald, Archbishop, 137.

Earth, density of, 1-

dimensions of, 84, 93, 380, 443.

Eclipse foretold by Thales, 17.
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Ecliptic, obliquity of, 84, 87.

Edessa, Greek School at, 151.

Edward I. of England, 147.

Edward VI. of England, 218.

Egbert, Archbishop, 137.

Egyptian mathematics, chap, i., 92.

Eisenlohr, ref. to, 3, 6, 8.

Eisenstein, 457-8. ref. to, 459, 460.

Elastic string, tension of, 316.

Elastica, 372.

Elasticity, theory of, 493-7.
Eleatic School, 32.

Electricity, 441, 453-4, 493-7.
Elements of Euclid; see Euclid.

Elimination, theory of, 407, 411.

Elizabeth of England, 241.

Ellipse, area of, 71.

rectification of, 379.

Elliptic functions, 403, 430, 455,

463-4, 468, 468-470.

Elliptic geometry, 467.

Elliptic orbits of planets, 170, 258,

331, 333.

Ellis, G., on Eumford, 435.

Ellis, E. L., on Fr. Bacon, 253.

Ely on Bernoulli s numbers, 373.

Emesa, Greek School at, 151.

Emission theory of light, 326-7.

Energy, conservation of, 386, 409,

413, 433.

Enestrom, ref. to, 277.

Engelmann on Bessel, 488.

Envelopes, 303, 318, 369.

Epicharmus, 29.

Epicurus, 33.

Epicycles, 87, 88, 98.

Epicycloids, 318, 339, 377, 379.

Equality, symbols for, 4, 106, 200,

215, 218, 235, 244-5.

Equality, origin of symbol, 218.
=

, meanings of, 218, 236, 244.

Equations; see Simple equations,

Quadratic equations, &c.

Equations, differential, 378, 383-4,
403, 407, 412, 431, 481-2.

- indeterminate, 108, 153, 155,

380, 411.

number of roots, 451, 472.

position of roots, 277, 332-3,

378, 380, 417, 438-9.
roots of, imaginary, 227.

roots of, negative, 227.

Equations, theory of, 238, 331-3,
400, 416, 471-9.

Equiangular spiral, 373, 485.

Eratosthenes, 83-4.
- ref. to, 43, 85, 86, 93.

Errors, theory of, 390, 397, 411,
424, 428, 445, 451.

Ersch and Gruber on Descartes,
270.

Essex, 288.

Ether, the luminiferous, 305, 496.

Euclid, 53-63.
ref. to, 43, 68, 78, 91, 102, 152,

165, 167, 169, 176, 275, 312;
see also below.

Euclid s Elements, 54-62.
ref. to, 112, 113, 115, 136, 152,

165, 167, 169, 170, 171, 174, 176,

177, 180, 182, 184, 185, 186, 230,

231, 283, 312, 320, 321, 428.

Euc. ax. 12
; Ptolemy s proof of, 99.

Euc. i. 5. ref. to, 15, 180.
- i. 12. ref. to, 32.
- i. 13. ref. to, 25.
- i. 15. ref. to, 15.
- i. 23. ref. to, 32.
- i. 26. ref. to, 15.

i. 29. ref. to, 25.

i. 32. ref. to, 16, 17, 25,

283.

i. 44. ref. to, 26.
- i. 45. ref. to, 26.

i. 47. ref. to, 7, 10, 25,

26, 28, 40, 156.

i. 48. ref. to, 7, 25, 28.

ii. 2. ref. to, 26.
- ii. 3. ref. to, 106.
- ii. 5. ref. to, 60.
- ii. 6. ref. to, 60.
- ii. 8. ref. to, 106.

ii. 11. ref. to, 46, 59.
- ii. 14. ref. to, 26, 59.

m. 18. ref. to, 31.
- in. 31. ref. to, 16, 40.
- m. 35. ref. to, 31.

v. ref. to, 45.

vi. 2. ref. to, 15.
- vi. 4. ref. to, 15, 26.

vi. 17. ref. to, 26.

vi. 25. ref. to, 26.

vi. 28. ref. to, 59, 103.

vi. 29. ref. to, 59, 103.
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Euc. vi. D. ref. to, 88.

- x. ref. to, 49, 81.

- x. 1. ref. to, 46.

x. 9. ref. to, 49.
- x. 117. ref. to, 61.

xi. 19. ref. to, 31.

- xii. 2. ref. to, 40, 46, 47.
- xn. 7. ref. to, 47.

xii. 10. ref. to, 47.
- xin. 1-5. ref. to, 46, 58.

xni. 6-12. ref. to, 58.
- xni. 13-18. ref. to, 58.

xiv. ref. to, 85.

- xv. ref. to, 113.

Euclidean space, 466-7.

Eudemus, 13, 16, 19, 44, 78, 79.

Eudoxus, 45-7.
- ref. to, 37, 43, 55, 60, 86.

Euler, 399-405.
- ref. to, 102, 201, 227, 242, 246,

295, 290, 302, 333, 340, 345, 367,

374, 375, 386, 399, 408, 409, 413,

431, 432, 442, 472.

Eurytas of Metapoiitum, 43.

Eutocius, 113. ref. to, 79, 130.

Evection, 88.

Evolutes, 303. j
Excentrics, 87, 98.

Excessive numbers, 29.

Exchequer, Court of, 188.

Exhaustions, method of, 46, 83, 279.

Expansion of binomial, 328, 348,
403.

of cos x, 315.

of cos- 1
x, 315.

- of e*
t 370.

-of/(z + /i), 388.

-of/(x), 394.
- of log (1 + x), 309, 311, 370.

of sin .T, 315, 328, 370.

of sin&quot;
1
x, 315, 328.

of tan&quot;
1
x, 315, 370.

Expansion in series, 348, 370-1,
376, 388, 394, 401, 456, 463, 472,
473, 477.

Experiments, necessity of, 181, 253,

254, 437.

Exponential calculus, 374.

Exponents, 160, 183, 232, 236, 241,

245-6, 248, 277, 290, 348, 401.

Faber Stapulensis, 176.

Fabricius on Archytas, 29.

Facility, law of, 428.

Fagnano, 3789.
False assumption, rule of, 104, 157,

175, 212, 213.

Faraday, 494. ref. to, 444, 454

Faugere on Pascal, 282.

Favaro, 3, 249, 279, 314, 484.

Faye, 421.

Fermat, 293-302.
- ref. to, 81, 155, 269, 276, 283,

286, 292, 303, 310, 312, 314, 352,
356, 404, 409, 412, 418, 461.

Ferrari, 228-9. ref. to, 226, 236.

Ferreo, 221.

Fibonacci
;
see Leonardo of Pisa.

Figurate numbers, 285.

Finck, 246.

Finger symbolism, 115, 120, 123,
128.

Finite differences, 377, 389, 413,

418, 424.

Fiori, 221, 222, 226.

Fire engine invented by Hero, 91.

Fischer on Descartes, 270.

Fitzgerald, 494.

Five, things counted by, 124, 125.

Fizeau, ref. to, 444.

Flamsteed, 345.
- ref. to, 387.

Florido, 221, 222, 226.

Fluents, 321, 329, 343, 344, 350-2,

388, 394.

Fluxional calculus, 265, 349-352,
394.

controversy, 352-3, 362-8.

Fluxions, 321, 329, 343, 344, 350-2,

388, 394.

Focus of a conic, 80, 101, 258.

Fontaua; see Tartaglia.

Fontenelle, de, ref. to, 372, 377.

Forces, measurement of, 337.
-

parallelogram of, 50, 249, 337,
376.

-
triangle of, 217, 248, 249, 376.

Forms, theory of, 458-462.

Forsyth, 471, 479, 482.

Foucault, 494. ref. to, 444.

Fourier, 437-9.
ref. to, 399, 426, 435, 441.

Fractions, continued, 239, 314, 416,
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Fractions, symbol for, 159, 166,

184, 244.
- treatment of, 3, 4, 5, 74, 202.

Francis I. of France, 216.

Frederick II. of Germany, 175-6.
ref. to, 174.

Frederick the Great of Prussia, 383,

400, 410, 414.

French Academy, 283.

Frenicle, 310. ref. to, 299.

Fresnel, 442. ref. to, 305, 327, 444.

Frideswyde, monastery of, 146.

Friedlien, 81, 89, 105, 113, 123, 136.

Frisch on Kepler, 256.

Frischauf, ref. to, 466.

Frisi on Cavalieri, 279.

Frobenius, 470, 482.

Fuchs, 482.

Functions, notation for, 374.
- theory of, 470-1.

Fuss, 399-400. ref. to, 102.

Galande, the, 313.

Gale on Archytas, 29.

Galen, 151.

Galileo, 249-253.
ref. to, 217, 247, 257, 261, 269,

270, 288, 370, 379.

Galley system of division, 198-9.

Galois, 477.

Gamma function, 403, 430, 456.

Garnett, Campbell and, 496.

Garth, 193.

Gassendi, ref. to, 205, 209,

Gauss, 451-6.
-

ref, to, 227, 348, 358, 399, 416,

424, 425, 428, 429, 430, 431, 444,

457, 458, 459, 461, 462, 463, 465,

468, 472, 474, 488, 497.

Geber ibn Aphla, 170.

Geiser on Steiner, 482, 483.

Gelder on Theon of Smyrna, 96.

Gelon of Syracuse, 72.

Geminus, 13.

Generalized coordinates, 409, 413,

488,

Generating lines, 316.

Geodesies, 374, 403, 428.

Geodesy, 256, 453.

Geometrical progressions, 29, 60,

70, 73, 158.

Geometry. Egyptian Geometry,

5 8. Classical Synthetic Geo
metry, discussed or used by
nearly all the mathematicians
considered in the first period,

chapters n v; also by Newton
and his school, chapters xvi,
xvn. Arab and Mediaeval Geo
metry, founded on Greek works,

chapters vin, ix, x. Geometry
of the renaissance

;
characterized

by a free use of algebra and trigo

nometry, chapters xn, xni. Ana
lytical Geometry, 265, 273-4;
discussed or used by nearly all

the mathematicians considefed
in the third period, chapters
xiv-xix. Modern Synthetic Geo

metry, originated withDesargues,
259-260; continued by Pascal,
284

; Maclaurin; 393 ; Monge,
Carnot, and Poncelet, 431-4;
recent development of

,
482-4.

Geometry, origin of, 5-6.

George I. of England, 362.

Gerard, 171. ref. to, 170, 173.

Gerbert (Sylvester II.), 140-2.

Gerhardt, ref. to, 119, 359, 362,

363, 364, 365, 450, 464.

Gesta Komanorum, 141.

Ghetaldi,81.

Gibbs, 494.

Giesing on Leonardo, 172.

Giraldus Cambrensis, 146.

Girard, 238. ref. to, 242, 245, 246.

Gladstone on Faraday, 494.

Glaisher, 202, 334, 458, 462, 470.

Glazebrook, 494.

Globes, 140.

Glomerel schools at Cambridge, 147.

Gnomon or style, 18.

Gnomons or odd numbers, 27.

Gobar numerals, 141, 189, 190.

Godfray, 339.

Goldbach, 377, 401.

Golden section, the, 46, 58.

Gonzaga, Cardinal, 229.

Gopel, 468.

Gordan, 479.

Gore, ref. to, 421.

Gothals on Stevinus, 248.

Goursat, 471.

Gow, ref. to, 3, 6, 51, 53, 78.
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Grammar, students in, 148.

Granada, School of, 169.

Graphical methods, 59, 343, 484-5.

Grassmann, 476. ref. to, 481, 497.

Graves on Hamilton, 474.

Gravesande, s
,
302.

Gravity, centres of, 75, 101, 254,

280, 293, 300.

Gravity, law of, 316, 321-3, 331,

333-6, 381.

symbol for, 374.

Gray on Newton s writings, 319.

Greater than, symbol for, 241, 245.

Greatest common measure, 60.
~

=reen, 486-7. ref. to, 488, 494, 495.

Greenwood, Woodcroft and, 89.

Gregory XIII. of Home, 225.

Gregory, David, 387. ref. to, 379.

Gregory, James, 315.

ref. to, 325, 328, 371, 392.

Gresham, Sir Thos., 240.

Grosseteste, Bishop, 181.

Grube on Dirichlet, 457.

Gua, de, 377-8.
Guhrauer on Leibnitz, 359.

Guldinus, 254-5. ref. to, 258, 280.

Gunpowder, invention of, 182.

Gunter, E., 201, 246.

Giinther, 121, 134, 314, 406.

Gyroscope, 494.

Hadley, ref. to, 325.

Halley, 387.
- ref. to, 77, 81, 95, 316, 333, 334,

343, 345, 381, 391, 408.

Halliwell on Holywood, 179.

Halma, 97, 112.

Halphen, 469, 481, 482.

Hamilton, Sir Wm., 474-6.
- ref. to, 188, 414, 488.

Hand used to denote five, 124, 129.

Hankel, ref. to, vii, 13, 19, 34, 61,

104, 114, 123, 150, 450, 476, 480.

Hansen, 491. ref. to, 492.

Harmonic analysis, 419, 427, 428.

Harmonic ratios ; see Geometry
(Modern Synthetic).

Harmonic series, 29, 488.
Haroun Al Raschid, 151.

Harriot, 241. ref. to, 232, 244, 245.

Haughton and Jellett, 480.

Hauksbee.on capillarity, 424.

Heap for unknown number, 4, 106,

124.

Heat, theory of, 438, 439, 441, 495.

Heath, D. D., on Bacon, 253.

Heath, T. L., on Diophantus, 105.

Heaviside, 495.

Hegel, 452.

Heiberg, ref. to, 53, 65, 77, 79, 182.

Helix, 310.

Helmholtz, von, ref. to, 267, 454,

466, 488, 493, 495.

Henry II. of England, 145.

Henry III. of England, 146, 147.

Henry IV. of France, 233.

Henry of Wales, 255.

Henry, C., ref. to, 102, 218, 243,

294, 307, 382.

Henry, W. C., on Dalton, 437.

Heracleides, 79.

Herigonus, 245.

Hermite, ref. to, 450, 462, 469, 470,

471, 478.

Hermotimus of Athens, 48.

Hero of Alexandria, 89-92.
- ref. to, 103, 130, 156, 230.

Hero of Constantinople, 119.

Herodotus, 3, 6.

Herschel, Sir John, 447-8.
- ref. to, 445.

Herschel, Sir William, 447.

Hesse, 481.

Hettner on Borchardt, 478.

Heuraet, van, 292.

Hiero of Syracuse, 66, 75.

Hieroglyphics, Egyptian, 436.

Hill, 492.

Hiller, 83, 96.

Hindoo mathematics, 152-161.

Hipparchus, 86-9.
- ref. to, 85, 97, 99, 166, 167.

Hippasus, 22, 29.

Hippias, 35-6.

Hippocrates of Chios, 39- ! !.

- ref. to, 37, ;&quot;&amp;gt;.

Hippocrates of Cos, 39, 151.

Hire, De la, 379. ref. to, 121, 310.

Hoche on Nicomachus, 96
Hochheim on Alkarki, 166.

Hodograph, 475.

Hoefer, ref. to, vii, 19.

Hoffmann (on Euc. i. 47), 25.

Holywood, 179. ref. to, 184.



510 INDEX.

Homogeneity, Vieta on, 234, 235.

Homology, 260.

Honein ibn Ishak, 151.

Hooke, 316-7.
ref. to, 305, 326, 330, 333, 354,
442.

Horsley on Newton, 319

Hospital, F, 375-6. ref. to, 374, 388.

Hostels, University, 145, 146.

Huber on Lambert, 406.

Hudde, 309. ref. to, 308, 312.

Hugens; see Huygens.
Hultsch, ref. to, 63, 89, 90, 100.

Humboldt, 453, 483.

Hutton, ref. to, 233, 311, 315, 396.

Huygens, 302-6.

ref. to, 266, 267, 269, 293, 308,

310, 316, 319, 326, 333, 360, 442.

Huyghens ;
see Huygens.

Hydrodynamics. Created by New
ton, 340-1; developed by (a-

mongst others) D Alembert, 383 ;

Maclaurin,395; Euler, 404; and

Laplace, 425.

Hydrostatics. Treatment of by Ar
chimedes, 75 ; by Stevinus, 249 ;

by Galileo, 251
; by Pascal, 283-

4
; by Newton, 341

; by Euler,
404.

Hypatia, 112. ref. to, 113.

Hyperbolic geometry, 467.

Hyperbolic trigonometry, 406.

Hyperboloid of one sheet, 316.

Hyperelliptic functions ; see Elliptic
functions.

Hypergeometric series, 456.

Hypergeometry, 465-7.

Hypsicles, 85.

lamblichus, ref. to, 19, 29, 129.

Imaginary numbers, 227, 231, 473,

474, 479.

Incommensurables, 27, 31, 49, 61.

Indeterminate coefficients, 371.

Indeterminate forms, 376.

Indian mathematics, chapter ix.

Indian numerals, 119, 131, 153, 158,

1161, 164, 171, 173,174, 189-192.
-

origin of, 189-190.

Indices, 160, 183, 232, 236, 241,

245-6, 248, 277, 290, 348, 401.

Indivisible College, 316.

Indivisibles, method of, 258, 279-

282, 308.

Inductive arithmetic, 96, 130-1,
187-8.

Inductive geometry, 7-8, 10.

Infinite series, difficulties in con
nection with, 32, 315, 348, 371,

376, 394, 401, 456, 463, 472, 473,
477.

Infinite series, quadrature of curves

in, 290, 315, 328-9, 348-9.
Infinitesimal calculus

;
see Calculus.

Infinitesimals, use of, 258, 416.

Infinity, symbol for, 246.

Innocent IV. of Borne, 146.

Instruments, mathematical, 30, 36,

44.

Integral calculus ;
see Calculus.

Interference, principle of, 305, 327,

436, 442.

Interpolation, method of, 291, 328,

349, 389, 413, 418.

Invariants, 477-9.

Involutes, 303.

Involution
;
see Geometry (Modern

Synthetic).
Ionian School, the, 1, 14-8, 35.

Irrational numbers, 27, 31, 4&-61, -

Ishak ibn Honein, 151.

Isidorus of Athens, 113.

Isidorus of Seville, 136-7. ref.to,148.

Isochronous curve, 370, 372.

Isoperimetrical problem, 86, 373,

374, 397, 408.

Ivory, 445.

Jacobi, 464-5.

ref. to, 416, 430, 444, 455, 457,

461, 463, 465, 469, 482, 483.

Jacobians, 465.

James I. of England, 255.

James II. of England, 344.

Jellett and Haughton, 480.

Jerome on finger symbolism, 120.

Jews, science of, 6, 171, 175,

176.

John XXII. of Borne, 147.

John of Palermo, 174.

JohnHispalensis, 171-2. ref. to, 173.

Jones, B., on Faraday, 494.
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Jones, Wm., 388.

Jordan, 478, 482.

Jordanus, 176-9.
- ref. to, 172, 209, 212, 215, 220,

235, 243.

Julian calendar, 84, 210.

Justinian, the Emperor, 113.

Kastner, 451.

Kant, 420, 422.

Kauffmann, 310.

Keill, 362.

Kelvin, Lord, 267, 425, 488, 493,

495, 496.

Kempten, de, 124.

Kepler, 256-9.
- ref. to, 101, 167, 188, 240, 252,

259, 260, 269, 278, 280, 300, 321,

322, 333, 341, 352.

Kepler s laws, 252, 258-9, 278, 322,
333, 337, 341.

Kern on Arya-Bbata, 153.

Kerschensteiner on Gordan, 479.

Kearol, 115.

Kinckhuysen, 310. ref. to, 324, 349.

Kingsley on Hypatia, 112.

Kirchhoff, 492* 495.

Klein, 465, 467, 469, 470, 479.
Knoche on Proclus, 113.

Konigsberger, 469, 483.

Korteweg, 497.

Kowalevski, 482.

Kremer on Arab science, 150.

Kronecker, 457, 462, 469.

Kiihn, 474.

_Kummer, 297, 429, 461-2, 477.

Kiinssberg on Eudoxus, 45.

Lacroix, 448.

Lagrange, 407-418.
- ref. to, 57, 102, 267, 276, 296,

337, 339, 340, 355, 357, 367, 374,

386, 395, 399, 403, 404, 423, 425,
431, 434, 4:35, 438, 440, 441, 448,

450, 456, 468, 486, 488.

Lahire, 379. ref. to, 121, 310.

Labure on Pascal, 282.

Lalande, 224, 385.

Laloubere, 310.

Lambert, 406-7. ref. to, 391.

Lame, 297, 495.

Landen, 403, 416.

Laplace, 418-427.
ref. to, 267, 337, 339, 340, 345,

357, 358, 367, 386, 31)9, 417, 427,

428, 430, 431, 434, 435, 440, 442,

445, 446, 448, 450,456,472, 475,

486, 490, 491.

Laplace s coefficients, 419, 428.

Latitude, introduction of, 18, 89.

Lavoisier, 425.

Law, faculty of, 148.

Least action, 404, 409, 414.

Least common multiple, 60.

Least squares, 424, 428, 445, 451.

Lebesgue, 297.

Legendre, 427-430.
- ref. to, 297, 399, 414, 419, 424,

426, 431, 434, 440, 450, 455, 463,

464, 468, 469, 472, 486.

Legendre s coefficients, 419, 427.

Leibnitz, 359-371.
- ref. to, 244, 258, 261, 276, 327,

328, 329, 330, 349, 351, 352, 353,

354, 356, 372, 373, 374, 376, 379,
386.

Leipzig, university of, 184, 185.

Lejeune Dirichlet
;
see Dirichlet.

Lemniscate, 47.

Lenses, construction of, 251, 277,

304, 312, 325, 340.

Le Paige on Sluze, 318.

Leo VI. of Constantinople, 119.
- Leo X. of Rome, Stifel on, 219.

Leodamus of Athens, 47.

Leon of Athens, 47.

Leonardo da Vinci, 216-7.
- ref. to, 248.

Leonardo of Pisa, 172-5.
- ref. to, 61, 213, 214.

Leonids (shooting stars), 491.
Leslie on arithmetic, 123, 190.

Less than, symbol for, 241, 2 \~&amp;gt;.

Letters in diagrams, 21, 39.

to indicate magnitudes, 50, 160,

177, 178, 220, 235.

Leucippus, 33.

Leudesdorf on Cremona, 1&amp;gt; 1.

Leverrier, 489-490. ref. to, 413.

L6vy on graphics, 485.

Lexell on Pappus s problem, 102.

L Hospital, 375-6. ref. to, 374, 388.

Lhulu-r, 102.
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Libration of moon, 342, 409, 441.

Libri, 203, 212, 215, 249.

Lie, 463, 479, 482.

Life assurance, 397.

Light, physical theories of, 62, 278,

304-5, 326-7, 405, 436, 442, 443,

487, 493-7.
-

velocity of, 278, 318, 444, 496.

Lilavati, the, 156-9.

Limiting values, 376.

Lindemann, 38, 481.

Lines of curvature, 432.

Lintearia, 373.

Linus of Liege, 326.

Liouville, 461, 470.

Lippershey, 251.

Lissayous on Foucault, 494.

Lobatschewsky, 56, 465.

Logarithms, 200-2, 220, 239-240.
London Mathematical Society, 476.

Longitude, 89, 353, 388.

Lorentz on Alcuin, 137.

Louis XIV. of France, 283, 303,

304, 310, 360.

Louis XVI. of France, 414.

Lucas di Burgo ;
see Pacioli.

Lucas of Liege, 326.

Lucian, 29.

Lunes, quadrature of. 40-2.

Luther, 219, 220.

Lysis, 29.

MacCullagh, 480, 494, 496.

Macdonald on Napier, 239.

Maclaurin, 392-6.
- ref. to, 276, 333, 381, 386, 398,
412.

Macmahon, 462, 479.

Maestlin, 257.

Magic squares, 121-2, 310, 379.

Magnetism, 441, 442, 444, 453-4,
493-7.

Mairan, 387.

Malves, de, 377-8.

Mamercus, 17.

Mandryatus, 17.

Mansion, 362.

Maps, 241, 255, 256.

Maralois, 238.

Marcellus, 67, 77.

Marie, ref. to, vii, 65, 279, 450.

Marinus of Athens, 113.

Mariotte, 386.

Marre on Chuquet, 210.

Martin, ref. to, 89, 96, 123, 249.

Mary of England, 218.

Mascheroni, 58.

Mass, centres of, 75, 101, 254, 280,

293, 300.

Master, degree of, 148.

Mathematici Veteres, the, 115.

Matter, constitution of, 267.

Matthiessen, 51.

Maupertuis, 404.

Maurice of Orange, 248, 271.

Maurolycus, 229-230.
Maxima and minima, determina

tion of, 300, 305, 310, 350, 368,
394.

Maximilian I. of Germany, 206.

Maxwell, 495-6.
ref. to, 267, 435, 454, 494, 497.

Mayer, F. C., 401, 406.

Mayer, J. T., 405.

Mechanics. Discussed by Archy-
tas, 30

; Aristotle, 50 ;
Archi

medes, 75 ;
and Pappus, 101.

Development of, by Stevinus and

Galileo, 247-251; and byHuygens,
303-4. Treated dynamically by
Newton, 335 et seq. Subsequently
extended by (among others)
D Alembert, Maclaurin, Euler,

Lagrange, Laplace, and Poisson,

chapters xvn. xvin. Recent work

on, 484-8.

Medicine, Greek practitioners, 151.

Melancthon, 205, 220.

Melissus, 32.

Menaechmian triads, 48.

Menaechmus, 48-9.
- ref. to, 37, 54, 78, 79.

Menelaus, 95. ref. to, 387.

Menge on Euclid, 53.

Menou, General, 438.

Mercantile arithmetic, 161, 173,

174, 187-200, 210, 213.

Mercator, G., 255.

Mercator, N., 310-1. ref. to, 329.

Mercator s projection, 255.

Mere, de, 286.

Mersenne, 307-8. ref. to, 270, 283.

Merton College, Oxford, 146.
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Mesolabum, 43.

Meton, 35.

Metrodorus, 103.

Mdziriac, 306-7.

ref. to, 224, 298, 299.

Michell, 435.

Microscope, invention of, 325.

Mill s Logic, 44.

Milo of Tarentum, 19, 22.

Minkovvski, 460.

Miuos, King, 43.

Minns
;
see Subtraction.

symbols for, 4, 105, 106, 159, 200,

210-2, 215, 218, 219, 220, 243-4.

origin of symbol, 210-2.

Mittag-Lemer, 471.

Mobius, 487. ref. to, 485.

Mohammed, 116.

Mohammed ibn Musa ; see Alka-

rismi.

Moivre, de, 391-2. ref. to, 390, 406
Moments in theory of fluxions, 351.

Monastic mathematics, 134-9.

Monge, 431-3.
- ref. to, 399, 473, 482.

Montmort, de, 377.

Montucla, 224.

ref. to, 254, 309, 315, 372, 373.

Moon, mass of, 342.

secular acceleration of, 417.

Moors, mathematics of, 169-174.

Morgan, A. de
;
see De Morgan.

Morley on Cardan, 224.

Moschopulus, 120-2. ref. to, 379.

Motion, laws of, 251, 278, 337.

Mouton, 327, 360.

Miiller
; see Regiomontanus.

Mullinger, ref. to, 137, 142.

Multiple points, 347, 377, 378.

Multiplication, processes of, 107,

130, 193-6.

symbols for, 244.

Murdoch, 347.

Murr on Regiomontanus, 205, 209.

Music, in the quadrivium, 23, 24,

115, 134-140.
Musical progression, 29.

Mutawakkil, the Caliph, 151.

Mydorge, 307. ref. to, 270, 283.

Napier of Merchistoun, 239-240.
- ref. to, 200, 201, 202, 352.

B.

Napier, Mark, 239.

Napier s rods, 194-6.

Naples, university of, 175.

Napoleon I., 146, 360, 415, 423,

425, 426, 432, 434, 438.

Napoleon III., 443, 473.
Nations in the Universities, 146.

Naucrates, 79.

Navarre, College of, 145.

Navier on Fourier, 438.

Navigation, science of, 255.

Nebular hypothesis, 421-2.

Negative sign, 4, 105, 106, 159,

200, 215, 210-2, 218, 219, 220,
243-4.

geometrical interpretation, 238.

Neil, 291.

Neocleides of Athens, 47.

Neptune, the planet, 489, 490.

Nesselmann, 51, 61, 104.

Netto, 478.

Neumann, C., 425, 454, 471, 497.

Neumann, F. E., 494, 496, 497.

Newcomb, 492.

Newton, chapter xvi. (see table of

contents).- ref. to, 57, 77, 83, 101, 201, 235,

237, 240, 244, 246, 251, 258, 261,

266, 267, 275, 276, 279, 293, 304,

305, 311, 312, 316, 359, 362, 363,

364, 365, 366, 368, 369, 370, 376,

377, 378, 380, 381, 383, 386, 387,

388, 390, 391, 392, 393, 396, 397,

398, 399, 401, 407, 408, 422, 423,

425, 438, 474, 475, 478.

Newton s Primipia, 834-344,
ref. to, 251, 267, 279, 293, 304,

370,376, 381, 383, 387, 390, 391,

397, 398, 408, 423, 425, 475.

Newton of Yale, 491.

Nicholas IV. of Rome, 145, 182.

Nicholas, Paul, 149.

Nicholas Rhabdas of Smyrna, 1 jn.

Nicole, 377. ref. to, 347.

Nicomachus, 956.
- ref. to, 114, 115, 120, 136.

Nicomedes, 85-6.

Nicoteles of Alexandria, ,:,.

Nieuwentyt, 368.

Nines, casting out the, 166, 1 J- ).

Nizze, 63, 92.

Nonante for ninety, 124.

33
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Non-Euclidean geometry, 465-8.

Nother, 470, 481.

Numbers, defective, 29.

excessive, 29.

figurate, 285.

perfect, 29, 61, 308.

polygonal, 28, 29, 105.

Numbers, theory of. Treatment
ofby Pythagoras, 27-9; by Euclid,
60-1 ; by Diophantus, 111

; by
Fermat, 295-9 ; by Euler, 404

;

by Lagrange, 409, 411-2
; by

Legendre, 428-9 ; by Gauss and
other mathematicians of recent

times, 454-5, 457-462. Partition

of, 462.

Numerals, symbols for, 123-131,

141, 158, 161, 173, 174, 187-192.

Numeration, systems of, 72-3,81-2,

chapters vn. xi.

Nutation, 387.

Octante, for eighty, 124.

(Enopides of Chios, 32.

Offa, 137.

Oldenburg, 327, 328, 360, 364.

Olleris on Gerbert, 140, 142.

Oltaiano on Pappus s problem, 102.

Omar, the Caliph, 117.

Omar Alkayami, 165-6.

Omega function, 461, 469.

Operations, calculus of, 220, 389,
407.

Oppert, ref. to, 6.

Optics (geometrical). Discussed by
(among others) Euclid, 62

; Pap
pus, 101; Alhazen, 167; Koger
Bacon, 182

; Snell, 256 ; Descartes,

277-8; Barrow, 312; Newton,
324-5; Sir William Hamilton,
475.
-

(physical), 62, 278, 304-5,326-7,
405, 436, 442, 443, 487, 493-7.

Orderic Vitalis, 141.

Oresmus, 183-4. ref. to, 246.

Orientation of Egyptian temples, 7.

Orrery, 47, 77, 255.

Oscillation, centre of, 303, 388.

Osculating circle, 369.

Otho, 229.

Oughtred, 241-2.

ref. to, 244, 245, 246, 321.

Oxford, university of, 146, 184,
185.

Ozanam, 224.

TT, value of, 6, 8, 68, 69, 98, 154,
1

156, 158, 237, 238, 239, 291, 314.

incommensurability of, 38, 315,
338, 406, 428.

introduction of symbol, 401,402.

Pachymeres, 120.

Pacioli, 212-6.
- ref. to, 193, 194, 199, 216, 219,
223, 243, 244.

Paciolus
;
see Pacioli.

Padua, university of, 175,185, 191.

Palatine Anthology, 63, 103.

Pappus, 100-102.
- ref. to, 52, 54, 57, 62, 63, 75, 78,

79, 81, 85, 105, 254, 275, 280, 355.

Parabola, evolute of, 303.

quadrature of, 69-70, 281, 290,
300.

rectification of, 291-2.
Parabolic geometry, 467.

Parallel lines, 99-100, 258, 428,
466-7.

Parallelogram of forces, 50, 249,

337, 376.

Pardies, 326.

Parent, 377.

Paris, university of, 143, 144-6,
184, 186.

Parmenides, 32.

Pascal, 282-8.
- ref. to, 57, 234, 259, 260, 269,

270, 300, 301, 302, 306, 310, 352,

356, 357, 393, 431.

Peacock, 447.

ref. to, 123, 173, 187, 436, 445,
448.

Pedals, 393.

Peletier, 230.

Pell, 317. ref. to, 244.

Pemberton, 323, 353.

Pendulum, motion of, 250, 253,

303, 304, 316, 339, 440.

Pentagram-star, the, 20.

Pepin on Frenicle s problem, 310.

Perfect numbers, 29, 61, 308.

Perier on Pascal, 282.

Perseus, 86.

Perspective, 260, 389, 390.
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Peter the Hermit, 141.

Peterhouse, Cambridge, 147.

Petrarch, 120, 184.

Phalerius, 52.

Petri on Cusa, 209.

Pfaff, 430-1. ref. to, 482.

Pherecydes of Syros, 19.

Philip II. of Spain, 234.

Philippus of Athens, 48.

Philolaus, 22, 29, 47.

Philonides, 79.

Philopouus, 42.

Philosophizing, Newton on, 342.

Philosophy, history of, 273.

Phoenician mathematics, 1-9.

Physics, mathematical, 267, 493-7 ;

also see headings of subjects.
Piazzi of Palermo, 452.

Picard, C. E., 471.

Picard, J., 330, 331.

Pihan on numerals, 189.

Piola on Cavalieri,. 279.

Pisa, university of, 185.

Pitiscus, 230. ref. to, 229.

Plana, 491. ref. to, 490.

Planetary motions, 24, 47, 63, 82,

88, 98, 170, 217, 252, 258, 278,

337-42, 370, 412-3, 420-2, 452-3,

456, 489-492.

stability, 412, 420, 441.

Planets, astrological, 122.

Planudes, 119. ref. to, 192.

Platina, 141.

Plato, 43-5.
- ref. to, 22, 28, 30, 36, 59, 66.

Pliny, 93.

Pliicker, 480.

Plus; see Addition.

symbols for, 4, 105, 106, 159, 178,
200, 210-2, 215, 218, 219, 220,
231, 232, 243.

origin of symbol +, 210-2.

Plutarch, ref. to, 16.

Poincare, 465, 471, 482, 492.

Poinsot, 440-1.

Point, Pythagorean def. of, 24.

Poisson, 439-442.
- ref. to, 399, 417, 435, 450, 454,
486.

Polar triangle, 238,
4

2 V,.

Polarization of light, 305, 442, 443,
444.

Poles and polars ; see Geometry
(Modern Synthetic).

Polygonal numbers, 28, 29, 105.

Polygons, regular. 455.

Polyhedrons, regular, 22, 27, 58, 85,
113.

semi-regular, 72.

Poncelot, 434.

ref. to, 102, 399, 431, 482, 484.

Pontecoulant, 491. ref. to 490.

Porisms of Euclid, 62.

of Diophantus, 111.

Port-lioyal, society of, 284.

Potential, the, 412, 419, 428, 442,

486, 487.

Poudra on Desargues, 259.

Power, origin of term, 40.

Powers
;
see Exponents.

Prague, university of, 184-5.
Predari on Cavalieri, 279.

Pretender, the Young, 392.

Prime and ultimate ratios, 337,
416.

Primes, 60, 61 307.
- distribution of, 429, 457, 462,
468.

Pringsheim, 477.

Printing, invention of, 203, 204.

Probabilities, theory of, 286-7,
300-2, 303, 373, 390, 392, 397,

407, 409, 411, 423-4, l-Js 145,

451.

Proclus, 113.
- ref. to, 13, 15, 19, 22, 55.

Product, symbols for, 244.

Professors in Paris, 145-6.

Progressions, arithmetical, 29, 71,

85, 158.

geometrical, 29, 60, 70, 73, 158.

musical, *J ..

Projectiles, 222, 251, 337.

Proportion, symbols for, 242, 214-5.
treatment by Euclid, 60.

Psellus, 119. ref. to, 230.

Pseudospherical space, 466.

Ptolemies, dynasty of, 52, 93, 116.

Ptolemy, 97-100.
- ref. to, 82, 85, 87, 88, 152, 162,
165, 167, 169, 170, 171, 176, 181,
183, 185, 186, 205, 230; also see

Almagest.
Pullen of Oxford, 146.
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Pulley, theory of, 30, 75.

Purbach, 209. ref. to, 205-6.

Puzzles, 32-3, 63, 223-4.

Pyramid, surface of, 72, 156.

volume of, 47, 72, 156.

Pythagoras, 19-29.
ref. to, 3, 44, 55, 62.

Pythagorean School, the, 19-31.

Quadratic equations, 59, 89, 103,

107, 154-5, 163-4, 214.

Quadratic reciprocity, 429.

Quadratic residues, 429.

Quadratrix, 35, 36, 48.

Quadrature of circle; see Circle,
also see IT.

cone, 72, 156.
- curves, 258, 290-1, 300, 309,

328-9, 348-9.

ellipse, 71.

lunes, 40-2.
-

parabolas, 69-70, 281, 290, 300.

sphere, 68, 72.

Quadrics, 72, 402, 412.

Quadrilateral, area of, 156.

Quadrivium, 24, 115, 119, 136, 137,

139, 148, 184, 185.

Quantics, 478-9.

Quartic equation, 165, 226, 229,
236.

Quaternions, 475, 476.

Quetelet, ref. to, 247, 309.

Quintic equation, 463, 472, 475,478.

Quipus; see Abacus.

Quotient ;
see Division.

symbols for, 159, 166, 244.

Raabe on convergency, 477.

Eabdoligia, the, 196, 239, 240.

Radical, symbols for, 160, 210, 219,

245-6, 290.

Rahn, 244.

Rainbow, explanation of, 182, 278,

312, 325.

Raleigh, Sir Walter, 241.

Ramus, 230-1.

Rankine, 496.

Rashdall, ref. to, 146.

Ratdolt on Campanus, 182.

Ratio, symbols for, 242, 244.

Rational numbers, Euclid on, 60.

Rayleigh, Lord, 488, 496.

Recent mathematics, chapter xix.

Reciprocants, 478.

Record, 218.
- ref. to, 128, 190, 200, 244.

Recreations, mathematical, 223
,

224, 306.

Rectification of curves, 291-2, 314,
318, 329, 348, 350.

Recurring series, 392, 409.
Reductio ad absurdum, 40.

Reduction in geometry, 40.

Reformation, the, 204.

Refraction, 182, 256, 277, 305, 312,
325, 327, 345, 388, 454, 475.

Regiomontanus, 205-9.
ref. to, 167, 215, 216, 231, 246.

Regula ignavi, 194.

Renaissance, the mathematics of,

chapters xn. xui.

Res used for unknown quantity,
163, 207, 214, 231, 235.

Residues, theory of, 429, 456, 457.

Resistance, solid of least, 341, 376.
Reversion of series, 328, 330.

Reye, 482, 484.

Rhabdas, 120.

Rheticus, 229. ref. to, 239, 246.

Rhetorical algebra, 104, 107, 154,
172, 178, 207, 214.

Rhind papyrus, the, 3-4, 6-8.

ref. to, 10, 92, 104.

Rhonius, 317.

Riccati, 378. ref. to, 385.

Ricci, 310.

Riemann, 465-8.
ref. to, 56, 454, 461, 462, 463,

470, 481, 482, 497.

Riese, 218-9.

Rigaud, ref. to, 241, 317.
Ritter on Culmann, 484.

Roberval,308. ref. to, 276, 283, 288.

Roche, 421.

Rodet, ref. to, 3, 153.

Rods, Napier s, 194-6, 239, 240.

Roemer, 318.

Rohan, 233.

Rolle, 380.

Roman mathematics, 114-5.

symbols for numbers, 129.

Romanus of Louvain, 230.

ref. to, 233.

Rome, mathematics at, 114-5.
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Hoots of equations, imaginary, 227.

negative, 227.

number of, 451, 472.

origin of term, 163.

position of, 277, 332-3, 378, 380,

417, 438-9.

symmetrical functions of, 332,

407, 473.

Roots, square, cube, &c., 100, 210,

219, 245-6, 290.

Rosen on Alkarismi, 162.

Rosenbain, 468.

Routh, 488.

Royal Institution of London, 436.

Royal Society of London, 316.

Rudolff, 218-9. ref. to, 245.

Rudolph II. of Germany, 257.

Ruffini, 464.

Rumford, Count, 435-6.

Saccheri, 465.

Saint Giles, monastery of, 147.

Saint-Mesme; see L Hospital.
Saiut-Venant, 496.

Saint Vincent, 309.

ref. to, 302, 311.

Sairotti, 485.

Salerno, university of, 143, 144.

Salmon, 479, 481.

Sanderson s Logic, 320.

Sardou on Cardan, 224.

Sauuderson of Cambridge, 331.

Saurin, 377.

Savile, Sir Hen., 240.

Scaliger, 237.

Scharpff on Cusa, 209.

Sobering, ref. to, 451, 465.

Schneider, on Roger Bacon, 180.

Schoner, 176.

Schools of Charles, 137-142.

Schooten, van, 308-9.
- ref. to, 234, 237, 276, 321.

Schroeter on Steiner, 483.

Schubert, 481.

Schwarz, 465, 470, 482.

Scores, things counted by, 124.

Scratch system of division, 198-9.

Screw, the Archimedean, 66.

Secant, 167, 238, 246, 397, 401.

Section, the golden, 46, 58.

Secular lunar acceleration, 4DO.

Sedillot, ref. to, 9, 150, 167.

Septante for seventy, 124.

Serenus, 95. ref. to, 387.

Series ;
see Expansion.

reversion of, 328, 330.

Serret, 407, 479.

Seville, School of, 169.

Sexagesimal angles, 5, 246.

Sexagesimal fractions, 98, 174.

Sextant, invention of, 325.

Sforza, 213.

s Gravesande, 302.

Shakespeare, ref. to, 188.

Signs, rule of, 107.

Simple equations, 103-4, 107.

Simplicius, 42.

Simpson, Thomas, 396-7.

ref. to, 398, 401.

Simson, Robert, 55. ref. to, 81.

Sine, 88, 95, 97, 153-4, 156, 167,

205, 238, 242, 246, 397, 401.

Sin x, series for, 315, 328, 370.

Sin- 1
x, series for, 315, 328.

Sixtus IV. of Rome, 206.

Slee on Alcuin, 137.

Sloman, 362, 364.

Slusius; see Sluze.

Sluze, de, 317-8.
- ref. to, 308, 312, 313.

Smith, Henry, 458-461.
- ref. to, 469, 481.

Smith, R. A., on Dalton, 437.

Snell, 256. ref. to, 248, 277.

Socrates, 43.

Solid of least resistance, 341, 376.

Solids ; see Polyhedrons.
Sophists, the, 35.

Sorbonne, R. de, 145.

Sound, velocity of, 341, 408, 417, 425.

Spanish mathematics, 169-174.

Spedding on Francis Bacon, 253.

Sphere, surface and volume of, 68.

Spherical excess, 238.

Spherical harmonics, 419, 427, 428.

Spherical space, 466-7.

Spheroids, Archimedes on, 7-!.

Spinoza and Leibnitz, 361.

Spiral of Archimedes, 71.

Spiral, the equiangular, 373, 485.

Sponius on Cardan, 2 2~&amp;gt;.

Square root, symbols for, 160, 210,

21&amp;lt;), 245, 290.

Squaring the circle; see Circle.
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Stahl, 470.

Staigmiiller, 212, 217.

Stapulensis, 176.

Stars, lists of, 88, 98, 256, 489.

Statics; see Mechanics.

Staudt, von, 483. ref. to, 431.

Steam-engine, Hiero s, 91.

Stefan, 497.

Steicben on Stevinus, 248.

Steiner, 482-3.
- ref. to, 431, 465, 484.

Stevinus, 247-9.
ref. to, 76, 202, 232, 236, 245,

246, 390.

Stewart, Matthew, 395-6.

Stifel, 219-220.
- ref. to, 200, 211, 230, 235.

Stiffelius; see Stifel.

Stirling, 347, 394. ^^
Stobaeus, 54.

Stokes, Sir Geo., 478, 488, 492, 496.

Strabo, 2, 43.

String, vibrating, theory of, 383-4,
386, 389, 409.

Sturm, ref. to, 439.

Style or gnomon, 18.

Subtangent, 299, 309, 312-3, 318.

constant, 330, 368.

Subtraction, processes of, 193.

symbols for, 4, 105, 106, 159,

200, 210-2, 215, 218, 219, 220,
243-4.

Suidas, ref. to, 18.

Sun, distance and radius of, 35, 64,

Sun-dials, 18.

Supplemental triangle, 238, 256.

Surds, symbols for, 160, 210, 219,

245, 290.

Suter, 93.

Swan-pan; see Abacus.

Sylow and Lie on Abel, 463.

Sylvester II., 140-2.

Sylvester, 333, 461, 462, 478, 482.

Symbolic algebra, 105.

Symbols, algebraical, 243-6.

trigonometrical, 246.

Symmetrical functions of roots of

an equation, 332, 372, 428.

Syncopated algebra, 104.

Synthetic geometry ;
see Geometry.

Tabit ibn Korra, 164-5. ref. to, 151.

Tait, 475, 497.

Tangent (geometrical), 275-6, 308,
313.

Tangent (trigonometrical), 167,238,

246, 397, 401.

Tan- 1
x, series for, 315, 370.

Tannery, ref. to, 19, 27, 34, 51, 89,

111, 120.

Tartaglia, 220-4.
- ref. to, 194, 198, 213, 226, 229,

234, 243, 244.

Tartalea; see Tartaglia.
Tautochronous curve, 303.

Taylor (Brook), 388-390.

ref. to, 377, 386, 409.

Taylor s theorem, 388, 394, 416, 474.

Taylor C., on conies, 259.

Taylor, Is.
,
on numerals, 189, 190.

Taylor, T., on Pythagoras,. 29.

Tchebycheff, 462, 468.

Telescopes, 251, 302, 304, 305, 315,

325.

Ten as radix
;
see Decimal.

Tension of elastic string, 316.

Terquem on Ben Ezra, 171.

Terrier on graphics, 484.

Tetrad, Pythagorean, 24.

Thales, 14-17. ref. to, 3.

Thasus of Athens, 48.

Theaetetus, 49. ref. to, 48, 55, 58.

Theano, 19.

Theodorus of Gyrene, 31, 38, 43,

49.

Theodosius, 92. ref. to, 312.

Theon of Alexandria, 112.

ref. to, 55, 56, 130.

Theon of Smyrna, 96.

Theophrastus, 13.

Thermodynamics, 439.

Thermometer, invention of, 251.

Theta functions, 455, 463-4, 468,

468-470.
Theudius of Athens, 47.

Thomson, J. J., 454, 488, 497.

Thomson, Sir Benjamin, 435-6.

Thomson, Sir William
;
see Kelvin.

Three bodies, problem of, 340, 405,

411, 492.

Thurston on Carnot, 439.

Thymaridas, 96-7. ref. to, 103.

Tides, theory of, 252, 342, 386, 395,

421, 492.
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Timaeus of Locri, 31, 43.

Tisserand, 423, 491.

Titius of Wittemberg, 421.

Todhunter, ref. to, 427, 450.

Tonstall, 190.

Torricelli, 309.

ref. to, 253, 283, 379.

Tortuous curves, 380, 402.

Toschi, 378-9.

Trajectories, 356, 374.

Trembley, 407.

Treutlein, 176, 187, 210.

Triangle, area of, 89, 90.

arithmetical, 222, 234, 285.

Triangle of forces, 217, 248, 249, 376.

Triangular numbers, 28, 29.

Trigonometrical functions, 88, 95,

97, 153-4, 156, 167, 205, 238, 242,

246, 374, 397, 401.

Trigonometrical symbols, origin of,

246, 397, 401.

Trigonometry. Ideas of in Rhind

papyrus, 8. Created by Hippar-
chus, 88; and by Ptolemy, 97.

Considered a part of astronomy,
and treated as such by the Greeks
and Arabs, 166-7. Hindoo works
on, 153-4, 156, 160. Treated by
most of the mathematicians of

the renaissance, chapters xn. xin.

Development of by John Ber
noulli, 374 ; Demoivre, 391 ; and
Euler, 401

; and Lambert, 406.

Trigonometry, addition formulae,
88, 230.

Triple triangle, the, 20.

Trisection of angle, 35, 38, 86, 237,
379.

Trivium, the, 115, 136, 139, 148.

Tschirnhausen, 318. ref. to, 364.
Tschotii

; see Abacus.

Tycho Brahe, 200, 257, 258.

Tylor, 123.

Tyndall on Faraday, 494.

Ubaldi, 390.

Ujein, 156.

Ujjayini, 156.

Undulatory Theory (Optics), 304-5,
327, 405, 436, 442, 443.

Universities, mediaeval, 142-7.
curriculum at, 148-9, 183-6.

Universities of renaissance, 204.

Unknown quantity, word or symbol
for, 4, 106, 124, 160, 1(53, 207,

214, 220, 231, 235, 277.

Urban, d
,
on Aristarchus, 63.

Vacarius of Bologna, 146.

Valson, ref. to, 442, 471.

Van Ceulen, 239.

Vandermonde, 424.

Van Heuraet, 292.

Vanishing points, 389-90.
Van Schooten, 308-9.

ref. to, 234, 237, 276, 321.

Variations, calculus of, 403, 408,

409, 441, 465, 482.

Varignon, 376-7. ref. to, 249.

Velaria, 373.

Venturi on Leonardo da Vinci, 216.
Vers x, series for, 370.

Verulam, Lord, 253-4. ref. to, 299.

Vibrating string, 383-4, 386, 389,
409.

Vienna, university of, 184, 185.

Vieta, 233-8.
ref. to, 81, 200, 229, 232, 239,

241, 244, 245, 308, 321.

Viga Ganita, 156, 159-160.

Vince, 351.

Vinci, Leonardo da, 216-7.
- ref. to, 248.

Vinculum, introduction of, 245.

Virtual work, 386, 409, 413, 433.
Vis mortua, 370.
Vis viva, 370.

Vitalis, 141.

Vitruvius, 75.

Viviani, 379.

Vlacq, 201.

Voigt, 497.

Voltaire on Newton, 344.
Von Breitschwert on Kepler, 256.
Von Helmholtz, 267, 454, 466, 488,

493, 495.
Von Humboldt, 453, 483.

Von Murr, 205, 209.
Von Staudt, 483. ref. to, 431.

Vortices, Cartesian, 278, 323, 336,
341, 344.

Waddington on Ramus, 230.

Wallis, 288-293.
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Wallis, ref. to, 63, 155, 241, 245,

246, 269, 282, 296, 300, 303, 311,

314, 316, 319, 321, 324, 328, 343,

344, 348, 352, 379.

Wappler on Budolff, 219.

Watches, invention of, 304, 317.

Watt, 91.

Wave Theory (Optics), 304-5, 327,

405, 436, 442, 443.

Weber, H., 465, 470.

Weber, W. E., 453, 496, 497.

Weierstrass, 464, 468, 471, 482.

Weissenborn, 134, 140.

Werner, 137, 140.

Wertheim on Diophantus, 105.

Weyr, works by, 3, 6.

Whewell, 448.

Whiston, 331. ref. to, 323, 353.

Widman, 210. ref. to, 200, 243.

Wiedemann, 497.

Wilkinson on Bhaskara, 157.

William of Champeaux, 144.

William of Malmesbury, 141.

Williams on decimal system, 415.

Williamson on Euclid, 53.

Wilson on Cavendish, 435.

Wilson s Theorem, 412.

Wingate, 241.

Woepcke, 150, 166, 172, 174, 175,
189, 216.

Wolf, 256, 421.

Wollaston, 437. ref. to, 305.

Woodcroft and Greenwood, 89.

Woodhouse, 446. ref. to, 445.

Work, virtual, 386, 409, 413, 433.

Wren, 315-6.
- ref. to, 292, 293, 303, 316, 333.

Wright, 255-6.

Xenophanes, 32.

Xylander, 230.

ref. to, 112, 119, 211, 231, 244.

Year, duration of, 17, 84, 87.

Young, Thos., 436.

ref. to, 305, 327, 426, 435, 442.

Young, Sir Wm., on Taylor, 388.

Zeno, 32.

Zenodorus, 86.

Zensus; 207, 214, 231, 235.

Zero, symbol for, 189-190.

Zeuthen, 51, 77, 78, 481.

Zeuxippus, 65.

Ziegler on Eegiomontanus, 205.

Zonal harmonics, 427.
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