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1. Source of the Problem 

Congruences of  first degree were necessary to calculate calendars in ancient 
China as early as the 2 na century B.C. Subsequently, in making the Jingchu [a] 
calendar (237,A.D.), the astronomers defined shangyuan [b] 1 as the starting point 
of the calendar. I f  the Winter Solstice of  a certain year occurred rl days after 
shangyuan and r2 days after the new moon, then that year was N years after 
shangyuan; hence arose the system of congruences 

aN ~ rl (mod 60) ~ r2 (mod b), . ~ ' 

where a is the number of  days in a tropical year and b the number of  days in a 
lunar month. 

2. Sun Zi suanjing [c] (Master Sun's Mathematical Manual) 

Sun Zi suanjing (Problem 26' Volume 3) reads: "There are certain things whose 
number is unknown. A number is repeatedly divided by 3, the remainder is 2; 
divided by 5, the remainder is 3; and by 7, the remainder is 2. What  will the num- 
ber be ?" The problem can be expressed as 

x --= 2 (mod 3) ~ 3 (mod 5) ~- 2 (rood 7). 

SUN ZI solved the problem as we do, giving 

x ~ 140 + 63 -k 30 ~=- 233 ~ 23 (rood 105). 

1 Shangyuan is a supposed moment that occurred simultaneously with the midnight 
of jiazi [v] (the first day of the 60 day cycle), the Winter Solstice and the new moon. 
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In speaking of the algorithm yielding these addends in the solution he continued: 
" In  general, for 

G1 ~ 0 ( m o d  5) ~ 0 (mod 7) = 1 (rood 3), take G1 = 70, 

G2 ~ 0(rood 3) ~ 0 ( m o d  7) ~ 1 (mod 5), take G2 = 21, 

G3 ~ 0 (mod 3) ~ 0 (mod 5) ~ (1 rood 7), take G3 = 15. 

Thus, in the present problem, if 
t p 

G l ~ 0 ( m o d 5 ) ~ 0 ( m o d 7 ) - ~ 2 ( m o d 3 ) ,  so G 1 = 7 0 × 2 - -  140, 

G 2 ~ 0 ( m o d 3 ) ~ 0 ( m o d 7 ) ~ 3 ( m o d S ) ,  so G 2 = 2 1 × 3 =  63, 

G a ~ 0 ( m o d 3 ) ~ 0 ( m o d S ) ~ 2 ( m o d 7 ) ,  and G ~ =  1 5 × 2 = 3 0 ,  

then the required x ~ G' 1 + G~ + G'3 (rood 105)." 
SUN'S example is a special numerical one, which can be transformed to solve 

the general case: 

x ~ ri (mod mi) (i = 1, 2 . . . .  , n) (1) 

where mi, mj are relative primes, 1 ~ i ~ j ~ n. I f  

G1 ~ 0 (mod m2) ~ 0 ( m o d m a ) . . .  ~ 0 (mod ran) ~ 1 (mod m 0 ,  

G2 ~ 0 (mod rn~) ~ 0 (mod m3) ...  ~ 0 (mod rnn) ~ l (mod m2), 
(2') 

G~ ~- 0 (mod rnl) ~ 0  (mod m2) ...  ~ 0 (mod rn~_l) ~ 1 (mod m~), 

then 

x ~. G'i =~ G i r  i mod m i . 
i=1  i ~ l  

In the same way, if we get F i from r/ congruences and let 

MiFi : Gi ~ 1 (mod mi), 

then 

where 

x ~  ~ G'i=--- 2 Giri =~ 2 MiFiri (mod M),  
i=1  i = l  i = l  

(3') 

(2) 

(3) 

M = H ml, M, = M/rn i. 
i - - I  

This statement is called the SuN Z~ Theorem, or the Chinese Remainder Theo- 
rem. Indeed, in imitation of the theorem, YANa HuI  [d] in Xu gu zhai qi suanfa [el 
(Continuation of ancient mathematics for elucidating the strange, 1275) had four 
similar problems, three of  which concerned n = 3 and the fourth n = 4, i.e. 

x ~ 1 (mod 2) ~ 2 (mod 5) -=-- 3 (mod 7) ~ 4 (mod 9). 
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By applying formula (2), he estimated 

G~ = 315, Gz  = 126, Gs = 540, G,~ = 280. 

Substituting these in formula (3) he got the final answer: 

x ~ 3 1 5 × 1 +  126×2 t - 5 4 0 × 3 + 2 8 0 × 4 ~ 3 3 0 7 ~  157 (mod 630). 
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3. Kuttaka of India 

3.1.  The solution of the equation 

a x  + c = b y  (4) 

for x, y in positive integers (where a, b, c are given integers, a > b, and a, b are 
relatively prime) is called K u t t a k a  by Indian mathematicians. Literally, K u t t a k a  

means a pulverizer, a name given on account of the process of  continued division 
that was adopted for the solution. Legend has it that it was up to ARYABHATA 
(C. 476 A.D.) to determine the integer N which when divided by a leaves the re- 
mainder rl ,  and when divided by b, leaves the remainder r2; thus 

i .e .  

N =  a x  + r l  = b y  + r 2 ,  

b y  - -  a x  : c, where c : r I - -  r 2 . 

Thus ARYABHATA discoverd a rule for the solution, which he expressed in two 
obscure stanzas of  his A r y a b h a t i y a .  2 

In modern symbolism by B. D A T T A  3 ,  the solution can be expressed as follows. 
Through continued division (Euclidean algorithm) a series of  quotients and 
corresponding remainders are as follows: 

qJ ,  qz  . . . .  , qm,  r l ,  r2 . . . . .  rm; 

the relations among them are 

a - b q l  + r l ,  

b = r l q 2  + r2 ,  

r 1 = r2q  3 -~- r 3 ,  

rn_  2 ~ - -  r . , _ l q  . + r . ,  

2 ARYABHATA, A r y a b h a t i y a ,  K.S.  SHUKLA'S English Translation, 1979, Delhi, 
pp. 74-84. 

a B. DATTA & A. N. S I N G H ,  H i s t o r y  d f  H i n d u  M a t h e m a t i c s ,  1938, Lahole, Vol. 2, 
pp. 95-99. 
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f rom which there is a series o f  r educ t ion  fo rmulas  : 

Y ~  q l X - J r  Y l ,  where by~ ~ r l x  + e ,  

x ~ q 2 Y ~  + x~., where r l x ~  -~ r2y~ - -  e ,  

Y l  = q a x l  ÷ Y2,  where r z y  2 = r 3 x  2 -~- e ,  

xa ~ q4Y2 ~- x 2 ,  where rax2  - -  r 4 y z  - -  e ,  

Ym--1 ~ q2m--lXm--1 -~ Ym, where  r2m_2Y m z r 2 m _ l X m _  1 -~- c ,  

Xm--1 ~- qzmYm -~ Xm, where r 2 m _ l X  m z r2mY m - -  c .  

: There  are  two cases to cons ider :  
C a s e  l ,  n , =  2 m - - 1  . . . . .  

Y m - 1  ~ q 2 m - l X m - i  -~- Ym, r2m-2Ym = r 2 m - a X m - I  ~- e .  

Let  Xm. 1 -k t ,  SO tha t  Ym =~- ( r 2 m - i t  -~- c)/r2m--2 is the integer q,  and  then f rom 
b o t t o m  t o t o p  by  reduc t ion  fo rmulas  we Obtain the  requffed x and  y .  
C a s e  2,  n = 2m, 

X m _  1 z q2mYm -~.Xm,  r2m 1Xm ~- r2mYm - -  C. 

r ' is the  integer q ' .  W e  then  ob ta in  Let  Ym ~ i t ,  SO tha t  x m = ( 2m t - -  c ) / r  2 m - I  

X and y by  using these reduc t ion  fo rmulas  f rom b o t t o m  to  top.  

3.2. W e  m a y  n o t e  tha t  Chap t e r  IV o f  MAHAVIRA'S G a n i t a  S a r a  S a n g r a h a  

presents  new poin ts  of  view4: 

' 1. Omi t  ql .  and  when x is solved, y m a y  be de te rmined  by  subst i tu t ing  x in  
equa t ion  (4).  ' ' " . . . . .  • 

2. Con t inued  divis ion is car r ied  up  to  r n ~  1. ' 
MAHAVmA'S idea  is fascinat ing.  Let  us  a p p l y  his suggest ion to  the equa t ion  

a x  - -  1 = b y  (5) 

and  the series o f  quot ients  will  be.  

q2m--l? q2m-2 ,  " ' ' ,  q3, q2" 

W h e n  r2m-1 = rn = 1, in Case 1 o f  K u t t a k a ,  let X,n--1 ---- t = 1, SO that  Ym ---- 0, 
and  let  k o  ~ Ym ~- O, k l  ~-  x m - 1  z 1. W i t h  the reduct ion  fo rmula  of  K u t t a k a ,  

we have 

k2  = Y m - 1  ~ q 2 m - l X m - I  ~ Ym q 2 m - l k l  - k  k o ,  

k3  = Xm-- 2 = q2m-2Y m 1 -~- X m - 1  ~ -  q 2 m - 2 k 2  -~- k l  . . . .  , 

4 C .N .  SRIHIVASIENGAR, The H i s t o r y  o f  A n c i e n t  lnd ian  M a t h e m a t i c s ,  1967, Calcutta, 
pp. 101-102. 
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and in general, 

thus 

ki = q2m+l-iki-1 @ ki-2 ~ qn+2_iki_l @ ki_2; . . . .  

x = k ,  = q2kn-1 4- kn-2.  (6) 

3.3. Moreover, Indian mathematicians did much work on Kuttaka and left 
us many problems, such as the following. 

Example 1. Find the number that if divided by 8 is known to leave 5, that if 
divided by 9 leaves a remainder 4, and that if divided by 7 leaves a remainder 1 
(Aryabhatiya, annotated by BHASKARA I. the 6 th century). 

Example 2. Suppose at a certain time since the Kalpa, the sun, the moon etc., 

have travelled for the following number of days after completing their full revo- 
lutions: 

Sun Moon Mars Mercury Jupiter Saturn 

1000 41 315 1000 1000 1000 

Given that the sun completes 3 revolutions in 1096 days, the moon, 5 revolutions 
in 137 days, Mars, 1 revolution in 185 days, Mercury, 13 revolutions in 1096 days, 
Jupiter, 3 revolutions in 10960 days, Saturn, 1 revolution in 10960 days, find the 
number of days since the Kalpa (Brahmagupta, XVIII, sl 7-8, 6281) 

E x a m p l e 3 .  The dividends are sixteen numbers beginning with 35 and increasing 
successively by 3; the divisors are 32 and others increasing successively by 2; 
the remainders are 1 and others increasing successively by 3, Wha t  is the unknown 
multiplier? (MAHAVlRA, Ganita Sara Sargraha, IV, 138 1/3, c. 850.) 

In general, in solving systems of equations 

x = a l x l  4- rt = azx2 4- r 2  = = a ,x ,  + rn, 

Indian mathematicians started with the first two conditions, 

x =- a~x~ 4- r, ~ a2x2 4- r2. 

By Kuttaka one can find the minimum value of X~, say o~; then the minimum value 
of x will be al.o~ 4- r1 and hence the general solution: will be 

x ~- al.(azt + o¢) 4- r t -~ alazt  4- a~.~ 4- rl 

where t is an integer. If we supply the third condition, then 

x ~ ala2t 4- alo~ 4- rl ~ a 3 x  3 ~- ra, 

which c~m be solved in the sam e way. Proceeding in this way successively we will 
have a value satisfying all the conditions. 3 .  ~ . 
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4. The General Dayan qiuyi  [fl Rule 

Shu shufiu zhang [g], written by QIN JIUSHAQ [h] in 1247, was the most important 
mathematical work in the Song [i] dynasty. At its very beginning there is the Gener- 
al Dayan qiuyi Rule, discussing extensively congruences of first degree in order 
to solve the nine problems in Chapter I and the third problem of Chapter II. 
These problems are set against various natural or social backgrounds, yet all of 
them are expressed by systems of congruences as far as mathematics is concerned 5. 
Their moduli are of different types. 

Example 1. Solve x ~ 1 (rood 19) ~ 14 (mod 17) 
1 (rood 12) (Ssjz 6, I, 9) 

Example 2. Solve x 0.32 (mod 0.83) 
0.70 (rood 1.10) 
0.30 (mod 1.35) (Ssjz, I, 5) 

Example 3. Solve x 0 (rood 365 4108/16900) 
11 7540/16900 (mod 60) 
10 7264/16900 (mod 29 8967/16900) (Ssjz, II, 3) 

Example 4. Solve x ~ 0 (rood 54) ~ 0 (mod 57) 
51( mod 75) ~-~ 18 (rood 72) (Ss.iz, I, 3) 

Example 5. Solve x --60 (rood t 3 0 ) ~  --30 (mod 110) 
- -  - - 1 0  (mod 120) ~ --10 (mod 60) ~ 1 0  (mod 25) 

10 (mod 100) ~ 10 (mod 30) ~ 10 (mod 20) (Ssjz, I, 8) 

The General Dayan qiuyi Rule is composed of four parts, as follows: 

4.1, The classification of moduli 

Yuanshu [j]--A set of natural numbers without a gcf (greatest c o m m o n  factor) 7. 
Shoushu [k]--A set of decimals. 
Tongshu [1]--A set of fractions. 
Fushu [m]--A set of natural numbers having a gcf. 

4.2. To convert moduli into dingshu [n]. 

4.2.1. To convert shoushu and tongshu into yuanshu QIN believed that 

x ~  a rood a , 

5 U. LIBBRECHT, Chinese Mathematics in the Thirteenth Century, 1973, MIT Press, 
pp. 384412. 

6 We abbreviate Shu shu jiu zhang (Mathematical Treatise in Nine Chapters) as Ssjz, 
7 The greatest common faetor~ of a~ b, ..... C, we-denote by (a, b, ... c). 
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where a, b, c are natural numbers, was the same as the congruence 

ax ~- b (mod c). 

Therefore the system of congruences in Example 2 may be converted into 

100x ~ 32 (mod 83) ~ 70 (rood 110) ~ 30 (mod 135), 

and that in Example 3 into 

6172608x ~ 193440 (mod 1014000) 
163771 (rood 499067). 

4.2.2. To convert yuanshu into dingshu, QIN must have had an intimate knowledge 
of the Chinese Remainder Theorem and also the condition for solubility of  the 
system of congruences. The moduli of nine problems in Ssjz are not relatively 
prime. I f  we solve them by the theorem directly, there would be a contradiction. 
Thus, with great care, QrN converted each modulus of the sets into dingshu ffi 
so as to satisfy 

(if,, ffj) = 1, (7.1) 

f i l l  m i ,  (7.2) 

f l  #i = M = {ml, m2 . . . . .  m n }  8 • (7.3) 
i--1 

As we know, QtN'S treatment is correct and necessary. When we replace m i by 
if,., the new system is the same as the original system (1) and so then the converted 
system may be solved by the theorem. 

Ssjz formulated a program for converting yuanshu into dingshu. For a set of 
moduli ml,  O'/2 . . . .  , m n Q I N  gives: 

Step 1. To find the g c f o f m , _ l ,  m,, i.e., (mn 1, m~) = dj : QIN considered mn_ l/dl, 
mn as dingshu of m,  1, m,, respectively, if (m,_ l /d l ,  m n) ---~ d 2  ~ -  l. 

S tep2.  Otherwise, i.e., d2 ~ 1, give mn_l, m,/dl as dingshu of m,  1, m,,, if 

(m._l ,  m./dl) • d 2 = 1. 

Step 3. Otherwise, i.e., d~ > 1, give m._Jd2,  rnn d2/d I as dingshu of ran_l, m., 
if 

(m._l/d2, rn. dz/dl) : d 3 : 1. 

Step 4. Otherwise, i.e., d3 > 1, give m._i /dz  d3, m.  d 2 d3/d I as dingshu ofmn_l ,  
m., if  

( m . _ 1 / a ~  a 3 , m . a ~  a3/al) = ,t4 = 1. 

Likewise, give #'.-1 ~ m.- l / d z  d3. . .  dk, 

#',~ = m,, d~ d3 . . .  a r ia ,  

s lcm, the least common multiplier of a, b . . . .  c, we denote by {a, b . . . .  c}. 
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as dingshu of  m,_ l ,  ran, if 

( # ' n ~ l }  #in)  : :  d k + l  = 1 9 "  

Similarly, operate on #" w i t h  m._~, m . _ : ,  m._3 . . . . .  m2, ml and denote the 
results by 

t ! t t 
# 1 ,  # 2  . . . .  , # n  2, # n - - l ,  # n "  

t 
Again, operate on #'n 1 with # i  ( i = n - - 2 ,  n - - 3  . . . .  , 2 , 1 )  and denote the 
results by 

tt tt tt tt 
# 1  , # 2  . . . .  , # . - - 3 ,  # n - - 2 ,  # n  1, # n "  

Again,  operate on #','-2 with #~' (i = n - -  3, n --  4, . . . ,  2, 1) and denote the results 
by 

i l l  i t !  t i t  
# 1  , # 2  , " ' ' , # n - - 3 , # n - - 2 , # n - - l ,  # n "  

Finally, we have 

# 1 ,  # 2 ,  - - . ,  # n - a ,  #n" 

These are the required dingshu of  the moduli.  I t  is obvious that  condit ions (7.1) 
to (7.3) are satisfied and system x ~ ri (mod #i) is the same as system (1). 

4.2.3. To convert  fushu into yuanshu, QIN considered a set o f  moduli  a, b . . . .  , c, 
in which a = a l d ,  b = b l d , . . . , c - ~ c l d ,  where d =  (a, b, . . . ,  c). I f  there is 
also a factor  d in a~, b~., . . .  or  c~ and the exponent  o f  d, say, in aj is the highest, 
then the dingshu of  the set a, b, . . . ,  c is equal to that  o f  a, b~, .. , c~. 

The set of  moduli  in Example 4 is fushu, for (54, 57, 75, 72) = 3, and the ex- 
ponent  o f  3 in 54 is the highest, QIN converted first thefushu into 54, 19, 25, 24, 
and  then converted them further  into dingshu by the process in § 4,2.2. The humeri- 
eat examples treated in Ssjz are as follows: 

5 4 - -  54 9 -  5 4 - -  2"1 

57 19 

75 25 - -  

72 24 _ _  

Fushu - -+  yuanshu 

19 

25 

2 4 ~  24 - -  24 

19 

25 

8 

dingshu 

9 There is a k, certainly such that dk+ t ..... 1, for dl is definite, whereas dz ~ da 
--~ d4 ~ ... ~ dk; see LI JIMIN, On Dingshu of Ssjz, Qin Jiushao and Ssjz, 1987, Beijing 
Normal University Press, p p :  220-234, 

The original modul i  are thus converted into dingshu 27, 19, 25, 8.  
In  fact it is unnecessary to convert  fushu into yuanshu first. The modul i  in 

Example 5 have a gcf, so that  the set wou ld  befushu; which QIN, however,  convert-  
ed directly by the process in § 4.2.2. (ruling out  § 4.2.30 into dittgshu as follows: 



T h e  C h i n e s e  R e m a i n d e r  T h e o r e m  2 9 3  

i 
OO t '~  

[ 
--~ ¢¢5 

I 
--.~ t'¢3 

t"q t"q ,--- t ' q  

i 

t"q t"q 

L 

t"q 

I 

t"q 

1 
¢-q 

I 

t"q 

I q l  

¢'~ ~ t-q ~ t"q ~ t"q t",l 

I 

t -q 

[ 

tt% 

I 

I 

I 

t"q 

i t"q 
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4.3. The Dayan qiuyi Rule. The moduli having been converted into dingshu, 
the system of congruences can be solved by the Chinese Remainder Theorem. It 
boils down to 

ax ~ 1 (mod b). (8) 

QIN summed up the Dayan qiuyi Rule (Rule of finding unity) in this connection. 
The rule is a special algorithm designed to solve congruence (8), where a < b. 
Though the original text is brief and obscure, a careful study of the problems of 
Ssjz presents the rule as follows: 

Step 1. Arrange a at the upper right, and b below. Set down tian yuan [o], the 
unity (j~ = 1), at the upper left. 

Step 2. Divide the lower right number by the upper one (b/a = q2 @ r2/a), and 
then multiply the quotient by tian yuan. Put the result (jz = q2jt) at the left be- 
low. 

Step 3. Divide the larger number (upper right number, a) by the smaller one (lower 
right number r2, a/r2 = qa + ra/r2). Multiply the quotient (qa) by the lower left 
number and add the result to the upper left number (J3 = q3i2 @ J~). Put the sum 
at the upper left. 

Step 4. Repeat the same process 

J4 = q413 - /J2 (put the sum at the lower left), 

J4 = q5]4 -k J3 (put the sum at the upper left), 

Step n. It is necessary to set the final upper right number at unity (i.e. to find the 
remainder rn = 1), where n is odd. Then the corresponding upper left number 
is chenglii [p], the solution of congruence (8), i.e. 

. ]n=q,A-- l+Jn--2 ,  A = 0 ,  J r =  1. (9) 

QIN'S idea may be expressed by the following diagrams: 

Step l Step 2 Step 3 Step 4 

q3 

J t  a 

b 

j l  a J3 

J2 r2 J2 

r3  .]3 

r2 A 

r3 

r .  

• . .  . ~  

Step n 

qn 

r ~ = l  

rn-- 1 

q2 q4 
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Problem 3, in Chapter II of Ssjz has a numerical example (Figure 1) in calculat- 
ing the Kaixi [q] calendar (1207-1250, which, in modern notation, is 

377873x ~ 1 (mod 499067). 

Step l l  Step 10 Step 1 

Fig. 1. Episode of Chapter II, Ssjz, the processes of solving 337873x ~ 1 
(rood 499067) 

In Arabic figures the processes of the solution are: 

Step 1 Step 2 Step 3 

j l  
1 

a j~ 

377873 1 

a 

377873 

q3 

3 

b J2 r2 
499067 1 121194 

J3 r3 
4 14291 

J2 r2 

l 121194 

Step 4 

J3 r3 

4 14291 

J4 r4 
33 6866 

q2 

1 

q4 

8 
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Step 5 Step 6 Step 7 Step 8 

qs q7 

2 3 

js rs Js rs J7 r7 J 7  r7 
70 559 7 0  559 2689 85 2689 85 

A r4 J6 r6 j6 r6 J8 rs 
33 6866 873 158 873 158 3562 73 

q6 q8 

12 1 

Step 9 Step 10 Step 11 

q9 ql l  

1 11 

J9 
6251 

j8 
3562 

r9 J9 r9 i l l  
12 6251 12 457999 

r8 jxo rio Jlo 
73 41068 1 41068 

rll. 
1 

rio 

1 

qto  

6 

Here Qnq concluded: "Chenglfi 457999 is the solution of the congruence." 

4.4. To solve the System of Congruences. 
When the moduli in system (!) are converted, one by one, into dingshu, the 

unknown F i in congruence (2) is solved by the Dayan qiuyi rule. Substituting F i 
in the general solution (3) we have the required 

X ~ ~ MiFiri (mod M), M i :  M/ml. 
i : l  

This is the rule !n the 740-year-oldSsjz. 

5. Sho  yuku  j u t u  su lrl of Japan . 

The Japanese mathematician SE~t TAKAKAZU [S], wrote Kwatsuyo sampo [t] 
(Essential Algorithm) in 1683, the second chapter of which, Sho yukujutu su, deals 
with some algorithms corresponding to Q~y's work. 
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5.1. The Algorithm of  Mutual Reduction. The algorithm gives a program 
for transforming two Yuanshu ml, m2 into dingshu i~1, t~2. 

Step 1. To find the gcf of ml, m2, i.e. (mi, m2) ~-- d~. SEKI considered ml, 
m 2 / d  1 as  dingshu of ml, m2, if d 2 - -  (mj, m 2 / d 1 )  = 1. 

Step 2. When d2 ~ 1 ; ml{dz, m2 d2/dl are dingshu of ml, m2, i f  d3 -- 
(mild2, m2 d2/d,) " 1. . . . . . .  

Step 3. When d3 ~> 1, ml/dzd3, m2 d2 d3/da aie dingshu of m~, mz, if 
(ml/d2 d3, m2 d2 d3/dO = 1. 

The process does not stop until the two numbers • become relatively prime. 

5.2. Algorithm of Seeking dingshu Oneby  One. SEt~Itransformsyuanshu (more 
than 2) to dingshu with his algorithm of mutual reduction one by one. The program 
is just like Q!N'S . . . .  

5.3. The rule of "Uni t  Remainder" and the rule of "Cutting Tubes" are some- 
what similar to QIN'S General Dayan qiuyi Rule, suitable for; a congruence or a 
system of congruences. 

6. Relevant Treatises in Central Asia and Western Europe 

6.1. In the Islamic scholar Imq AL-HAITHAM'S work (c. 1000 A.D.) there is 
a remainder problem, i.e~ p u t  in  modern words, to solve 

X ~ - l ( m o d 2 ) ~  l ( ~ o d 3 ) ~ l ( m o d 4 ) ~  l ( m o d 5 )  
1 (mod 6) ~ 0 (rood 7). 

His answer, 721, is not the smallest solution. . 
There are several remainder problems in LEONAROO FmONACO'S Liber Abaci 

(1202). However, FmONACCI did not give the slightest theoretical or general ex- 
planation of the method for solution of the remainder problem, and for this reason 
his whole treatment is on a level no higher than that of SUN ZL a° 

In other Western works of the 14th-17 th centuries appeared a few remainder 
problems with merely incomplete solutions. In the 18 th century the great mathe- 
maticians L. EULER (1707-1783), J. L. LAGRANGE (1736-1813), and C. F. GAUSS 
(1777-1855) studied successively the remainder problems and they accomplished 
ample achievements. 

6.2. EULER gave the general solution of congruence (8). If  the quantities A, 
B, C, D, E, etc. depend on ~, fl, 7, ~, e, etc. in the following way: 

A = c ~ , B = f l A +  1, C = T B + A ,  

D = 6C@ B , E =  eD -? C, etc. 

l o LIBBRECHT, Op, cit .  p. 240. 
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which may be simplified as 

A = [c~], B = [o~, fl], C = [~, fl, 7], D = [~, fl, v, 8] etc. 

Consider  the indeterminate  equat ion ax  = by  4- 1 ( a >  b). By the Euclidean 
algori thm he had 

a = ocb + c, b = flc + d, c = y d + e, etc., 

so that  0¢, fl, ~,, etc., c, d, e, etc.,  constant ly decrease until m = / z n  + 1. The result 
will be 

a =  [n,/z . . . .  ,~,, fl, o¢], b = I n , #  . . . . .  ~,, fl]. 

EULER took  

x =  ~ . . . .  ,9~, ill, y =  ~ . . . .  ,~ , f l ,  o~], (10) 

as the solution if a x  = by  + 1 if the number  o f  terms o~, fl, 7, . . . , /~,  n is even, and 
as the solution o f  a x = b y - -  I if it is odd. 11 

6.3. LAGRANGE treated the same problem by the theory  o f  cont inued fraction, 
b/a was converted into the cont inued fract ion 

a 1 1 1 1 1 
. . . . . . .  . ( 1 1 )  
b ° ¢ +  fl -+- 7 + 8 + . . . +  iz 4- n 

Having deleted the last term l /n ,  he reconverted it into a c o m m o n  fraction. He 
considered the numera tor  and the denomina tor  o f  the fraction as the answer to 
ax  = by  ÷ 1 if the number  o f  terms o~, t3, )~ . . . .  ,/z, n is even and as the answer 
to a x  = by  - -  1 if the number  o f  terms ~,/3, 7 , - - . ,  n is odd. 12 

6.4. GAuss published his Disquisit iones Ar i thmet icae  13 in 1801 ; the first two 
of  its seven chapters are devoted to congruences. We sum up his relevant theorems 
as follows: 

I, 16. A composi te  number  can be resolved into prime factors in only one 
way. 

II ,  27. I f  ( a , b ) =  1, then 

ax  -}- t ~ u (mod b) (*) 

is solvable. I f  x = r satisfies 

ax  ~ 4-1 (rood b), (**) 

then x = 4-(u - -  t ) r  will satisfy (*). 

11 L. EULER, Solutio Problematis Arithmetici de Inveniendo Numero qui per Datos 
Numeros Divisus, Relinquat Data Residua; Commentarii Aeademiae Seientiarum lm- 
perialis Petropolitanae, 1734-1735, St. Petersburg. 

12 j. L. C. LAGRANGE, Sur la solution des Probl6mes Ind6termin6es du Second Degr6, 
Histoire de l'Academie Royale des Sciences, 1767, Berlin. 

13 C.F. GAUSS, Disquisitiones Arithmeticae, English Translation, Yale University 
Press, 1966. 
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Citing EULER'S algorithm for solving (**), GAUSS gave his own investigations: 

1.  [~, fl, 7, . . . , L  ~'] • [/~,~' . . . . .  2] - -  B, fl, 7 . . . . .  2]" [fl, 7 , - . . , L  #] = ± l  

where the upper sign is taken if the number of  terms 0~, fl, 7 . . . . .  2 is even and the 
lower is taken if it is odd. 

2. The order of  the numbers can be inverted: 

[o,, ~, 7, . . . , ,~,  ~,] = [#,,~, . . . , 7 , ; , 0 , ] .  

II, 28. Cites LAGRANGE'S algorithm. 

II, 29. Congruence (*) is solvable if t ~- u (rood 8), where 6 --  (a, b). 
Congruence (*) is equivalent to ex  + k -~ 0 (rood f ) ,  if a = 6e, b - 6f, t - -  u 
= 6k. 

lI, 32. To solve z ~ a (mod A) ~ b (rood B) ~ c (rood C), first solve A x  + 

a =-z b (rood B). I f  (A, B) = 8, the complete solution will be 

thus 

x ~ v (rood B/6);  

z = A x  + a : -  A ( v  + Bk /6 )  + a ~  c (rood C). 

I f  ( A B / 6 ,  C)  = e and the solution of 

z = A B x / 6 + A v - k a = _ c ( m o d C )  is x - = w ( m o d C / e ) ,  

the problem will be completely solved by the congruence 

z = A B w / 6  + A v  + a (mod A B C / 6 e ) .  

II, 33 

is equivalent to 

z ~ a (rood A) ~ b (mod B) ~ c (mod C)  etc. 

z ~ r (mod A B C  etc.) if A ,  B,  C, etc. are relatively prime. 

II, 34 

z ~ a (rood A) ~ b (mod B)  etc. 

is equivalent to 

z ~ a (mod A') ~ a (rood A") ~ a (rood A" ' )  etc. 

~- b (rood B')  ~- b (mod B") ~: b (rood B ' " )  etc. 

where A = A ' A " A ' "  etc., B - -  B ' B " B ' " ,  etc. Either z ~  a ( m o d A ' )  or 
z ~ b ( m o d B ' )  can be rejected if A ' = B ' .  I f  however, a ~ - b ( m o d A ' )  is 
not true, the problem has no solution. I f  B'  is multiple of  A', the former can be 
rejected. 

When all the superfluous conditions have been rejected, all the remaining moduli 
###  # # t  t i t  A', A",  A , etc., B ,  B , B , etc. will be relatively prime. 
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II,  36 

z ~  a (rood A) ~ b (rood B) ~ c (mod C) ~ d (rood D) etc. 

where A, B, C, D, ...  are relatively prime. I t  is often preferable to use th e following 
method. I f  we solve in the proper order 

z ~ 1 (mod A) ~ 0 (rood BCD etc.), 

z -~ 1 (rood B) ~ 0 (mod ACD etc.), 

z ~ 1 (mod C) ~ 0 (mod ABD etc.), 

the least solution to the congruences will be, say, ~, fl, ~, etc. respectively. The gen- 
eral solution is 

z = o~a +/3b ÷ ~,c etc. (rn0d A B C  etc.). 

7. Conclusion 

7.1. The cultural development of  the world makes it fairly clear that remainder 
problems originated f rom calendar making. 1. Calculating shangyuan, the starting 
point of  the calendar, ancient Chinese astronomers had to solve numerous sys- 
tems of congruences, with data so vast as to make it impossible to obtain accurate 
answers without some special algorithm. Example 3 in Section 4 of this paper  is 
a vivid sample. Similar examples appeared in medieval India; BRAHMAGUPTA'S 
problem (see the example in Section 3) for finding the number of days since the 
Kalpa was also based on sound astronimical facts. Let us compare:  

Period (days) Sun Moon Mars Mercury Jupiter Saturn 

India, 8 th c. 365.3 27.4 84.3 685 3653.3 10960 
Recent Data  365.2 27.3 89 687 4333 10759 

Moreover,  GAUSS explained Proposition II,  36 of his Disquisitiones Arithme- 
ticae in these words : "This usage arises in ...  chronology when we determine what 
Julian year it is whose indiction, golden number, and solar cycle are given. Here 
A ----- 15, B = 19, C = 28; thus the value of ~ will be 6916, {3 4200 and V 4845. 
The number  we seek will be the least residue of the number 6196a -k 4200b -k 
4845c, where a is the indiction, b the golden number, and c the solar cycle." Here 

= 6916, /3 = 4200, 7 = 4845 are the solutions to the following congruences 
respectively: 

G1 ~ 0 (rood 19) = 0 (mod 28) ~ 1 (rood 15), 

G2 ~ 0 (mod 15) ~ 0 (mod 28) -= I (mod 19), 

G3 ~ 0 (mod 15) ~ 0 (mod 19) I= 1 (rood 28). 

14 B. L. VAN DER WAERDEN, Geometry andAlgebra in Ancient Civilization, Universit~it 
ZiJrich, 1983, pp. 113-132. 
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7.2. SUN ZI's remainder problem had no astronomical content, but it was 
undoubtedly born out of astronomy. The proposition is called the Chinese Re- 
mainder Theorem because of its antiquity, together with its correct solution 
through detailed deduction by which one can solve other similar problems. How- 
ever, it was only in embryo, and thus incomplete. Its deficiencies are 

1. The solution was obtained by trial and error, without a general rule for a 
congruence of type (8). 

2. There was only a numerical example, without a general rule for a system 
of congruences of type (1). 

3. The moduli were restricted to natural, relatively prime numbers. No general 
cases were given. However, in daily life we often come across moduli of natural 
composites, decimals and fractions as well. 

4. There was no further study such as to prove the propositions, to discuss the 
consistency of congruences, to reject the superfluous congruences, etc. 

By joint efforts both in the East and the West, these questions have finally 
been solved completely. 

7.2.1. Out of objective needs, QIN extended the fields of moduli to numbers other 
than natural, relatively prime numbers. Such problems appeared also in the 
Indian literature. However, they considered the question as it stood, without 
further discussion. QIN discussed different kinds of moduli and finally they were 
all converted into dingshu, provided that the converted system of congruences 
were equivalent to the original one. This operation was so important that mathe- 
maticians always paid much attention to it. GAuss also studied the operation in 
II, 34. In fact by the fundamental theorem, of arithmetic, I, 16, he converted each 
of the moduli into a product of prime factors, and then rejected all the superfluous 
congruences. But QIN had obtained the same results without the concept of prime 
numbers 550 years before him. Theoretically, neither solution had any defect, 
but we should compare the two programs of computation by the example given in 
II, 34. There GAUSS solved the following process: 

liilTm°9 J mod 17( mod 8) 
[ z ~ 17 (mod 504) 17 (mod 7) 

t z ~ --4 (mod 35) ~ --4 5) -+ 
z ~ 33 (mod 16) 

--4 (mod 7) 
33 (mod 16) 

z ~ 17 (mod 9) 

z ~ --4 (mod 5) 

z ~ --4 (mod 7) 
z ~ 33 (mod 16) 

By QIN'S rule converting yuanshu 504, 35, 16 into dingshu 9, 35, 16, we have 
simply: 

5°4 j63  9 Iz 17m°ds°4 J I z 17 m°dg' 
35 -7 35 35 35 z ~ - - 4 ( m o d 3 5 )  ~ z ~ - - 4 ( m o d 3 5 )  

16 16 _ 16 16 a ~ 16 (mod 16) z ~ 16 (mod 16) 
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If  the moduli are enormous, it is inconventient to decompose them into prime 
factors, whereas by mutual division one may easily get the required results. 

SEKFS algorithm for converting yuanshu into dingshu is better than QIN'S: 
Failing in step 1, i.e. d2 > 1, QIN had to go to d2 = 1, while SEKFS algorithm 
remains the same way whether d2 = 1 or not. Let us compare by numerical 
examples. 

To find dingshu between 72, 54, by QIN'S algorithm 
(72, 54) = 18, (54, 72/18) = (54, 4) = 2 > 1, and again (54/18, 72) = 

(3, 72) = 3 > 1, whereas (3 × 3, 72/3) = (9, 24) = 3 > 1, and again (3 × 3 × 3, 
72/3 × 3) = (27, 8) ----- 1. Finally we have the dingshu 27 and 8. 

By SEKI'S algorithm simply 
(72, 5 4 ) =  18, (54, 72 /18 )= (54 ,  4 ) = 2 ,  and (54/2, 4 × 2 ) = ( 2 7 ,  8 ) = 1 ;  
dingshu 27, 8 are obtained more promptly. 

7.2.2. ARYABHATA published his work about a century after SUN ZI suanjing. 
He gave a general rule for solving the indeterminate equation (4), equivalent to 
congruence (8). Though the statements of Kuttaka were rather obscure, it provided 
the first attempt to solve such problems in general. Over the subsequent centuries, 
Indian mathematicians tried unremittingly to write commentaries to elucidate 
ARYABHATA'S words. 

I f  the positive sign is taken. EULER'S and GAUSS' (II, 27) indeterminate equa- 
tion ax  ---- by  ~ 1 is equal to (5), discussed by MAHAVIRA. They are all equivalent 
to congruence (8). 

The Chinese mathematician QIN JIUSHAO in Ssjz gave the Dayan qiuyi rule, 
a complete solution of  congruence (8). The program of  the algorithm is in perfect 
order: 

a 1 1 1 

---b- = qL + q2 -~- "'" @ qn -~- qn+l 

In any continued fraction 

1 1 l m 
q l  @ - -  

q2 + ""  @ qm = Jrn " 

lm = qmlm-I  -~- lm-2, Jm = qmJm-1 -}- J.,-2; 

and 

ll = ql, Jo = 0 ,  Jl = 1, 

lmJm--1 - -  lm IJm = (--1) m" 

Under the conditions restricted by QIN, i.e., 

(a, b) = 1, r n = 1, where n is odd, 

therefore ln+ljn - -  l , j ,+  l = 1, and ln+ l = a, j~+ ~ = b. j ,  is obviously the answer 
to congruence (8). This fact was pointed out by GAUSS in his first investigation, 
II, 27, of EULER'S algorithm, Disquisitiones Arithmeticae. 
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Moreover, LAGRANGE'S treatment is exactly the same as QIN'S. 15 Let us com- 
pare them. 

LAGRANGE'S Notat ion (I1) QIN'S Rule (9) 

0¢, fl ,  ?', . . . ,  # ,  n q l ,  q2,  qa . . . . .  qn, qn+l  

1 1 1 
Reconvert o¢ + 

fl + ~, + . . . +  n 
into a common fraction; its deno- 

minator  is the solution of (5) 

1 1 1 1 
q~ -+ 

q2 -~ q3 -~ "" + qn + qn+l 
a 

= '~ - - ;  Jn = qnJn 1-~- Jn--2 

is the solution of (8) 

The cases with the negative sign in equation ax ~-- by 4- 1 were also success- 
fully solved by QIN; see Example 5, Section 4. 

The indeterminate analysis of  Kuttaka is surprisingly similar to QIN's rule. 
ManaviRa ' s  new idea is fascinating. Solving equation (5) in MAHAVmA'S way, 
we discover that Kuttaka is equivalent to the Dayuan qiuyi Rule: 

MAHAVIRA'S formula (6) QIN'S rule (9) 
No. 

quotient k quotient Ji 

2 

3 

i 

n - - 1  

n 

qn 

qn-1 

qn+2--i  

q3 

q2 

kz = q ,k1+ ko 

ks ---- q , -xk2+  kl 

ki ~ qn+z-iki-1 -~ k i -2  

kn_ 1 ~- q3kn_2 -~- kn_ 3 

k ,  = q2k,-1 + k , -  2 

q2 

q3 

°.° 

qi 

. .°  

qn 1 

q,, 

j2  = qzJl + Jo 

j3 ~- qaj2 - / j l  

Ji = qiJi-1 -~ Ji-2 

J , -1  = q, lJn--2 ' " ~- J n - 3  

Jn = qnJn--1 -~ Jn-- 2 

Let us prove k,, = j , .  First of  all, k ,  =jhkn_h+ I + j h _ l k n _  h, where 2 
h ~ n = 2m - -  1. By mathematical induction if h ~ 2, it is true, for 
kn = j 2 k , - i  + j l k n _ 2  = q2kn-1 + k n - 2 .  I f  h = i is true, then h = i + 1 is 
also true, for 

k n ~ jikn_i+l -~- j i_ lkn_i  

=Ji(q(n+2)-(n-i+l)kn-i-~ kn i-1) ~- J i - lkn-1  

= (Jiqi+l + J i - l )  kn - i  -}-Jikn-i-1 

= j i+~k, - i  + j i k , - i - 1 .  

Especially, if h ~--n, k , - - - j ,  k l  + L - l k o  =Jn" Q.E.D. 

a5 Here n is odd and r n = 1. 
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The Dayan qiuyi Rule has its advantages. To solve equation (5) by Kuttaka 
one would apply different formulas according as n is odd or even. However, by 
the Dayan quiyi Rule we can easily have the answer by unique algorithm whether 
n is odd or even. 16 

It is interesting that the order of the quotients in EUL~R'S notation (10) is the 
same as that of MAUAVmA'S (6) and is the inverse of Q[N'S (5). This fact was men- 
tioned by GAUSS in his second investigation, II, 27, of Disquisitiones Arithmeticae, 
concerning EULER'S algorithm. 

7.2.3. QIN gave a complete and systematic process for solving a system of 
congruences of first degree, just as in the Disquisitiones Arithmeticae, 1801. It 
should be mentioned that GAUSS' work in II, 36 is just like SUN ZI's formulas (2') 
and (3'). Moreover, the proceedings given by GAuss in II, 32 are exactly what 
Indian mathematicians used in medieval times; see Section 3.3. 

7.2.4. At last GAuss in his D&quisitiones Arithmeticae finished the relevant 
tasks: 

The proof  of  Proposition (2'), (3'), given by SUN ZI; see II, 36. 
The proof  of equivalence of systems of congruences when the moduli are con- 

verted into dingshu; see II, 34. 
The proof  of  the Dayan qiuyi Rule, by citation of  EULER'S and LAGRANGE'S 

results, II, 27 and II, 28. 
The condition for solvability of a congruence; see II, 27. 
The condition for solvability of a system of congruences; see II, 34. 
The solutions of a system of  congruences remains unchanged after rejecting 

the superfluous congruences; see II, 34. 

7.3. It is hard to judge the actual exchanges between nations over so long a 
historical period, 4th-18 th centuries. Indian mathematicians, BRAHMAGUPTA and 
BHASKARA had been in Ujjain, where XUAN ZHANG [U] and other Chinese envoys 
lived for years, and intercultural overflows would have been inevitable. The com- 
plexity of  transmission is an interesting problem which has to be discussed further. 

As we know, Chinese mathematicians have exerted a great influence upon the 
Japanese since the 6 th century, A.D. It  is interesting that SEKI TAKAKAZU had 
not read QIN'S book, which was not published until 1842. SEKI'S achievement in 
the field of  congruences was his independent work. However, SEKI is said 17 to 
have transcribed Xu gu zha qi suanfa in 1661, so no doubt  his work was somewhat 
influenced by YANG HUI. 

EULER, LAGRANGE and GAUSS presented their achievements in indeterminate 
analysis in the 18 th century, published respectively by the Academy of St. Peters- 
burg, the Academy of  Berlin, and the G6ttingen Society of Sciences. GAuss 
introduced his new discoveries in Chapters I & II of his famous treatise. Obviously, 

16 rn = 1, rn+ 1 = r n _  I - - q n + l r n  = O, if n is even. Continue the algorithm, and let 
r,',+ I #r ,+ 1, whereas r'+1 = rn_ 1 - -  r n ( q n + l  -~- 1) ~ 1; here n ÷ 1 is odd. 

17 Japanese Academy of Sciences, History of Japanese Mathematics, 1979, Tokyo, 
p. 172, vol. II. 
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at that time Europeans considered their results in mathematics unique and very 
significant. They did not know that they had been completely solved in the 
East at least several hundred years earlier. 

Acknowledgement. Mr. WANG Z1GUANG read the paper for clarity and correctness 
of English usage. 

Glossary 

a :~ ~JJ h . ~  

i ~ j ~ 7 ~  

k I L ~  1 : ~  

o ~ ' ~  p ~ - -~  

q ~:~" r -~  ~ . ~  

s ~-~ 2"~---~ t ~ [ ~  
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