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Weil Unveiled

“What would have been Fermat’s astonishment if some missionary, just back
from India, had told him that his problem had been successfully tackled there
by native mathematicians almost six centuries earlier?” - André Weil.

Weil was talking about a 1657 challenge of Fermat “to the English mathe-
maticians and all others”.
Writing to his friend Frenicle, he posed the problem of finding a solution of
x2 −Ny2 = 1 “pour ne vous donner pas trop de peine” like N = 61, 109.

Cut back to 1150 A.D. when Bhaskara II gave the explicit solutions

17663190492 − 61(226153980)2 = 1

1580706719862492 − 109(15140424455100)2 = 1!

Weil’s comment was because - unbeknownst to Fermat - the ancient Indians
had not merely given a solution but they had gone all the way!

Brahmagupta, Jayadeva, Bhaskara
Jayadeva (11th century) and Bhaskara had given the finishing touches to
a wonderful algorithm called the ‘Chakravala’ which finds all solutions to
x2 −Ny2 = ±1 for any positive integer N !

Indeed, Brahmagupta (598-665) had already solved this equation in 628
A.D. for several values like N = 83 and N = 92.

Brahmagupta had remarked, “a person who is able to solve these two cases
within a year is truly a mathematician”’ !

Consider a natural number N which is not a perfect square. We are basically
interested in integer solutions of the equations

x2 −Ny2 = 1, x2 −Ny2 = −1

More generally, suppose
(p, q) is a solution of x2 −Ny2 = m and
(r, s) is a solution of x2 −Ny2 = n. Then

(p, q) ∗ (r, s) := (pr +Nqs, ps+ qr)

is a solution of x2 −Ny2 = mn.

This ‘composition law’ or ‘samasabhavana’ was discovered by Brahmagupta.
This was one of the first instances of a group-theoretic argument.
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Observe therefore that if (p, q), (r, s) are positive solutions of x2−Ny2 = 1,
the Bhavana produces a “larger” solution. In this manner, starting with one
nontrivial (that is, 6= (1, 0)) solution, one obtains infinitely many solutions
of this equation.

We shall describe a method known as the “chakravala” method due to
Jayadeva, Bhaskara and Narayana from the 11th and 12th centuries which
solve this equation. The amazing thing is that the chakravala method pro-
duces all solutions! This is what Weil was referring to.
As far as I know, the Indians did not state explicitly that the Chakravala
method produces all solutions of the equations x2 − Ny2 = 1 although they
might have even been convinced in their minds that it does. We shall find it
convenient to use continued fractions to developed by Lagrange in the 1780’s
to prove that the Chakravala does give all the solutions. Moreover, it is an
algorithm which can easily be implemented on a computer. That is the rea-
son we have called the Chakravala a modern method. Some of the references
to consult for more information are :
(i) ‘History of Algebra’ by V.S.Varadarajan in TRIM series,
(ii) ‘Number theory from Hammurapi to Legendre’ by A.Weil,
(iii) ‘Theory of Numbers’ by Hardy & Wright.

Brahmagupta’s shortcuts

For finding a particular solution of x2 − Ny2 = 1, Brahmagupta devised
some shortcuts of the following kind:

Write (u, v;n) to mean u2 −Nv2 = n. Then,

(u, v;±1)⇒ (2u2 ± 1, 2uv; 1)

(u, v;±2)⇒ (u2 ± 1, uv; 1)

(2u, v; 4)⇒ (2u2 − 1, uv; 1)

(2u+ 1, v; 4)⇒ ((2u+ 1)(2u2 + 2u− 1), 2u(u+ 1)v; 1)

(2u, v;−4)⇒ (2u2 + 1, v; 1)

(u, v;−4)⇒ (p, q; 1)
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with u odd, p = (u2+2)((u2+1)(u2+3)−2)
2 , q = uv(u2+1)(u2+3)

2 .

Examples

N = 13.
Observing that 112 − 13(3)2 = 4.
Then, (11, 3; 4) and the 4th shortcut gives (649, 180; 1).

N = 61.
Observe that 392 − 61(5)2 = −4.
The last shortcut gives a solution
x = 1523 (1522)(1524)−2

2 = 1766319049
and
y = (39)(5)(1522)(1524)

2 = 226153980.
This happens to be the smallest solution!

Chakravala algorithm
Let us describe the Chakravala method roughly first. The basic idea is to
start with the initial values p0 = [

√
N ] and q0 = 1 and look at them as

solutions of the equation x2 = m0y
2 = 1 where m0 = p2

0 − N . Taking
an appropriate x1 close to

√
N , one has a solution (x1, 1) of the second

equation x2 − Ny2 = x2
1 − N . Then, one uses Samasabhavana to get a

solution of the equation x2 −Ny2 = m0(x2
1 −N). Now, the key point is to

make the choice of x1 in such a manner that the resulting solution (p′1, q′1)
of x2 −Ny2 = m0(x2

1 −N) as well as the modulus x2
1 −N are all multiples

of m0 so that (p′1/m0, q
′
1/m0) would be a solution of x2 −Ny2 = m1 where

m1 = (x2
1 −N)/m0.

In this manner, recursively a suitable xi is so chosen that a solution of a
new equation x2−Ny2 = mi is produced and the hope is that at some finite
stage, the modulus mk = 1 and we stop!
Let us describe this more precisely now.

• Start with p0 <
√
N < p0 + 1.

• Take q0 = 1 and m0 = p2
0 −N (note m0 < 0).

Then, we have (p0, q0;m0).

• Choose x1 ≡ −p0 mod |m0| and x1 <
√
N < x1 + |m0|.

Note that in forming the solution
(p0, q0) ∗ (x1, 1) = (p0x1 + N, p0 + x1) of (p0x1 + N, p0 + x1;m0(x2

1 − N)),
the numbers p0x1 +N, p0 + x1, x

2
1 −N are all multiples of m0 and |x2

1 −N |
is as small as possible.
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Indeed, p0 + x1 ≡ 0 mod m0 and
p0x1 +N ≡ −p2

0 +N = −m0 ≡ 0 mod m0.
Of course, we also have x2

1 −N ≡ p2
0 −N = m0 ≡ 0 mod m0.

We have then (p1, q1;m1) where p1 = p0x1+N
|m0| , q1 = p0+x1

|m0| ,m1 = x2
1−N
m0

.
Also m1 > 0 as x2

1 −N < 0 and m0 < 0.
Knowing pi, qi,mi, xi we shall describe (in that order) xi+1,mi+1, pi+1, qi+1

such that (pi+1, qi+1;mi+1) holds and stop when (and if!) we reach mk = 1.

Recursive definition

• Suppose (pi, qi;mi) where we assume

pi =
pi−1xi +Nqi−1

|mi−1| , qi =
pi−1 + xiqi−1

|mi−1| ,mi =
x2
i −N
mi−1

.

Define xi+1 ≡ −xi mod |mi| with xi+1 <
√
N < xi+1 + |mi|.

With this choice of xi+1,

(p′i+1, q
′
i+1) := (pi, qi) ∗ (xi+1, 1) = (pixi+1 +Nqi, pi + qixi+1).

The key point to note is that the choice of the congruence defining xi+1

ensures that mi divides both p′i+1 and q′i+1 as well as x2
i+1 −N :

Indeed
q′i+1 = pi + qixi+1 ≡ pi − qixi mod |mi|

=
pi−1xi +Nqi−1 − pi−1xi − qi−1x

2
i

|mi−1| =
qi−1(N − x2

i )
|mi−1| = ±qi−1mi.

That is, mi divides q′i+1.
Also, we get p′i+1 ≡ ±pi−1mi ≡ 0 mod mi.
The congruence x2

i+1 − N ≡ x2
i − N mod mi ensures the divisibility of

x2
i+1 −N by mi as mimi−1 = x2

i −N .

Therefore, we can take pi+1 =
p′i+1

|mi| , qi+1 =
q′i+1

|mi| ,mi+1 =
x2
i+1−N
mi

.

The name Chakravala

We shall show that each mi ∈ (−2
√
N, 2
√
N). The mi’s will repeat in

cycles - hence called chakravala. However, it is not obvious as yet that some
mk = 1 but we will prove this later using continued fractions. Moreover, it
is not even clear that the pi, qi are integers.
Later, we show using continued fractions that these assertions are true.
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We now show simultaneously |xi+1| <
√
N, |mi| < 2

√
N .

|m0| = N − p2
0 < 2

√
N and x1 <

√
N < x1 + |m0|.

So, x1 >
√
N − |m0| >

√
N − 2

√
N > −√N .

Inductively, if |mi| < 2
√
N , then xi+1 <

√
N < xi+1 + |mi| gives |xi+1| <√

N as before, and

|mi+1| =
|x2
i+1 −N |
|mi| = |

√
N + xi+1| |

√
N − xi+1|
|mi| < 2

√
N.

Formal algorithm summarized

p0 <
√
N < p0 + 1 q0 = 1 . m0 = p2

0 −N .

x1 ≡ −p0 mod |m0| x1 <
√
N < x1 + |m0| .

p1 = p0x1+N
|m0| q1 = p0+x1

|m0| m1 = x2
1−N
m0

.

xi ≡ −xi−1 mod |mi−1| xi <
√
N < xi + |mi−1|

pi = pi−1xi+Nqi−1

|mi−1| qi = pi−1+xiqi−1

|mi−1| mi = x2
i−N
mi−1

.

Example N = 13

Then p0 = 3 <
√

13 < 4, q0 = 1,m0 = p2
0 − 13 = −4.

Therefore (p0, q0;m0) = (3, 1;−4) .

x1 ≡ −p0 = −3(4) and x1 <
√

13 < x1 + 4 gives x1 = 1.
p1 = p0x1+13

|m0| = 4, q1 = p0+x1

|m0| = 1,m1 = x2
1−13
m0

= 3.

Therefore, (p1, q1;m1) = (4, 1; 3) and x1 = 1 .

Now x2 ≡ −4 mod 3 and x2 <
√

13 < x2 + 3 give x2 = 2.
x2 = 2, p1 = 4, q1 = 1,m1 = 3.
So p2 = p1x2+13q1

|m1| = 7, q2 = p1+q1x2

|m1| = 2,m2 = x2
2−13
m1

= −3.

Therefore, (p2, q2;m2) = (7, 2;−3) and x2 = 2 .

Now x3 ≡ −2 mod 3 and x3 <
√

13 < x3 + 3 gives x3 = 1.
So p3 = (7 + 26)/3 = 11, q3 = (7 + 2)/3 = 3,m3 = (12 − 13)/(−3) = 4.
Therefore, (p3, q3;m3) = (11, 3, 4) and x3 = 1 .

x4 ≡ −1 mod 4 and x4 <
√

13 < x4 + 4 gives x4 = 3.
So p4 = (33 + 39)/4 = 18, q4 = (11 + 9)/4 = 5,m4 = (32 − 13)/(4) = −1.
Therefore, (p4, q4;m4) = (18, 5;−1) and x4 = 3 .

x5 ≡ −3 mod 1 and x5 <
√

13 < x5 + 1 gives x5 = 3.
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So p5 = (54 + 65)/1 = 119, q5 = (18 + 15)/1 = 33,m5 = (32− 13)/(−1) = 4.
Therefore, (p5, q5;m5) = (119, 33; 4) and x5 = 3 .

x6 ≡ −3 mod 4 and x6 <
√

13 < x6 + 4 gives x6 = 1.
So p6 = (119+429)/4 = 137, q6 = (119+33)/4 = 38,m6 = (12−13)/4 = −3.
Therefore, (p6, q6;m6) = (137, 38;−3) and x6 = 1 .

x7 ≡ −1 mod 3 and x7 <
√

13 < x7 + 3 gives x7 = 2.
So p7 = (274+494)/3 = 256, q7 = (137+76)/3 = 71,m7 = (22−13)/(−3) =
3.
Therefore, (p7, q7;m7) = (256, 71; 3) and x7 = 2 .

x8 ≡ −2 mod 3 and x8 <
√

13 < x8 + 3 gives x8 = 1.
So p8 = (256 + 923)/3 = 393, q8 = (256 + 71)/3 = 109,m8 = (12 − 13)/3 =
−4.
Therefore, (p8, q8;m8) = (393, 109;−4) and x8 = 1 .

x9 ≡ −1 mod 4 and x9 <
√

13 < x9 + 4 gives x9 = 3.
So p9 = (1179 + 1417)/4 = 649, q9 = (393 + 327)/4 = 180,m9 = (32 −
13)/(−4) = 1.
Therefore, (p9, q9;m9) = (649, 180; 1) and x9 = 3.
Voila!

(ii) N = 67.
(48842, 5967; 1).

(iii) N = 61.
(1766319049, 226153980; 1).

(iv) N = 103.
(227528, 22419; 1).

(v) N = 97.
(62809633, 6377352; 1).

Properties of the pi’s,qi’s

(I) pi+1qi − qi+1pi = (−1)i.

(II) 0 < p0 < p1 < · · · , 0 < q1 < q2 < · · ·

(III) ai+1 = xi+1+xi
|mi| are positive integers satisfying

pi+1 = ai+1pi + pi−1

qi+1 = ai+1qi + qi−1
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Proof of pi+1qi − qi+1pi = (−1)i.
As mimi+1 = x2

i+1 −N < 0,m0 < 0, mi
|mi| = (−1)i+1.

(
xi+1 N

1 xi+1

)(
pi
qi

)
=
(
p′i+1

q′i+1

)
=
(
pi+1|mi|
qi+1|mi|

)
.

Multiplying on the left by (qi,−pi), we get

( qi −pi )
(
xi+1 N

1 xi+1

)(
pi
qi

)

= ( qi −pi )
(
pi+1|mi|
qi+1|mi|

)
= (qipi+1 − piqi+1)|mi|.

The LHS q2
iN − p2

i = −mi; so, pi+1qi − qi+1pi = (−1)i.

Note that (II) follows from (III) inductively; the beginning inequalities p1 >
p0 > 0, q1 > 0 are accomplished as follows.
Recall p1 = p0x1+N

|m0| = p0x1+p2
0+|m0|

|m0| = 1 + p0
p0+x1

|m0| = 1 + p0q1.
If we show that q1 > 0, then it would follow that p1 > p0.
As x1 >

√
N − |m0| and 1 >

√
N − p0, we have

q1 =
p0 + x1

|m0| >
p0 +

√
N − |m0|
|m0| =

1√
N − p0

− 1 > 0

Proof of (III)
We leave the easy inductive proof of the fact that ai+1 = xi+1+xi

|mi| are integers
satisfying

pi+1 = ai+1pi + pi−1

qi+1 = ai+1qi + qi−1

We prove that ai’s are positive as follows.
As xi <

√
N < xi + |mi−1|, we have

|mi−1| >
√
N − xi =

N − x2
i√

N + xi
=
−mimi−1√
N + xi

=
|mimi−1|√
N + xi

.

Hence
√
N + xi > |mi| and so,

ai+1 =
xi + xi+1

|mi| >
|mi| −

√
N + xi+1

|mi| > 0.

Continued fractions - a crash course
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A simple continued fraction is
l = a0 + 1

a1+
1
a2+ · · · := limn→∞(a0 + 1

a1+
1
a2+ · · · 1

an
)

One writes symbolically as l = [a0; a1, a2, · · ·].
The successive quotients

p0

q0
:=

a0

1
,
p1

q1
=
a0a1 + 1

a1
= a0 +

1
a1
, · · ·

are called the convergents to the continued fraction. Note

p0

q0
<
p2

q2
< · · · < l <

p1

q1
<
p3

q3
< · · ·

Inductively
pn+1 = an+1pn + pn−1

qn+1 = an+1qn + qn−1

To see these, note that pn+2, qn+2 arise exactly like pn+1, qn+1 but with an+1

replaced by an+1 + 1
an+2

etc. So

pn+2

qn+2
=

(an+1 + 1
an+2

)pn + pn−1

(an+1 + 1
an+2

)qn + qn−1

=
an+2(an+1pn + pn−1) + pn
an+2(an+1qn + qn−1) + qn

=
an+2pn+1 + pn
an+2qn+1 + qn

which proves the claim.

The above recursion is expressed better as :(
pn pn−1

qn qn−1

)(
an+1 1

1 0

)
=
(
pn+1 pn
qn+1 qn

)
.

But, p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1.

So
(
a0 1
1 0

)(
a1 1
1 0

)
=
(
p1 p0

q1 q0

)
.

Thus, the recursion is expressed neatly as:
(
a0 1
1 0

)(
a1 1
1 0

)
· · ·
(
an 1
1 0

)
=
(
pn pn−1

qn qn−1

)

Observe that immediately the determinants give

pnqn−1 − pn−1qn = (−1)n−1
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So pn, qn are relatively prime and, from this, it can be shown that the limit
defining the C.F. exists.

There is a simple way to recover l from any one of the so-called ‘complete
quotients’ ln = an + 1

an+1+
1

an+2+ · · ·
Since pn

qn
= anpn−1+pn−2

anqn−1+qn−2
and l is obtained when an above is replaced by ln,

we have
l =

lnpn−1 + pn−2

lnqn−1 + qn−2
.

C.F.s for rational numbers
It is elementary to observe that finding continued fractions for rational num-
bers p/q is not only equivalent to the Euclidean algorithm of finding the
GCD of p and q but also equivalent to (very efficiently) solving the linear
Diophantine equation px− qy = (p, q).
Let us give an example.

Suppose we wish to solve 72x+57y = 1 in integers x, y. Look at the following
division table:

14 72 78125 1085
2 2 5 2

0 1

Then 78125
72 = [1085; 14, 2, 2].

The penultimate convergent [1085; 14, 2] = 1085 + 1/(14 + 1
2) = 1085 +

2
29 = 31467

29 provides us with a solution of 78125x − 72y = 1; viz. (x, y) =
(29, 31467).
So, it is not surprising that finding the continued fractions of certain numbers
may lead to solutions of some Diophantine equations.

How does one find the C.F. for an irrational number like
√

7?

√
7 = 2 + (

√
7− 2) = 2 +

3√
7 + 2

= 2 +
1

(
√

7 + 2)/3
.

√
7 + 2
3

= 1 + (
√

7 + 2
3

− 1) = 1 +
√

7− 1
3

.

√
7− 2 =

1
1+

√
7− 1
3

=
1

1+
1

(
√

7 + 1)/2
=

1
1+

1
1+

√
7− 1
2

=
1

1+
1

1+
1

1+
1√

7 + 2
=

1
1+

1
1+

1
1+

1
4 + (

√
7− 2)

.
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Thus, we have a repetition and

√
7− 2 =

1
1+

1
1+

1
1+

1
4+

1
1+

1
1+

1
1+

1
4+
· · ·

So,
√

7 = [2; 1, 1, 1, 4].

Continued fraction of
√
N .

Let N be a square-free positive integer. How does the C.F. of
√
N look?

Now,
√
N = a1 + (

√
N − a1) with a1 = [

√
N ].

Thus,
√
N − a1 = N−a2

1√
N+a1

= r1√
N+a1

, say, where r1 = N = a2
1.

In other words,
√
N = a1 + r1√

N+a1
= a1 + 1

(
√
N+a1)/r1

.

Write [
√
N+a1
r1

] = b1; then

√
N + a1 = b1r1 + (

√
N − a2)

where a2 = b1r1 − a1.
So,
√
N = a1 + 1

b1+(
√
N−a2)/r1

= a1 + 1
b1+

1
(
√
N+a2)/r2

where r1r2 = N − a2
2.

The C.F. is
√
N = b0 + 1

b1+
1
b2+ · · ·

b0 = a1 = [
√
N ] r1 = N − a2

1 b1 = [
√
N+a1
r1

]

an = bn−1rn−1 − an−1 rn−1rn = N − a2
n bn = [

√
N+an
rn

] .

The crucial point is that, at each stage if bn = [
√
N+an
rn

] is replaced by

ln =
√
N+an
rn

, then we get the exact value
√
N .

√
N =

ln+1pn + pn−1

ln+1qn + qn−1
=

(
√
N+an+1

rn+1
)pn + pn−1

(
√
N+an+1

rn+1
)qn + qn−1

.

Comparing the terms with and without
√
N ,

an+1pn + rn+1pn−1 = Nqn

an+1qn + rn+1qn−1 = pn

Using pn−1qn − pnqn−1) = (−1)n, we have

an+1(−1)n−1 = pn−1pn −Nqn−1qn
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rn+1(−1)n−1 = p2
n −Nq2

n

One may deduce from this an+1, rn+1 > 0.

Further, if we know some rk (say rn+1) equals 1, then

(−1)n−1 = p2
n −Nq2

n

Comparing Chakravala with C.F.
Amazingy, the Chakravala method produces the same pk’s and qk’s as in the
C.F. for

√
N .

Recall that in Chakravala method, we have

p′i+1 = a′i+1pi + p′i−1

q′i+1 = a′i+1q
′
i + q′i−1

where a′i+1 = xi+1+xi
|mi| with a′0 = p′0 = [

√
N ], xi <

√
N < xi + |mi−1| and

mimi−1 = x2
i −N .

We have written p′i, q
′
i, a
′
i etc. to distinguish from the pi, qi, ai in the C.F.

In view of the recursions, one can show that the bi’s in the C.F. of
√
N are

the same as the a′i’s here as follows.

Recalling the expression for complete quotient at any stage in the S.C.F. of√
N , and recalling that

√
N =

ln+1pn + pn−1

ln+1qn + qn−1

we have ln+1 =
√
Nqn−1−pn−1

pn−
√
Nqn

.
This gives the expression

bn+1 = [ln+1] = [
√
Nqn−1 − pn−1

pn −
√
Nqn

].

Firstly, a′0 = p′0 = [
√
N ] = b0. Next,

a′1 = q′1 =
p′0 + x1

|m0| =
b0 + x1

|m0| = [
b0 +

√
N

|m0| ]

since x1 <
√
N < x1 + |m0|.

Hence a′1 = [ b0+
√
N

N−b20
] = b1; that is,

a′1 = q′1 = b1.
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Also, p′1 = 1 + p′0q′1 = 1 + b0b1 = p1.
Thus, we have shown a′0 = b0, p

′
0 = p0, q

′
0 = q0, p

′
1 = p1, q

′
1 = q1.

We assume that bi = a′i for all i ≤ n; then p′i = pi, q
′
i = qi for all i ≤ n. We

show bn+1 = a′n+1.
Recall that

bn+1 = [
√
Nqn−1 − pn−1

pn −
√
Nqn

].

Hence, it suffices to show that

a′n+1 = [

√
Nq′n−1 − p′n−1

p′n −
√
Nq′n

] · · · · · · (♠)

Now, the Chakravala has

p′i =
p′i−1xi +Nq′i−1

|mi−1| , q′i =
p′i−1 + xiq

′
i−1

|mi−1|
which gives

p′n =
p′n−1xn +

√
Nq′n−1

|mn−1| , q′n =
p′n−1 + q′n−1xn
|mn−1| .

Using these, the right hand side of (♠) is

[

√
Nq′n−1 − p′n−1

p′n −
√
Nq′n

] = [
|mn−1|√
N − xn

] = [
√
N + xn
|mn| ]

where we have used mnmn−1 = x2
n −N .

Denote the integer [
√
N+xn
|mn| ] by t. Then, we have

t <

√
N + xn
|mn| < t+ 1.

Hence t|mn| − xn <
√
N < t|mn| − xn + |mn|.

As xn+1 is the unique integer satisfying xn+1 <
√
N < xn+1 + |mn| as

we defined in the Chakravala, we have xn+1 = t|mn| − xn. This means
t = xn+xn+1

|mn| = a′n+1. So bn+1 = a′n+1. We have thus proved our assertion.

Recurrence of C.F. for
√
N

Let us start by proving the well-known fact that bn’s recur.
Now 0 < rn−1rn = N − a2

n implies that a1 = [
√
N ] ≥ an∀n.

13



So, each an can only have the values 1, 2, · · · , a1 = [
√
N ].

From bn−1rn−1 = an + an−1 ≤ 2a1, we have rn−1 ≤ 2a1 for all n.
This means that the complete quotients (these are

√
N+an
rn

) can take at the
most 2a2

1 values; so they recur.
So an = ak, rn = rk, bn = bk for some n < k.
We shall show that an−1 = ak−1, rn−1 = rk−1, bn−1 = bl−1.
Now, rk−1rk = N − a2

k = N − a2
n = rn−1rn gives rk−1 = rn−1.

ak−1 − an−1 = (ak−1 + ak)− (an−1 + an) = (bk−1 − bn−1)rn−1.
We observe as follows that a1 < ad + rd for all d.

rd−1 ≤ bd−1rd−1 = ad−1 + ad <
√
N + ad =

N − a2
d√

N − ad
=

rd−1rd√
N − ad

So, it follows that rd >
√
N − ad > a1 − ad.

Thus, (bk−1 − bn−1)rn−1 = ak−1 − an−1

= (a1 − an−1)− (a1 − ak−1) < a1 − an−1 < rn−1;
we arrive at bk−1 = bn−1, ak−1 = an−1.
Proceeding in this manner, there is n such that an+1 = a1, rn+1 = r1. So

rnr1 = rnrn+1 = N − a2
n+1 = N − a2

1 = r1

which means rn = 1.
So rn(−1)n = (−1)n = p2

n−1 −Nq2
n−1.

Chakravala gives all

The Chakravala method does give solutions of x2 −Ny2 = 1.
Indeed, we know how to get a solution of x2 −Ny2 = 1 from one for x2 −
Ny2 = −1. The remarkable fact that it gives all the solutions is contained
in the theorem below:

Theorem.
Every solution of either of the equations x2 − Ny2 = ±1 is of the form
(pn, qn) for some n.

Let us first observe that any solution of x2−Ny2 = ±1 satisfies |xy −
√
N | <

1
2y2 .

We see this when x2 − Ny2 = 1, for x
y −
√
N = x−y

√
N

y = 1
y(x+y

√
N)

< 1
2y2

since x+ y
√
N > 2y.

When x2 −Ny2 = −1 and x ≥ y, the same argument works.
When x2 −Ny2 = −1 with x < y, we have −1 = x2 −Ny2 < y2 −Ny2 =
(1−N)y2 which means (N − 1)y2 < 1, an impossibility.
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The rest of the proof then follows from the more general statement:
If α is a real number which is irrational, and satisfies |α − r

s | < 1
2s2

where
s > 0, then r/s is a convergent to the continued fraction of α.

We skip the rest of the proof of the theorem which is an easy consequence
of the fact that we can find ζ such that

α =
ζpn + pn−1

ζqn + qn−1

and the key observation (which we prove) where the so-called modular group
plays a role:

Modular group comes in
If α = ζp+r

ζq+s where ζ > 1 and ps− qr = ±1 and q > s > 0, then p/q, r/s are
consecutive convergents to the C.F. of α.

For the proof, write p
q = [a0; a1, · · · , an] with pi/qi the convergents (so

pn/qn = p/q). Choose n so that

ps− qr = (−1)n−1 = pnqn−1 − qnpn−1.

Note that we have used the easy observation that a rational number has two
simple continued fractions - one of even length and the other of odd length.
As p, q are relatively prime with q > 0 and p/q = pn/qn, it follows that
p = pn, q = qn.
Thus, (−1)n−1 = ps− qr = pns− qnr = pnqn−1 − qnpn−1.
This gives pn(s− qn−1) = qn(r − pn−1) which means in view of coprimality
of pn, qn that qn|(s− qn−1).
As qn = q > s (hypothesis) and qn ≥ qn−1, we must have s = qn−1 (and
hence r = pn−1). We are done.

Remarks.
It can be sown that if the continued fraction expansion of

√
N looks like

[b0; b1, b2, · · · , br, 2b0] and, the penultimate convergent [b0; b1, b2, · · · , br] gives
a solution of x2 − Ny2 = −1 or of x2 − Ny2 = 1 according as to whether
the period r + 1 above is odd or even.

Examples
√

7 = [2; 1, 1, 1, 4, · · ·] gives the penultimate convergent before the period to
be [2; 1, 1, 1] = 8/3. Then, (8, 3) is a solution of x2 − 7y2 = 1 (as the period
is of even length).
Note that x2 − 7y2 = −1 has no solution (look mod 4).
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√
13 = [3; 1, 1, 1, 1, 6, · · ·] gives the penultimate convergent before the period

to be [3; 1, 1, 1, 1] = 18/5.
Then (18, 5) is a solution of x2−13y2 = −1 (as the period is of odd length).
From this a solution for x2−13y2 = 1 can be obtained as (182+13(52), 2(18)(5)) =
(649, 180).
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