# *THILOSOTHICAL* TRANSACTIONS:

### A New Method of Computing the Sums of Certain Series; By Mr. John Landen: Communicated by Mr. Thomas Simpson, F. R. S.

John Landen and Thomas Simpson

*Phil. Trans.* 1759-1760 **51**, 553-565, published 1 January 1759

### **Email alerting service**

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

### [ 553 ]

The afhes of this foffil, when burnt, being boiled in water, and the water evaporated, there remained no falt behind.

I am, my Lord, &c.

Grosvenor-Street, Feb. 28, 1760.

LIV. A new Method of computing the Sums of certain Series; by Mr. John Landen: Communicated by Mr. Thomas Simpson, F. R. S.

Read Feb. 28, 1760. S the improving the analytic art, efpecially any branch of it that relates to the fummation of feries, may, by facilitating computations, conduce to the improvement of feveral branches of fcience; it is prefumed, that this paper, which exhibits a new and eafy method of computing the fums of a great number of infinite feries, may be acceptable to the mathematical world, and deemed worthy to be inferted in the British Philosophical Transactions.

Supposing x to be the fine of the circular arc z, whole radius is 1,  $\frac{\dot{x}}{\sqrt{1-x^2}}$  will be =  $\dot{z}$ ; and, confequently,  $\frac{\dot{x}}{\sqrt{x^2-1}} = \frac{\dot{z}}{\sqrt{-1}}$ . From whence, by taking the correct fluents, we have hyp. log.  $\frac{x+\sqrt{x^2-1}}{\sqrt{-1}} = \frac{z}{\sqrt{-1}}$ .

1.

Hence,



## [ 554 ]

Hence, writing *a* for one fourth of the periphery of the circle whole radius is 1, and taking *x* equal to the faid radius, we find hyp. log.  $\frac{1}{\sqrt{-1}} = \frac{a}{\sqrt{-1}}$ ; and, confequently, hyp. log.  $\sqrt{-1} = \frac{-a}{\sqrt{-1}}$ , and hyp. log.  $-1 = \pm \frac{2a}{\sqrt{-1}}$ .

#### 2.

The hyp. log. of  $\frac{1}{1-x}$  being  $= x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4}$ ,  $\Im c$ .  $\mathbf{F}$  = fluent of  $\frac{x}{x}$  hyp. log.  $\frac{1}{1-x}$ , is  $= x + \frac{x^2}{2^2} + \frac{x^7}{3^2} + \frac{x^4}{4^2}$ ,  $\Im c$ .  $\mathbf{F}$  = fluent of  $\frac{x}{x}$   $\mathbf{F}$  =  $x + \frac{x^2}{2^3} + \frac{x^3}{3^3} + \frac{x^4}{4^3}$ ,  $\Im c$ .  $\mathbf{F}$  = fluent of  $\frac{x}{x}$   $\mathbf{F}$  =  $x + \frac{x^2}{2^4} + \frac{x^3}{3^4} + \frac{x^4}{4^4}$ ,  $\Im c$ .  $\mathbf{F}$  = fluent of  $\frac{x}{x}$   $\mathbf{F}$  =  $x + \frac{x^2}{2^4} + \frac{x^3}{3^4} + \frac{x^4}{4^4}$ ,  $\Im c$ .

#### 3.

Eс.

Sc.

Cc.

By writing, in the first equation in the preceding article,  $\frac{I}{x}$  instead of x, we have

Hyp. log. 
$$\frac{1}{1-\frac{1}{x}} = x^{-1} + \frac{x^{-2}}{2} + \frac{x^{-3}}{3}$$
,  $\mathcal{C}c$ .  
But the hyp. log. of  $\frac{1}{1-\frac{1}{x}}$  is = hyp. log.  $\frac{x}{x-1} =$ 

hyp.

### [ 555 ]

hyp. log.  $\frac{1}{1-x}$  + hyp. log. x + hyp. log.  $-1 = \pm 2b + X$  + hyp. log.  $\frac{1}{1-x}$ , b being put for  $\frac{a}{\sqrt{-1}}$ , and X for the hyp. log. of x.

It is evident, therefore, that

Hyp. log.  $\frac{1}{1-x}$  is  $= \pm 2b - X + x^{-1} + \frac{x^{-2}}{2} + \frac{x^{-3}}{3}$ ,  $\mathfrak{S}^{2}c$ . where, of the two figns prefixed to 2b, the upper one takes place, when the hyp. log. of -1 is taken equal to  $\frac{2a}{\sqrt{-1}}$ , likewife when x is taken equal to  $\sqrt{-1}$ ; and the lower one takes place, when the hyp. log. of -1 is taken equal to  $\frac{2a}{\sqrt{-1}}$ , alfo when x is taken equal to  $\frac{1}{\sqrt{-1}}$ : wherefore, if we obferve to take the value of hyp. log. of -1, as laft mentioned, and x equal to  $\frac{1}{\sqrt{-1}}$ , inftead of  $\sqrt{-1}$ , we need retain only the lower of the faid figns.

#### 4.

For brevity fake, we fhall, in what follows, put the feries  $I + \frac{I}{2^2} + \frac{I}{3^2} + \frac{I}{4^2}$ ,  $\mathcal{C}c. = \overset{n}{P}$ ,  $I + \frac{I}{2^4} + \frac{I}{3^4} + \frac{I}{4^4}$ ,  $\mathcal{C}c. = \overset{n}{P}$ ,  $I + \frac{I}{2^5} + \frac{I}{3^5} + \frac{I}{4^5}$ ,  $\mathcal{C}c. = \overset{n}{P}$ ,  $\mathcal{C}c.$   $\mathcal{C}c.$  $I + \frac{I}{3^2} + \frac{I}{5^2} + \frac{I}{7^2}$ ,  $\mathcal{C}c. = \overset{n}{Q}$ VOL. LI. 4C  $I \rightarrow$ 

$$\begin{bmatrix} 556 \end{bmatrix}$$
  

$$I - \frac{1}{3^{6}} + \frac{1}{5^{3}} - \frac{1}{7^{3}} +, & & & & e. = \frac{14}{7}, \\ I + \frac{1}{3^{4}} + \frac{1}{5^{4}} + \frac{1}{7^{4}}, & & & & e. = \frac{1}{7}, \\ I - \frac{1}{3^{5}} + \frac{1}{5^{5}} - \frac{1}{7^{5}} +, & & & & e. = \frac{1}{7}, \\ & & & & & & & & & ec. \end{bmatrix}$$

5.

Multiplying the laft equation in art. 3. by  $\frac{\dot{x}}{x}$ , and taking the correct fluents, we have  $\dot{F} = 2 \overset{n}{P} + 2 b X - \frac{X^2}{2} - x^{-1} - \frac{x^{-2}}{2^2} - \frac{x^{-3}}{3^2}$ ,  $\mathcal{C}c.$ From whence, by multiplying by  $\frac{\dot{x}}{x}$ , and taking the fluents, we get  $\overset{n}{F} = 2 \overset{n}{P} X + b X^2 - \frac{X^3}{2 \cdot 3} + x^{-1} + \frac{x^{-2}}{2^3} + \frac{x^{-3}}{3^3}$ ,  $\mathcal{C}c.$ Again, multiplying the laft equation by  $\frac{\dot{x}}{x}$ , and taking the correct fluents, we find  $\overset{n}{F} = 2 \overset{n}{P} X + \overset{n}{P} X^2 + \frac{b X^3}{3} - \frac{X^4}{2 \cdot 3 \cdot 4} - x^{-1} - \frac{x^{-2}}{2^4} - \frac{x^{-3}}{3^4}$ ,  $\mathcal{C}c.$ And, by proceeding in the fame manner, we find  $\overset{w}{F} = 2 \overset{n}{P} X + \frac{\overset{n}{P} X^3}{3} + \frac{b X^4}{3 \cdot 4} - \frac{X^5}{2 \cdot 3 \cdot 4 \cdot 5} + x^{-1} + \frac{x^{-2}}{2^5} + \frac{x^{-3}}{3^5}$ ,  $\mathcal{C}c.$  $\overset{\mathcal{C}c}{\mathcal{C}c}$ .

6.

Now, it is obvious, that  $x + \frac{x^2}{2^2} + \frac{x^3}{3^2}$ , &c. the value of F in art. 2. must be equal to 2F + 2bX

[ 557 ]  $-\frac{X^2}{2} - x^{-1} - \frac{x^{-2}}{2^2} - \frac{x^{-3}}{2^2}$ , & c. the value of F in art. 5. when both feries converge. Therefore,  $\frac{x+x^{-1}}{1^2} + \frac{x^2+x^{-2}}{2^2} + \frac{x^3+x^{-3}}{2^2}$ ,  $\Im c$ . is then  $= 2 \overset{\text{H}}{P} + 2 b X - \frac{X^2}{2}$ . From which equation, by taking x equal to -1, we have  $-\frac{1}{1^2} + \frac{1}{2^2} - \frac{1}{2^2} + \frac{1}{4^2} - Cc. = P + b^2 =$  $\overset{\text{H}}{\mathbf{P}} - a^2$ ; and, by taking x equal to  $\frac{\mathbf{I}}{\sqrt{-1}}$ , we have  $-\frac{1}{1^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{4^2}-, & c. = 4^{\frac{1}{2}}+3^{b^2}=$  $A \ddot{P} - 2 a^2$ . Therefore  $4 \ddot{\mathbf{P}} - 3 a^2$  is  $= \ddot{\mathbf{P}} - a^4$ : Hence  $\overset{\text{\tiny H}}{P}$  is found  $=\frac{2a^2}{2}$ . Moreover  $\frac{1}{T^2} + \frac{1}{2^2} + \frac{1}{2^2} + \frac{1}{4^2}$ , G<sup>2</sup>c. being =  $\overset{n}{P}$ , by fupposition; and  $-\frac{1}{1^2} + \frac{1}{2^2} - \frac{1}{2^2} + \frac{1}{4^2} - \frac{1}{5}$  &c. =  $\overset{n}{\mathbf{P}}$  —  $a^2$ , as found above; we, by fubtraction, get  $\frac{2}{1^2} + \frac{2}{2^2} + \frac{2}{5^2}$ ,  $\mathcal{C}c. (= 2 \overset{\pi}{Q}) = a^2$ , and, confequently  $\ddot{Q} = \frac{a^2}{2}$ .

#### SCHOLIUM.

The hyp. log. of  $\frac{1}{1-x}$  being  $= x + \frac{x^2}{2} + \frac{x^3}{3}$ ,  $\mathfrak{Sc.}$ we, by writing 1 - x inflead of x, have 4 C 2 Hyp. [ 558 ]

Hyp. log. of  $\frac{1}{x} = 1 - x + \frac{1 - x^2}{2} + \frac{1 - x^3}{3}$ , &c. and confequently  $X = -1 - x - \frac{1 - x^2}{2} - \frac{1 - x^3}{3}$ , &c.

Moreover the fluent of  $\frac{x}{x} \times \text{hyp. log. of } \frac{1}{1-x}$  is =  $x + \frac{x^2}{2^2} + \frac{x^3}{3^2}$ , &c. which vanishes when x vanishes; and the fluent of  $\frac{\dot{x}}{1-x} \times X$  is =  $\overline{1-x} + \frac{\overline{1-x}^2}{2^2} + \frac{\overline{1-x}^3}{3^2}$ , &c.  $-\frac{H}{P}$ , being corrected fo as to vanish when x vanishes.

But the fluent of  $\frac{\dot{x}}{x} \times \text{hyp. log. of } \frac{1}{1-x} + \text{fluent}$ of  $\frac{\dot{x}}{1-x} \times X$  is  $= X \times \text{hyp. log. of } \frac{1}{1-x}$ , which also vanishes when x vanishes.

Therefore X × hyp. log. of  $\frac{1}{1-x}$  is  $= x + \frac{x^2}{2^2} + \frac{x^3}{3^2}$ ,  $\mathfrak{S}^2 \mathfrak{c}$ .  $+ 1 - x + \frac{1-x|^2}{2^2} + \frac{1-x^3}{3^2}$ ,  $\mathfrak{S}^2 \mathfrak{c}$ .  $- \overset{H}{\mathbb{P}}$ . From whence, by taking x equal to  $\frac{1}{2}$ , we find - fquare of hyp. log. of  $2 = 2 \times \frac{1}{1^2 \cdot 2^4} + \frac{1}{2^2 \cdot 2^2} + \frac{1}{3^2 \cdot 2^3}$ ,  $\mathfrak{S}^2 \mathfrak{c}$ .  $-\overset{H}{\mathbb{P}}$ : hence,  $\overset{H}{\mathbb{P}}$  being before found  $= \frac{2a^2}{3}$ , it appears that, when x is  $= \frac{1}{2}$ , the feries  $x + \frac{x^2}{2^2} + \frac{x^3}{3^2}$ ,  $\mathfrak{S}^2 \mathfrak{c}$ . is  $= \frac{a^2}{3} - \frac{1}{2} \times \overline{hyp. \log. of 2}^2$ .

Furthermore,  $x + \frac{x^2}{2^3} + \frac{x^3}{3^3}$ , &c. the value of  $\overset{\text{H}}{\text{F}}$  impart. 2. muft be equal to  $2\overset{\text{H}}{\text{P}}X + bX^2 - \frac{X^3}{2\cdot 3} + x^{-1}$ 

### [ 559 ]

 $+\frac{x^{-2}}{2^3}+\frac{x^{-3}}{3^3}$ ,  $\Im c$ . the value of  $\Hart. 5$ . when both feries converge.

Therefore  $\frac{x - x^{-1}}{1^3} + \frac{x^2 - x^{-2}}{2^3} + \frac{x^3 - x^{-3}}{3^3}$ ,  $\mathcal{E}^2 c$ . is then =  $2 \overset{\text{H}}{P} \overset{\text{H}}{X} + b \overset{\text{H}}{X^2} - \frac{\overset{\text{H}}{X^3}}{2 \cdot 3}$ 

From whence, by taking x equal to -1, we have  $4b \overset{\text{H}}{\text{P}} + 4b^3 - \frac{8b^3}{2\cdot 3} = 0$ ; and, confequently,  $\overset{\text{H}}{\text{P}} = \frac{2a^2}{2}$ , as before found.

And, by taking x equal to  $\frac{\mathbf{I}}{\sqrt{-1}}$ , we find  $\frac{2}{\sqrt{-1}} \times \overset{\text{III}}{q} = 2 b \overset{\text{III}}{P} + b^3 - \frac{b^3}{2 \cdot 3} = \frac{4 a^3}{3 \sqrt{-1}} - \frac{a^3}{\sqrt{-1}} + \frac{a^3}{2 \cdot 3 \sqrt{-1}}$   $= \frac{a^3}{2 \sqrt{-1}}$ Therefore  $\overset{\text{III}}{q}$  is  $= \frac{a^3}{4}$ .

8.

From what is done above, it evidently follows, that

$$-\overset{\text{IV}}{P} \text{ is} = \frac{2 \ b^2 \ \overset{\text{IV}}{P}}{3} + \frac{2.8 \ b^4}{3 \cdot 4 \cdot 5},$$
  

$$-\overset{\text{VI}}{P} = \frac{2 \ b^2 \ \overset{\text{IV}}{P}}{3} + \frac{8 \ b^4 \ \overset{\text{II}}{P}}{3 \cdot 4 \cdot 5} + \frac{3 \cdot 32 \ b^5}{3 \cdot 4 \cdot 5 \cdot 6 \cdot 7},$$
  

$$\overset{\text{CC.}}{\text{CC.}} = b^2 \ \overset{\text{IV}}{P} + \frac{3 \cdot 2 \ b^4}{3 \cdot 4},$$
  

$$-\overset{\text{VI}}{Q} = b^2 \ \overset{\text{IV}}{P} + \frac{4 \ b^4 \ \overset{\text{IV}}{P}}{3 \cdot 4} + \frac{5 \cdot 8 \ b^6}{3 \cdot 4 \cdot 5 \cdot 6},$$
  

$$\overset{\text{CC.}}{\text{CC.}} = b^2 \ \overset{\text{IV}}{P} + \frac{4 \ b^4 \ \overset{\text{IV}}{P}}{3 \cdot 4} + \frac{5 \cdot 8 \ b^6}{3 \cdot 4 \cdot 5 \cdot 6},$$

$$\begin{bmatrix} 560 \end{bmatrix}$$

$$\frac{q}{\sqrt{\frac{1}{\sqrt{11}}}} \text{ is } = b \overset{\text{fv}}{P} + \frac{b^3 \overset{\text{P}}{P}}{\frac{2\cdot 3}{2\cdot 3}} + \frac{g b^5}{2\cdot 2\cdot 3\cdot 4\cdot 5},$$

$$\frac{q}{\sqrt{\frac{1}{\sqrt{11}}}} = b \overset{\text{vi}}{P} + \frac{b^3 \overset{\text{P}}{P}}{2\cdot 3} + \frac{b^5 \overset{\text{P}}{P}}{2\cdot 3\cdot 4\cdot 5} + \frac{13 b^7}{2\cdot 2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7},$$

$$\overset{\text{G}c.}{\overset{\text{G}c.}}$$

From whence the values of P, P, Cc. Q, Q, C. Cc. q, q, q, Cc. may be easily obtained, in terms of a.

9.  
Hyp. log. 
$$\frac{\overline{1+x}}{\overline{1-x}}^{\frac{1}{2}}$$
 being  $= x + \frac{x^3}{3} + \frac{x^5}{5}$ ,  $\mathscr{C}c.$   
 $\overset{1}{G} =$ fluent of  $\frac{x}{x}$  hyp. log.  $\frac{\overline{1+x}}{\overline{1-x}}^{\frac{1}{2}}$  is  $= x + \frac{x^3}{3^2} + \frac{x^5}{5^2}$ ,  $\mathscr{C}c.$   
 $\overset{R}{G} =$ fluent of  $\frac{x}{x} \overset{1}{G} = x + \frac{x^3}{3^3} + \frac{x^5}{5^3}$ ,  $\mathscr{C}c.$   
 $\overset{R}{G} =$ fluent of  $\frac{x}{x} \overset{R}{G} = x + \frac{x^3}{3^4} + \frac{x^5}{5^4}$ ,  $\mathscr{C}c.$   
 $\mathscr{C}c.$   $\mathscr{C}c.$   $\mathscr{C}c.$ 

#### 10.

By writing, in the first equation in the preceding article,  $\frac{1}{x}$  instead of x, we have

Hyp. log. 
$$\frac{\overline{1 + \frac{1}{x}}}{1 - \frac{1}{x}}^{\frac{1}{2}} = x^{-1} + \frac{x^{-3}}{3} + \frac{x^{-5}}{5}$$
,  $\mathcal{C}$ .  
But the hyp. log. of  $\frac{\overline{1 + \frac{1}{x}}}{1 - \frac{1}{x}}^{\frac{1}{2}}$  is = hyp. log.  $\frac{\overline{x + 1}}{x - 1}^{\frac{1}{2}}$   
= hyp. log.  $\frac{\overline{1 + x}}{1 - x}^{\frac{1}{2}}$  + hyp. log.  $\sqrt{-1} = \pm b + \frac{1}{x}$ .  
hyp. log.  $\frac{\overline{1 + x}}{1 - x}^{\frac{1}{2}}$ .

# [ 561 ]

It is manifeft, therefore, that Hyp. log.  $\frac{1+x}{1-x} = \frac{1}{1-x} + \frac{x^{-1}}{1-x} + \frac{x^{-1}}{1-x} + \frac{x^{-1}}{1-x}$ ,  $\mathcal{C}c$ . where, with refpect to the two figns prefixed to b, the fame observation may be made as in art. 3.

#### 11.

Multiplying the last equation by  $\frac{x}{x}$ , and taking the correct fluents, we have

 $\overset{1}{G} = 2 \overset{1}{Q} + b X - x^{-1} - \frac{x^{-3}}{3^2} - \frac{x^{-5}}{5^2}, \quad \mathcal{C}c.$ 

From whence, by multiplying by  $\frac{x}{x}$ , and taking the fluents, we get  $\overset{\Pi}{G} = 2\overset{\Pi}{Q}X + \frac{bX^2}{2} + x^{-1} + \frac{x^{-3}}{2^3} + \frac{x^{-5}}{5^3}$ ,  $\mathscr{C}c$ .

Again, multiplying the laft equation by  $\frac{\dot{x}}{x}$ , and taking the correct fluents, we find

#### 12.

Now, it is obvious, that  $x + \frac{x^3}{3^2} + \frac{x^5}{5^2}$ ,  $\Im c$ . the value of  $\mathring{G}$  in art. 9. muft be equal to  $2 \mathring{Q} + b X$  $-x^{-1} - \frac{x^{-3}}{3^2} - \frac{x^{-3}}{5^2}$ ,  $\Im c$ . the value of  $\mathring{G}$  in art. 1.1. when both feries converge

There-

4

$$\begin{bmatrix} 562 \end{bmatrix}$$
  
Therefore  $\frac{x + x^{-1}}{1^2} + \frac{x^3 + x^{-3}}{3^2} + \frac{x^5 + x^{-3}}{5^2}$ ,  $\Im c$ . is  
then =  $2 \ \mathbb{Q} + b X$ .

From whence, by taking x equal to  $\frac{1}{\sqrt{-1}}$ , we have  $2 \frac{10}{2} + b^2 = 0$ ; and, confequently,  $\frac{10}{2} = \frac{n^2}{2}$ , as in art. 6.

Likewife  $x + \frac{x^3}{3^3} + \frac{x^5}{5^3}$ ,  $\mathscr{C}c$ . the value of  $\overset{\Pi}{G}$  in art. 9. must be equal to  $2\overset{\Pi}{Q}X + \frac{bX^2}{2} + x^{-1} + \frac{x^{-3}}{3^3} + \frac{x^{-5}}{5^3}$ ,  $\mathscr{C}c$ . the value of  $\overset{\Pi}{G}$  in art. 11. when both feries converge.

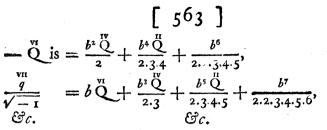
Therefore  $\frac{x-x^{-1}}{1^3} + \frac{x^3-x^{-3}}{3^3} + \frac{x^5-x^{-5}}{5^3}$ ,  $\mathfrak{S}c.$  is then =  $2 \overset{\text{II}}{Q} \overset{\text{II}}{X} + \frac{b X^2}{2}$ .

Hence, by taking  $x = \frac{1}{\sqrt{-1}}$ , we find  $\frac{2}{\sqrt{-1}} \times q^{in}$ =  $2b \overset{in}{Q} + \frac{b^3}{2} = \frac{a^3}{2\sqrt{-1}}$ ; and, confequently,  $q^{in} = \frac{a^3}{4}$ , as in art. 7.

#### 14.

From what is done in the last five articles, it evidently follows, that

$$-\overset{v}{Q}is = \frac{b^{2}\overset{u}{Q}}{2} + \frac{b^{4}}{2.2.3},$$
  
$$\frac{\dot{q}}{\sqrt{-1}} = b\overset{v}{Q} + \frac{b^{3}\overset{u}{Q}}{2.3} + \frac{b^{3}}{2.2.3.4},$$



From whence (as well as from the theorems in art. 8.) may the values of Q, q, Q, q'', Q'', q'',  $\mathcal{E}c$ . be readily found, in terms of a.

I٢.

G being =  $x + \frac{x^3}{2^2} + \frac{x^5}{5^2}$ , *C*. by art. 9.  $\mathbf{H} = \text{fluent of } x \, \dot{x} \, \mathbf{G} \text{ is} = \frac{x^2}{1^2 \cdot 3} + \frac{x^5}{3^2 \cdot 5} + \frac{x^7}{5^2 \cdot 7}, \, \mathfrak{S}c.$  $\overset{''}{H} = \text{fluent of } \frac{\dot{x}}{x} \overset{'}{H} = \frac{x^3}{1^2 \cdot 3^2} + \frac{x^5}{3^2 \cdot 5^2} + \frac{x^7}{5^2 \cdot 7^2}, \ \mathfrak{S}c.$  $\overset{\text{III}}{\text{H}} = \text{fluent of } x \, \dot{x} \overset{\text{II}}{\text{H}} = \frac{x^5}{1^2 \cdot 3^2 \cdot 5} + \frac{x^7}{3^2 \cdot 5^2 \cdot 7} + \frac{x^9}{5^2 \cdot 7^2 \cdot 9}, \, \mathfrak{S}c.$  $\stackrel{\text{iv}}{H} = \text{fluent of } \frac{x}{x} \stackrel{\text{iv}}{H} = \frac{x^5}{1^2 \cdot 3^2 \cdot 5^2} + \frac{x^7}{3^2 \cdot 5^2 \cdot 7^2} + \frac{x^9}{5^2 \cdot 7^2 \cdot 9^2}, \ \mathfrak{S}c.$ Sc.

Moreover,  $\overset{\text{I}}{\text{G}}$  being =  $2\overset{\text{I}}{\text{Q}} + bX - x^{-1} - \frac{x^{-3}}{3^2}$   $-\frac{x^{-5}}{5^2}$ ,  $\overset{\text{C}}{\text{C}}c$ . by art. 11. we, by multiplying by  $x\dot{x}$ , and taking the correct fluents, get  $\overset{\text{I}}{\text{H}} = x^2\overset{\text{I}}{\text{Q}} - \overset{\text{I}}{\text{Q}}$   $+\frac{bx^2X}{2} - \frac{bx^2}{4} + \frac{b}{4} - x + 1 + 2\overset{\text{I}}{\text{S}} + \frac{x^{-1}}{1\cdot 3^2} + \frac{x^{-3}}{3\cdot 5^2}$   $+\frac{x^{-5}}{5\cdot 7^2}$ ,  $\overset{\text{C}}{\text{C}}c$ .  $\overset{\text{I}}{\text{S}}$  being put for the feries  $\frac{1}{1^2\cdot 3^2} + \frac{1}{3^2\cdot 5^2}$   $+\frac{1}{5^2\cdot 7^2}$ ,  $\overset{\text{C}}{\text{C}}c$ . Vol. LI. 4.D Now,

### [ 564 ]

Now, it is obvious, that this value of H must be equal to the value of H in the preceding article, when both feries converge.

Therefore  $\frac{3x^3 - x^{-1}}{1^2 \cdot 3^2} + \frac{5x^5 - 3x^{-3}}{3^2 \cdot 5^2} + \frac{7x^7 - 5x^{-5}}{5^2 \cdot 7^2}$   $\mathfrak{E}^2 c.$  is then  $= x^2 \overset{\Pi}{\mathbb{Q}} - \overset{\Pi}{\mathbb{Q}} + \frac{bx^2 X}{2} - \frac{bx^2}{4} + \frac{b}{4} - x$  $+ 1 + 2 \overset{\Pi}{S}.$ 

Hence, by taking x equal to -1, we find -2  $\overset{\text{II}}{\text{S}} = b^2 + 2 + 2$   $\overset{\text{II}}{\text{S}}$ ; and, confequently,  $\overset{\text{II}}{\text{S}} = \frac{a^2}{4} - \frac{1}{2}$ .

And, by taking x equal to  $\frac{1}{\sqrt{-1}}$ , we find

$$\frac{2}{\sqrt{-1}} \times \frac{1}{1^2 \cdot 3^2} - \frac{1}{3^2 \cdot 5^2} + \frac{1}{5^2 \cdot 7^2} - \frac{3}{5^2 \cdot 7^2}, \quad \Im c. = -2 \overset{n}{Q}$$
  
$$-\frac{b^2}{2} + \frac{b}{2} - \frac{1}{\sqrt{-1}} + 1 + 2 \overset{n}{S} = \frac{a}{2\sqrt{-1}} - \frac{1}{\sqrt{-1}};$$
  
and, confequently,  $\frac{1}{1^2 \cdot 3^2} - \frac{1}{3^2 \cdot 5^2} + \frac{1}{5^2 \cdot 7^2} - \frac{1}{5^2 \cdot 7^2}, \quad \Im c. = \frac{1}{4} - \frac{a}{4}.$ 

Seeing that  $\overset{\Pi}{Q}$  is  $=\frac{a^{2}}{2}$ , and  $\overset{\Pi}{S} =\frac{a^{2}}{4} - \frac{1}{2}$ , it follows, from the laft article, that  $\overset{\Pi}{H}$  is  $=x^{2}\overset{\Pi}{Q} + \frac{bx^{2}X}{2} - \frac{bX^{2}}{4} + \frac{b}{4} - x + \frac{x^{-1}}{1\cdot 3^{2}} + \frac{x^{-3}}{3\cdot 5^{2}} + \frac{x^{-5}}{5\cdot 7^{2}}$ ,  $\overset{\Box}{C}c$ .

From whence, by multiplying by  $\frac{x}{x}$ , and taking the correct fluent, we get

H

### [ 565 ]

$$\overset{\Pi}{H} = \frac{x^2 \overset{\Pi}{Q}}{2} + \frac{b x^2 X}{4} - \frac{b x^2}{4} + \frac{b}{4} + \frac{b X}{4} - x + \frac{a^2}{4} - \frac{x^{-1}}{1^2 \cdot 3^2} - \frac{x^{-3}}{3^2 \cdot 5^2} - \frac{x^{-5}}{5^2 \cdot 7^2}, \quad \mathfrak{S}c.$$

And hence, by multiplying by  $x \times x$ , and taking the correct fluents, we have

$$\overset{\text{III}}{\text{H}} = \frac{x^4 \ddot{\text{Q}}}{8} + \frac{b \, x^4 \, \text{X}}{16} - \frac{5 \, b \, x^4}{64} + \frac{b \, x^2}{16} + \frac{b \, x^2 \, \text{X}}{8} + \frac{b}{64} \\ - \frac{x^3}{3} - \frac{x}{9} + \frac{4}{9} + \frac{a^2 \, x^2}{8} - \frac{3 \, a^2}{16} + 4 \overset{\text{III}}{\text{S}} + \frac{x^{-1}}{1 \cdot 3^2 \cdot 5^2} \\ + \frac{x^{-3}}{3 \cdot 5^2 \cdot 7^2} + \frac{x^{-5}}{5 \cdot 7^2 \cdot 9^2}, & & & & & & & & & \\ & & & & & & & \\ \frac{1}{1^2 \cdot 3^2 \cdot 5^2} + \frac{1}{3^2 \cdot 5^2 \cdot 7^2} + \frac{1}{5^2 \cdot 7^2 \cdot 9^2}, & & & & & & & & \\ \end{array}$$

Now, this value of  $\stackrel{\text{H}}{\text{H}}$  being equal to the value of  $\stackrel{\text{H}}{\text{H}}$ in art. 15. when both feries converge, it follows, that  $\frac{5x^5 - x^{-1}}{1^2 \cdot 3^2 \cdot 5^2} + \frac{7x^7 - 3x^{-3}}{3^2 \cdot 5^2 \cdot 7^2} + \frac{9x^9 - 5x^{-5}}{5^2 \cdot 7^2 \cdot 9^2}$ ,  $\mathfrak{S}^2 c$ . is then  $= \frac{x^4 \stackrel{\text{H}}{\text{Q}}}{8} + \frac{bx^4 X}{16} - \frac{5bx^4}{64} + \frac{bx^2}{16} + \frac{bx^2 X}{8} + \frac{b}{64} - \frac{x^3}{3}$  $- \frac{x}{9} + \frac{4}{9} + \frac{a^2 x^2}{8} + \frac{3a^2}{16} - 4 \stackrel{\text{H}}{\text{S}}$ .

Hence, by taking x equal to - 1, we find - 4  $= \frac{3b^2}{8} + \frac{8}{9} + \frac{4}{5}$ ; and, confequently,  $\overset{\text{in}}{\text{S}} = \frac{3a^2}{64} - \frac{1}{9}$ .

Many other inftances of the use of this method might be given; but these may suffice to enable the intelligent reader to pursue the speculation farther, at his pleasure.